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Introduction: Genomic and epigenomic data from complex samples reflect the
average level ofmultiple cell types. However, differences in cell compositions can
introduce bias into many relevant analyses. Consequently, the accurate
estimation of cell compositions has been regarded as an important initial step
in the analysis of complex samples. A large number of computational methods
have been developed for estimating cell compositions; however, their
applications are limited due to the absence of reference or prior information.
As a result, reference-free deconvolution has the potential to be widely applied
due to its flexibility. A previous study emphasized the importance of feature
selection for improving estimation accuracy in reference-free deconvolution.

Methods: In this paper, we systematically evaluated five feature selection options
and developed an optimal feature-selection-based reference-free deconvolution
method. Our proposal iteratively searches for cell-type-specific (CTS) features by
integrating cross-cell-type differential analysis between one cell type and the other
cell types, as well as between two cell types and the other cell types, and performs
composition estimation.

Results and discussion:Comprehensive simulation studies and analyses of seven
real datasets show the excellent performance of the proposed method. The
proposed method, that is, reference-free deconvolution based on cross-cell-
type differential (RFdecd), is implemented as an R package at https://github.com/
wwzhang-study/RFdecd.
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1 Introduction

Genomic and epigenomic data obtained from complex samples represent a weighted
average of signals originating frommultiple cell types, rather than individual measures for each
feature across different cell types present in the mixture (Houseman et al., 2012; Jaffe and
Irizarry, 2014; Shen-Orr et al., 2010; Zhong and Liu, 2011). For instance, DNA methylation
profiles derived from whole blood reflect contributions from heterogeneous cell populations,
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such as lymphocytes (e.g., T cells and B cells), granulocytes (e.g.,
neutrophils), and monocytes (Zhang et al., 2021; Zheng et al., 2018).
Similarly, tumor samples are composed of heterogeneous cellular
mixtures, including malignant cells, stromal cells (e.g., fibroblasts),
vascular endothelial cells, and immune cell subsets (e.g., T cells and
macrophages), which collectively constitute the tumor
microenvironment (Marusyk et al., 2012; Yadav and De, 2015).
Consequently, differences in cell compositions can confound many
relevant analyses, including differential analysis (Zhang et al., 2020;
Zheng X. et al., 2017), and cell-type classification (Chen et al., 2024).
Moreover, cell compositions serve as a crucial foundation for
forecasting disease progression and patient prognosis (Dou et al.,
2024; Ribas and Wolchok, 2018). Therefore, the accurate estimation
of cell compositions from high-throughput data of complex samples is
of great significance.

Cell composition analysis can be assessed through both in vitro
experimental and in silico computational approaches. Many
experimental approaches, such as fluorescence-activated cell sorting
(FACS) and immunohistochemistry (IHC), along with advanced
techniques like single-cell transcriptome analysis and multi-omics
sequencing, provide cellular composition information (Sturm et al.,
2019). However, these in vitro methods are either limited by their
processing capacity or remain too expensive and labor-intensive for
large-scale clinical use. To address this issue, in silico computational
techniques known as “deconvolution” have been devised as
alternatives. These approaches can generally be divided into two
main categories: reference-based (RB) methods (Clarke et al., 2010;
Gong et al., 2011; Hattab et al., 2017; Newman et al., 2015;
Teschendorff et al., 2017) and reference-free (RF) methods (Brunet
et al., 2004; Houseman et al., 2016; Kang et al., 2019; Rahmani et al.,
2018). RB methods require the use of reference panel data that can be
derived from purified tissues or annotated single-cell experiments.
The proportion of each cell type is then determined using techniques
such as constrained linear regression or support vector regression
(Newman et al., 2015). It has been reported that RBmethods generally
provide more accurate and robust estimations than RF methods
(Newman et al., 2015; Teschendorff et al., 2017; Zheng S. C. et al.,
2017). Nevertheless, RB methods often encounter limitations due to
the accessibility of appropriately matched reference panels that
adequately match the target population in terms of key biological
characteristics. Currently, the available reference data predominantly
pertain to only a handful of extensively researched tissue types, such as
the blood, breast, and brain, sourced from a relatively small number of
individuals. Additionally, in scenarios where substantial disparities
exist in clinical conditions and phenotypes between the intricate
samples under study and the reference data, RB methods may lead
to imprecise estimations of proportions (Li andWu, 2019). For tissues
without proper references, RF methods provide a better solution
(Ferro Dos Santos et al., 2024; Rahmani et al., 2017). RF
deconvolution is a computational framework that estimates cellular
heterogeneity without requiring prior cell-typemarker information by
simultaneously inferring cell-type-specific (CTS) signatures and
proportions directly from bulk data. Classical approaches including
non-negative matrix factorization (NMF) (Brunet et al., 2004) and
https://MeDeCom (Lutsik et al., 2017) require biological priors to
resolve rotational ambiguity. Recent advancements diversify RF
strategies: hierarchical latent variable models [e.g., MMAD
(Houseman et al., 2016)] enhance biological interpretability

