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Anaplastic lymphoma kinase (ALK) fusion, an oncogenic driver alteration, accounts for
5%–6% of non-small cell lung cancer (NSCLC) patients. ALK tyrosine kinase inhibitors
(TKIs) provide significant clinical benefit in advanced ALK-rearranged NSCLC.
However, acquired resistance to ALK TKIs inevitably arises, and the underlying
mechanisms remain incompletely elucidated. This report describes a stage IV lung
adenocarcinoma (LUAD) patient with ALK-rearranged who developed KIF5B-RET
fusion-mediated resistance following second-line alectinib therapy. The patient
achieved a partial response (PR) to third-line pralsetinib, sustained for 4 months.
This case highlights KIF5B-RET fusion as a potential resistance mechanism post
alectinib treatment and suggested = pralsetinib, a RET inhibitor, as a viable
therapeutic option in this context. These findings contribute to the evolving
understanding of resistance management strategies in ALK-rearranged NSCLC.
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Introduction

Non-small cell lung cancer (NSCLC) accounts for 80%–85% of lung cancer cases and
remains a leading cause of cancer-related mortality worldwide (Siegel et al., 2022). Advances
in next-generation sequencing (NGS) technology and precision oncology have
revolutionized therapeutic strategies, enabling targeted therapies to become a
cornerstone of NSCLC management (Tan and Tan, 2022). Among oncogenic driver
alterations, anaplastic lymphoma kinase (ALK) fusions are identified in 5%–6% of
NSCLC patients and serve as critical therapeutic targets (Yang et al., 2023). Multiple
ALK tyrosine kinase inhibitors (TKIs) with excellent efficacy, including first-generation
crizotinib, second-generation ceritinib, alectinib, and brigatinib, and third-generation
lorlatinib, have been approved for treating ALK-rearranged NSCLC patients. Despite
their clinical success, the long-term efficacy of these agents is frequently hindered by
the inevitable development of resistance, the mechanisms of which remain incompletely
characterized. This case report describes a stage IV ALK-rearranged lung adenocarcinoma
(LUAD) patient who developed KIF5B-RET fusion-mediated resistance to second-line
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alectinib therapy. Notably, the patient achieved a partial response
third-line pralsetinib, a selective RET inhibitor, with a duration of
4 months, provide novel insights into resistance mechanisms and
salvage therapeutic options.

Case description

In September 2020, a 50-year-oldmale presented to his local hospital
with persistent cough. Initial chest computed tomography (CT) imagine

identified a nodule in the dorsal segment of the left lower lung lobe.
Subsequent followed-up scans performed due to progressive symptoms
revealed a 11 mm × 10 mm lesion in the left lower lung and enlarged
mediastinal lymph nodes. A lymph node biopsy at this stage confirmed
poorly differentiated LUADwith genetic testing demonstratingwild-type
EGFR exons (18-21) andALK. Notably, the local hospital omitted tumor
marker assessment (e.g., carcinoembryonic antigen) and
immunohistochemical analysis of biopsy specimens.

In February 2021, the patient was referred to our institution with
worsening tracheophonia. Repeat chest CT scans showed a left lower

FIGURE 1
The treatment milestone of the patient. NGS, next-generation sequencing; PR, partial response; SD, stable disease; PD, progressive disease; TMB,
tumor mutational burden; LUAD, lung adenocarcinoma. CT, computed tomography; MRI: magnetic resonance imaging.

FIGURE 2
Longitudinal CT imaging of the patient’s thoracic lesions.
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lung lesion, enlarged right supraclavicular and mediastinal lymph
nodes, and a new in the right lower lung nodule. Magnetic resonance
imaging (MRI) and bone emission computed tomography scan
revealed no evidence of brain or bone metastases. NGS (11- gene
panel covering 11 oncogenic driver genes recommended by the
NCCN guidelines) of the biopsy tissue from the 4L lymph node
biopsy tissue identified an echinoderm microtubule-associated
protein-like 4 (EML4)-ALK- rearranged (allele frequency: 16%).
The patient was diagnosed with stage IVa (cT1N3M1a) ALK
rearranged LUAD. The treatment timeline is summarized
in Figure 1.

Owing to financial constraints, the patient received first-line
crizotinib (250 mg twice daily) from February to March 2021.
While imaging indicated stable disease, his clinical symptoms,
including tracheophonia and left chest pain, progressively
deteriorated. Second-line therapy with alectinib (600 mg twice daily)
was initiated, achieving stable disease until November 2021, when the
patient developed chest tightness, nausea, and dyspnea. Chest CT at
progression demonstrated significant mediastinal lymphadenopathy,
pericardial effusion and bilateral pleural effusions. Brain MRI
confirmed new metastasis lesion. Concurrently, the primary left
lower lung lesion and right lung metastatic nodule exhibited slight
enlargement. Laboratory findings revealed severe transaminitis (ALT
and AST >1000 U/L) and jaundice.