through structured latent variables, whereas Bayesian frameworks
like BayesPrism (Chu et al., 2022) improve identifiability via prior
integration. Feature selection strategies, such as co-functional
grouping (Deng et al., 2023), optimize biological relevance at
computational cost. Spatial extensions like STANDS (Xu et al.,
2024) enable reference-free tissue analysis via graph neural
networks, contingent on specialized spatial inputs. Despite
methodological advancements, RF frameworks continue to face
inherent parameter estimation challenges in simultaneously
estimating high-dimensional parameters for cellular signatures and
proportions, often leading to reduced estimation accuracy. Therefore,
it is worthwhile to investigate potential strategies that can improve RF
deconvolution.

In this paper, we systematically evaluated five feature-selection
options in reference-free deconvolution and developed an optimal
feature-selection-based reference-free deconvolution based on
cross-cell-type differential (RFdecd) analysis using an iteration
algorithm to search for cell-type-specific features and perform
cell composition estimation. We evaluate the proposed method
through extensive simulation studies and analysis of seven real
data. Our proposed method is implemented in the latest version
of the RFdecd package, which is freely available at https://github.
com/wwzhang-study/RFdecd.

2 Materials and methods

2.1 Data model

RF deconvolution uses a raw data matrix Y from complex
samples to estimate cell-type profiles and cell compositions. In
mathematical terms, this problem can be formulated as shown in
Equation 1:

Y � WH + ϵ, (1)
whereW is anm × K cell-type profile matrix form cell-type-specific
features in K cell types; H is a K × n cell-type-specific mixing
proportion matrix (rows = K cell types and column = n samples
with proportions summing to 1) for K cell types in n samples, and
the entries of H are required to be non-negative, and every column
sums up to one; ϵ is anm × n error matrix. The goal of this study was
to use Y to estimate H.

Figure 1 shows the workflow of the proposed algorithm, which
consists of three main phases. The initialization phase begins by
selecting the top 1,000 features (M0) with the highest coefficient of
variation (CV) from the raw data matrix Y, generating a reduced
matrix YM0 that undergoes RF deconvolution to estimate initial cell-
type profile matrix W1 and proportion matrix H1, with the
reconstruction error RMSE[1] calculated as the root mean
squared error between the reconstructed observation Ŷ � W1H1

and the original observation Y. The iterative optimization phase
then cyclically updates the feature listMi using six feature-selection
options, namely, variance (VAR), CV, single-vs-composite (SvC),
dual-vs-composite (DvC), pairwise-direct (PwD), and RFdecd, at
each iteration i (1 ≤ i≤ totalIter), followed by the re-estimation of
Wi+1 and Hi+1 through RF deconvolution on YMi and recalculation
of RMSE[i+1]. After completing all iterations, the termination phase
identifies and returns the optimal proportion matrix Hid
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corresponding to the iteration with minimal root mean squared
error (RMSE). A formal pseudocode of the complete algorithm is
provided in Supplementary Algorithm 1.

The algorithm uses six feature-selection options during iterative
optimization. Initial approaches include VAR and CV, which select
the top 1,000 features based on VAR or CV in the estimated cell-type
profiles. Building on the previous work of Li and Wu (2019), who
demonstrated that cross-cell-type differential analysis enhances
feature selection and subsequent proportion estimation, we
further developed three strategies: SvC, reflecting the comparison
between one target cell type and a composite group of all other cell
type; DvC, indicating the joint analysis of two specified cell types
against the remaining composite population; and PwD, emphasizing
direct feature selection between two explicitly contrasted cell types
without composite interference. For illustration, a sample is
considered with four cell types (K � 4). SvC performs differential
analysis between each cell type k(k� 1, 2, 3, 4) and the composite of
the remaining three, that is, comparing cell type 1 with cell types 2, 3,
and 4; cell type 2 with cell types 1, 3, and 4; cell type 3 with cell types
1, 2, and 4; and cell type 4 with cell types 1, 2, and 3. For each
comparison, the top �1000K *1.2� features are selected from sorted
p-values, where �·� denotes the ceiling operation. Because different
cell types may have overlapped cross-cell-type features, we choose
1.2 times the desired value. We merged the feature list across cell
types, removed duplicate features, and ultimately obtained the

desired feature list. DvC compares the pairs of cell types (e.g.,
k + l) against the remaining two, selecting top �1000K *1.2� features
per comparison. PwD directly contrasts individual cell-type pairs
(e.g., k vs. l) using the same feature-selection threshold. Empirical
evaluations revealed that cross-cell-type differential analysis-based
strategies (SvC, DvC, and PwD) outperformed variance-based
methods (VAR/CV), with SvC and DvC achieving superior
accuracy over PwD. To optimize performance, we designed
RFdecd, a hybrid approach integrating SvC and DvC. Specifically,
we first conducted SvC and obtained cell-type-specific features for
each cell type. For each cell type, we selected the top 100 cell-type-
specific features following a systematic allocation strategy
(100 features × 4 cell types = 400) to achieve balanced
representation and ensured that the selected feature overlap of
any two cell types was empty. Finally, a total of 400 features
were obtained for these four cell types under the feature-selection
option SvC. Then, we conducted DvC and obtained cell-type-
specific features for each comparison. Due to the same results
between cell types 1 and 2 versus 3 and 4, as well as between cell
types 3 and 4 versus 1 and 2, we obtained only three comparisons in
the end. For each comparison, we selected the top 100 features using
equivalent allocation (100 features × 3 comparisons = 300) that were
not included in the previous 400 features and ensured that the
selected features did not overlap with each other. Thus, we have
obtained a total of 700 cell-type-specific features. Next, we selected

FIGURE 1
Workflow of the proposed method. Our algorithm starts with raw data Y and consists of three main steps. In step 1 (initialization), the top
1,000 features (M0) with the largest coefficient of variation (CV) are selected from Y . RF deconvolution is performed on the reducedmatrix YM0 to estimate
the initial cell-type proportion matrix H1 and compute the reconstruction error (RMSE [1]). In step 2 (iterative optimization), starting from i � 1, the
algorithm iterates for totalIter cycles. At each iteration i, the current proportionmatrixHi and raw data Y are used to update the feature listMi through
six feature-selection options (VAR, CV, SvC, DvC, PwD, and RFdecd). RF deconvolution on the updated matrix YMi generates the proportion matrix Hi+1
and updates the error RMSE[i+1]. In step 3 (termination), the optimal proportion matrix Hid is selected as the iteration with the minimal RMSE.
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the top 300 features from the sorted p-values of SvC and DvC and
ensured that the intersection of the top 300 features with the
previous 700 features is an empty set. These 1,000 identified
features replace M0 and are then used in a new iteration. The
algorithm iterates for a number of times and then stops. Based on
our experience, 30 iterations are sufficient for gene expression and
DNA methylation datasets with four cell types and 100 samples,
achieving strong correlations (>0.95) between estimated and true
proportions (Supplementary Figure S1). More iterations are
required for studies with smaller sample sizes (e.g., less than 50)
or more cell types (e.g., six or more). In our software, the users can
specify the total number of iterations. In each iteration, the six
algorithms would calculate the RMSE between the reconstructed
observation Ŷ and true observation Y, and the estimated proportion
matrix corresponding to the iteration with the smallest RMSE would
be chosen as the final estimation. Our algorithm is not limited by
specific deconvolution methods; therefore, most of the existing RF
methods can be used in combination with this procedure. In this
study, we used the RF algorithm deconf (Repsilber et al., 2010) for
gene expression microarray data and RefFreeEWAS (Houseman
et al., 2016) for DNA methylation microarray data.

2.2 Selection of features using cross-cell-
type differential analysis

We denote all the observed data for the p-th feature as
Yp � [Yp1, Yp2, . . . , Ypn]T. It is assumed that the cell-type
proportions of all samples are known, and the proportion of
sample s is denoted as θs � (θs1, θs2, . . . , θsK). Consequently, the
observed data can be characterized using a linear model:
E[Yp] � Wβp, where

W �
θ11
θ21
..
.

θn1

θ12
θ22
..
.

θn2

. . .

. . .
..
.

. . .

θ1K
θ2K
..
.