Alectinib was discontinued due to hepatotoxicity, and the patient
received glutathione and polyene phosphatidylcholine for transaminase
reduction. Pericardiocentesis yielded 200–300 mL of hemorrhagic
pericardial effusion daily, with cytopathology confirmed malignant
cell. NGS of the pericardial effusion (520-gene panel, Burning Rock
Biotech, Guangzhou, China)detected the original ALK rearrangement,
and a novel KIF5B-RET fusion (K15:R12 allele frequency AF: 31.86%,
tumor mutation burden:4.99 mutations/Mb).

Given pralsetinib’s approval for RET-fusion-positive NSCLC, third-
line pralsetinib (400mg daily) was administered fromNovember 2021, to
March 2022, achieving partial response (RECIST 1.1). Treatment was
discontinued due to financial constraints, and subsequent therapy include
Endostar (recombinant human endostatin injection) combined with
pemetrexed-carboplatin chemotherapy. During chemotherapy, the
patient required hospitalization for zoledronic acid (bone metastasis
management) and intrathoracic cisplatin (pleural effusion control).
Disease progression (PD) occurred after five chemotherapy cycles.
Cabozantinib (140 mg daily) was initiated on November 2022, but
was discontinue due to severe adverse reactions. Palliative care was
initiated following confirmed progression on chest CT, and the
patient succumbed to the disease in late November 2022.
Longitudinal CT imaging of the patient’s thoracic lesions are shown
in Figure 2.

Discussion

To our knowledge, this represents the first documented case of
KIF5B-RET fusion as a resistance mechanism to alectinib in ALK-
rearranged NSCLC. Alectinib, a second-generation ALK TKI has been
widely used in patients progressing on crizotinib, supported by its robust
efficacy reported in the phase III clinical trial ALUR study (Novello et al.,
2018). In this case, the patient derived a progression-free survival (PFS) of
7 months from alectinib after failing first-line crizotinib.

While first- and next-generationALK inhibitors prolong survival in
ALK rearrangements NSCLC, resistance remains inevitably (Okada
et al., 2019). Prior studies indicate that over 50% of alectinib-resistant
tumors harbor secondary ALK mutations, with ALK G1202R (29%
prevalence), ALK I1171T/N/S, ALK V1180L, andALK L1196M (Gainor
et al., 2016; Haratake et al., 2021). Additionally,MET overexpression or
amplification contributes to acquired resistance alectinib through
bypass signaling activation (Haratake et al., 2021). In NSCLC after
multi-line targeted therapy, there is often activation of multiple driver
genes and more potential treatment targets. Therefore, NGS using a
broader gene panel has potential benefits for these patients. In this case,
the patient progressing on alectinib underwent NGS on pericardial
effusion, which revealed the presence of KIF5B-RET fusion without
secondary ALK mutation or MET amplification. RET rearrangement,
observed in 1%–3% of treatment-naïve NSCLCs (Tan and Tan, 2022),
have been reported in EGFR-TKIs such as osimertinib (Leonett et al.,
2019; Offin et al., 2018). However, reports linking RET fusions to ALK
TKI resistance are scarce. Yan et al. reported a case of NCOA4-RET
fusion mutation occurring after acquired resistance to alectinib (Yan
et al., 2024). Both previous studies and our case suggest that KIF5B-RET
fusion could contribute to resistance to the second-generationALKTKI
alectinib. The patient was observed to benefit from third-line
pralsetinib.

Liquid biopsy has emerged as a minimally invasive tool for
molecular profiling in NSCLC, utilizing peripheral blood, pleural
effusion, and cerebrospinal fluid to circumvent tumor heterogeneity
(Ye et al., 2019; He et al., 2022). Multiple retrospective analyses have
demonstrated that NGS performed on body fluids, including
pericardial effusion, exhibits high concordance with tissue-based
testing in detecting driver gene alterations (Wei et al., 2016; Zhang
et al., 2019). While pericardial effusion analysis in this case
successfully identified KIF5B-RET fusion, its utility is constrained
by limited availability and potential sampling bias. Future studies
should validate the concordance between pericardial effusion and
tissue-based genomic profiles in larger cohorts.

The next-generation sequencing (NGS) performed in this studywas
DNA-based, utilizing a panel covering 11 oncogenic driver genes
recommended by the NCCN guidelines for lung cancer, which
includes RET fusion detection. While the KIF5B-RET fusion was
identified at disease progression (allele frequency: 31.86%), baseline
NGS analysis of the initial lymph node biopsy (February 2021)
confirmed wild-type ALK and EGFR but did not detect RET
alterations. Notably, RNA-based NGS, which offers higher sensitivity
for fusion detection, was not performed due to insufficient tissue
availability.