θnK

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, β � μp1, μp2, . . . , μpK[ ]. (2)

In Equation 2, μpk denotes the average level of the p-th feature in
the k-th cell type. It has been proven that the parameterization above
allows great flexibility in hypothesis testing (Li et al., 2019). Here, we
highlight the null (H0) and alternative (H1) hypotheses for SvC,
DvC, and PwD:

(1) SvC: testing the difference in the p-th feature between cell
type k and the other cell types as (Equation 3)

H0: μpk-
1

K-1
∑
i≠k

μpi � 0 vs.H1: μpk-
1

K-1
∑
i≠k

μpi ≠ 0. (3)

(2) DvC: testing the difference in the p-th feature between cell
types k, l and the other cell types as (Equation 4)

H0: μpk + μpl( ) − ∑
i≠k,l

μpi � 0 vs.H1: μpk + μpl( ) − ∑
i≠k,l

μpi ≠ 0. (4)

This formulation assesses whether the combined effect of groups
k and l is statistically equivalent to the aggregated effect of all other
groups, moving beyond simplistic pairwise “mean of means”

comparisons to avoid oversimplification while accounting for
potential synergistic interactions.
(3) PwD: testing the difference in the p-th feature between cell

type k and cell type l as (Equation 5)

H0: μpk − μpl � 0 vs.H1: μpk − μpl ≠ 0. (5)

The ordinary least squares (OLS) method can be used to fit the
linear model described above, and the corresponding test statistics
and p-values can be derived from this estimation.

2.3 Datasets

2.3.1 Simulation datasets
We designed two simulation studies based on real datasets: one

for the gene expression data and the other for the DNA methylation
data. The simulated data (Y) were based on two randomly generated
matrices: a cell-type-specific reference matrix (W) and a cell-type-
specific proportion matrix (H). Proportion matrix H of the two
simulation studies was simulated from a Dirichlet distribution with
parameters (0.968, 4.706, 0.496, and 0.347) for four cell-type settings
and (0.89, 4.12, 0.47, 0.33, 0.61, and 1.02) for six cell-type settings.
However, the generation processes of reference matrixW in the two
simulation studies were different. For gene expression data, W was
generated based on the immune dataset from the Gene Expression
Omnibus (GEO) with accession number GSE11058 (Abbas et al.,
2009). This dataset contains gene expression profiles from four types
of immune cells (Jurkat, LM-9, Raji, and THP-1), and each has
measurements from three replicated samples. We calculated the
mean and variance from the log-expression values across the three
replicated samples and simulated them using a log-normal
distribution with estimated means and variances. For DNA
methylation data, we simulated W based on DNA methylation
450K array data of purified human blood cells from GEO
(accession number GSE35069) (Reinius et al., 2012). This dataset
contains the DNAmethylation profiles from six types of blood cells,
namely, CD4 T, CD8 T, CD56 natural killer (CD56NK), B cell,
monocyte (Mono), and granulocyte (Gran), and each cell type has
measurements from six replicated samples (Reinius et al., 2012). In a
simulation study that assumed complex samples consisting of four
cell types, we combined CD4 T, CD8 T, and CD56NK to one
pseudo-cell-type when estimating the cell-type-specific mean and
variance of each feature. In this setting, W is randomly generated
from the beta distributions using the estimated parameters.
Eventually, matrix Y was simulated by multiplying these two
matrices and adding small Gaussian noises. For all simulation
settings, the results from 100 Monte Carlo experiments were
summarized and presented.

2.3.2 Real datasets
In the real data analysis, a total of seven datasets were retrieved

from the Gene Expression Omnibus (GEO) database, accessible at
https://www.ncbi.nlm.nih.gov/geo/ under the following accession
IDs: Mouse-Mix data by Shen-Orr et al. (2010) with accession ID
GSE19830, Immune data by Abbas et al. (2009) with accession ID
GSE11058, Aging data by Hannum et al. (2013) with accession ID
GSE40279, Rheumatoid Arthritis data by Liu et al. (2013) with
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accession ID GSE42861, European Prospective Investigation into
Cancer and Nutrition data by Riboli et al. (2002) with accession ID
GSE51032, and two Schizophrenia datasets by Hannon et al. (2016)
with accession IDs GSE80417 and GSE84727, abbreviated as
Hannon et al. I and Hannon et al. II, respectively. We
normalized DNA methylation data using quantile normalization.
In the simulation and seven datasets, we calculated the mean
Pearson correlation coefficient (mean PCC) and mean absolute
error (MAE) between the estimated and true proportions across
the four cell types to evaluate the performance of our proposed
algorithm. A higher mean PCC and lower MAE are expected for a
better method.

3 Results

3.1 Simulation

First, we evaluated the performance of our method in simulation
based on gene expression and DNA methylation datasets with four
cell types. A total of 100 samples were generated using the
simulation steps described in Section 2.4. Figure 2A is based on
gene expression, and Figure 2B is based on DNA methylation. The
left panel of Figure 2 shows the mean Pearson correlations between
the estimated and true proportions across the four cell types at the
initial point (number of iterations = 0) and after 30 iterations of
application of the six proposed methods. The middle and right

panels of Figure 2 show the mean Pearson correlation and mean
absolute error, respectively, between the estimated and true
proportions across the four cell types using the seven methods.
Here, the estimated proportions of PreOpt refer to the initial cell-
type proportion estimates prior to the first iteration of optimization
(equivalent to iteration count = 0), derived directly from raw input
features without feature selection or model refinement, and the
estimated proportions of the other six methods are based on the
results with the smallest RMSE in 30 iterations. The left panel clearly
shows that the mean correlations between the estimated and true
proportions continue to increase during the iterations for all the six
methods. The improvements are dramatic for all six methods,
particularly for the four methods: RFdecd, SvC, DvC, and PwD,
which are based on cross-cell-type differential analysis. For the gene
expression data, the mean correlation at the number of iterations =
0 was 0.217. However, at seven iterations, the mean correlation of
VAR was 0.443, CV was 0.659, SvC was 0.724, DvC was 0.751, PwD
was 0.637, and RFdecd was 0.911. From the middle and right panels,
whether for gene expression data or DNA methylation data,
compared with “PreOpt” (number of iterations = 0), the mean
correlation across the four cell types significantly increased, and the
mean absolute error significantly decreased. RFdecd achieved the
best performance, followed by DvC and SvC. Similar results were
obtained for DNA methylation data (lower panel of Figure 2). It is
worth mentioning that the improvement in DNA methylation was
not as rapid as that in gene expression (themean Pearson correlation
was 0.911 for seven iterations of gene expression and 0.907 for

FIGURE 2
Performance of our algorithmon synthetic mixtures. (A)Gene expression dataset (GSE19830); (B)DNAmethylation dataset (GSE35069). Left panels:
boxplots of mean Pearson correlations between estimated and true cell-type proportions across four cell types for six methods (VAR, CV, SvC, DvC, PwD,
and RFdecd) over 30 iterations. Middle and right panels: boxplots comparing mean Pearson correlations (middle) and mean absolute errors (right) for
sevenmethods, including the baseline “PreOpt” (initial deconvolution using the top 1,000 CV-selected features without iteration). Results for the six
iterative methods reflect the lowest RMSE across 30 iterations. All metrics are aggregated from 100 Monte Carlo simulations with 100 samples per
simulation.

Frontiers in Genetics frontiersin.org05

Zhang et al. 10.3389/fgene.2025.1570781

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2025.1570781


10 iterations of DNA methylation). This computational challenge
was reflected in our benchmarking tests: on a standard laptop (Apple
M1 8-core processor and 16 GB unified memory), the algorithm
analyzed 54,675 genes across 100 samples in 7.8 min per run while
processing 459,226 CpG sites with equivalent sample size required
23.8 min. The increased computational demand for methylation
data further supports the notion that its higher feature complexity
impacts optimization efficiency. Thus, we suggest more iterations of
the DNA methylation data with smaller sample sizes.

Next, we examined the effect of the number of cell types in the
mixture for different sample sizes. We use DNA methylation data
(GSE35069) to generate simulation data with six cell types (CD4 T,
CD8 T, CD56NK, B cell, Mono, and Gran). The simulation details
are presented in Section 2.4. As shown in Figure 3, RFdecd
consistently achieves higher correlations and lower mean absolute
errors than “PreOpt.” We also observed that RFdecd had increased
correlations and decreased errors when the sample size increased
from 50 to 200 (the mean Pearson correlation is 0.77 for a sample
size of 50 compared to 0.98 for a sample size of 200, and the mean
absolute error is 0.10 for a sample size of 50 compared to 0.05 for a

sample size of 200). Furthermore, compared to Figure 2B, under the
same number of iterations, the proportion estimations for four cell
types are more accurate than that for six cell types (the mean
Pearson correlation over 10 iterations is 0.927 for four cell types,
whereas it is only 0.88 for six cell types). These findings suggest that
in scenarios with a limited sample size (e.g., ≤ 50), we should
consider combining similar cell types to define a smaller number
of cell types (≤ 4) and utilize the RFdecd method. The experimental
design should necessitate the analysis of a greater number of cell
types, augmenting the sample size emerges as the most efficacious
strategy to enhance the precision of deconvolution.