It is important to acknowledge that discordance between DNA-
and RNA-based NGS has been reported in prior studies, primarily
due to differences in genomic breakpoints or low tumor content in
samples (Li et al., 2020). Thus, while our findings strongly suggest
KIF5B-RET fusion as an acquired resistance mechanism post-
alectinib, the possibility of a pre-existing subclonal RET fusion
below the detection threshold of DNA-NGS at baseline cannot be
entirely excluded. Future studies incorporating paired RNA
sequencing or more sensitive assays (e.g., digital PCR) in
longitudinal samples would help clarify the origin of this alteration.

There are some limitations associated with this study. Firstly, it just
a case report involves only one patient. More evidence is needed to
investigate whether the presence of KIF5B-RET is one of the
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mechanisms underlying resistance to alectinib. Secondly, the
concordance of genomic profiling between pericardial effusion and
paired tissue samples derived from NSCLC patients should be
investigated in a large cohort study.

The emergence of KIF5B-RET fusion as a resistance mechanism
in this case underscores the complexity of bypass signaling in ALK-
rearranged NSCLC. Beyond genomic alterations, epigenetic
dysregulation—including DNA methylation, histone
modifications, and chromatin remodeling—has been increasingly
recognized as a driver of therapeutic resistance and tumor evolution
(Jones and Baylin, 2007; Sharma et al., 2010). For instance,
hypermethylation of tumor suppressor genes (e.g., CDKN2A) or
hypomethylation of oncogenic promoters (e.g., RET) may synergize
with fusion events to sustain proliferative signaling (Heller et al.,
2013). Recent studies suggest that ALK fusions themselves can
modulate the epigenetic landscape by recruiting histone
acetyltransferases (HATs) or methyltransferases (e.g., EZH2),
thereby promoting oncogene addiction and resistance to TKIs
(Lovly and Shaw, 2014). In RET-rearranged tumors, aberrant
DNA methylation patterns have been linked to enhanced RET
transcription and pathway activation, independent of fusion allele
frequency (Gautschi et al., 2017). These findings highlight the
potential interplay between genetic and epigenetic mechanisms in
mediating resistance.

Notably, RET fusions may exploit epigenetic machinery to amplify
downstream signaling. Preclinical models demonstrate that RET fusion
proteins recruit histone deacetylases (HDACs) to repress negative
regulators of the MAPK pathway, such as DUSP6, fostering
sustained ERK activation (Drilon et al., 2018). Similarly, ALK
fusions have been shown to induce global DNA hypomethylation
via downregulation of DNMT3A, facilitating the expression of pro-
metastatic genes (Wata et al., 2015). In this patient, while RNA-based
epigenetic profiling was not performed, the high allele frequency of
KIF5B-RET (31.86%) and its temporal association with alectinib
resistance suggest that epigenetic co-drivers—if present—could have
amplified RET-dependent survival signals.

Targeting epigenetic modifiers represents a promising avenue to
overcome resistance in ALK/RET-altered NSCLC. HDAC inhibitors
(e.g., panobinostat) and DNA hypomethylating agents (e.g.,
azacitidine) have shown preclinical efficacy in restoring TKI
sensitivity by re-sensitizing resistant clones to apoptosis (Topper
et al., 2017). For example, targeting the menin-PRC2 complex
(which includes EZH2) suppresses lung adenocarcinoma growth
by mediating H3K27me3-dependent silencing of the oncogenic
growth factor pleiotrophin (PTN) (Gao et al 2009). This
highlights the therapeutic potential of disrupting PRC2-mediated
epigenetic silencing in this context. In RET-fusion-positive cancers,
BET inhibitors (e.g., JQ1) disrupt BRD4-mediated transcriptional
elongation of RET, potentiating the effects of RET TKIs (Puissant
et al., 2013). Future studies should explore whether adjunct
epigenetic therapy could extend the durability of pralsetinib in
patients with RET-mediated resistance.

This case highlights KIF5B-RET fusion as a putative resistance
mechanism to alectinib, while underscoring the need to investigate
epigenetic contributors to ALK/RET pathway dysregulation. The
integration of pharmacoepigenetic approaches—such as DNA
methylation profiling or HDAC inhibition—into resistance
management strategies may uncover novel therapeutic vulnerabilities.

We propose that longitudinal epigenetic profiling of liquid biopsy
samples (e.g., cfDNA or pericardial effusion) could identify dynamic
changes in chromatin modifiers or methylation patterns associated with
resistance. Furthermore, clinical trials evaluating combinations of RET/
ALK inhibitors with epigenetic agents (e.g., HDAC or EZH2 inhibitors)
are warranted to determine whether such strategies can delay or reverse
resistance in molecularly defined subsets.
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