To further investigate how cell-type proportion influence the
deconvolution accuracy, we designed a dual-pronged validation
strategy targeting both the generation and perturbation of the
proportion matrix H. First, using the gene expression dataset
(GSE19830), we generated the H matrix under three Dirichlet
parameter configurations: (1) a uniform distribution (1, 1, 1, 1)
modeling balanced cell-type proportions, (2) a moderately skewed
distribution (2, 3, 0.5, 0.5) reflecting intermediate variability in cell-
type abundance, and (3) an extreme distribution (5, 5, 0.01, 0.01)

FIGURE 3
The Performance of RFdecd on synthetic mixtures based on DNA methylation dataset with six cell types under sample sizes of 50, 100 and 200
(GSE35069). (A) Top row (sample size 50). Left panel: boxplots of Pearson correlations between the estimated and true proportions by the number of
iterations for each of the six cell types. Middle and right panels: boxplots of mean Pearson correlations andmean absolute errors between estimated and
true proportions over six cell types from “PreOpt” and RFdecd. (B)Middle row (sample size 100): Panels for 100 samples. (C) Bottom row (sample size
200): Panels for 200 samples. The estimated proportions of “PreOpt” are obtained using the top 1000 features by CV for observed data as inputs for RF
deconvolution (i.e., number of iterations = 0). The estimated proportions of RFdecd are based on the results with the smallest RMSE over 30 iterations.
From the top panel to bottom panel, sample size increases from 50, 100 to 200. P-values for each panel were obtained using the rank-sum test. The
presented results are summarized over 100 Monte Carlo simulation experiments.
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including near-zero proportions for two cell types. The analysis of
100 synthetic samples per configuration across eight methods
(Supplementary Figure S2) revealed that RFdecd consistently
outperformed PreOpt, VAR, CV, SvC, DvC, and PwD, achieving
comparable accuracy to the CTS method—a gold-standard
approach using 1,000 real CTS markers for direct proportion
estimation.

Notably, under the extreme configuration, where two cell types
approached sparsity (α � [5, 5, 0.01, 0.01]), all methods exhibited
diminished accuracy for rare populations, yet RFdecd maintained
superior robustness. Second, to assess dependency on initial
conditions, we permuted the initial matrix H (“RFdecd-perm”) and
applied iterative optimization. Results demonstrated consistently high
correlations and low MAE (mean PCC is 0.951 and MAE is 0.039 for
gene expression; mean PCC is 0.967 and MAE is 0.085 for DNA
methylation; Supplementary Figure S3), confirming that RFdecd’s
iterative framework effectively mitigates biases from initial proportion
assumptions. These findings collectively highlight RFdecd’s capacity to
adaptively refine feature selection, ensuring reliable deconvolution across
diverse proportion regimes and initialization scenarios.

3.2 Real data analysis

3.2.1 Benchmarking RFdecd through seven
real datasets

Seven datasets described in Section 2.3.2 were used to evaluate
the performance of RFdecd. Both Mouse-Mix and Immune data had

true proportions ascertained through experiments; however, the five
DNA methylation datasets did not have true proportions to provide
benchmarks. To circumvent this, blood reference panels were
obtained from the R package FlowSorted.Blood.450k (Jaffe and
Irizarry, 2014), which furnishes methylation profiles of six cell
types, namely, CD8T, CD4T, NK cell, B cell, Mono, and Gran.
Subsequent to mitigating the batch effect between the mixture and
reference data via the Combat (Johnson et al., 2007), the reference-
based deconvolution method EpiDISH (Teschendorff et al., 2017)
was used to derive proportion estimations. These estimated
proportions were used as the reference standard for
benchmarking RFdecd. Figure 4A shows the scatterplots of the
estimated and true proportions of Mouse-Mix and Immune data
for each cell type at the initial point (“PreOpt,” i.e., number of
iterations = 0) and after applying RFdecd, and the mean Pearson
correlations across cell types are shown. Improvements in
proportion estimation were significant for both datasets. After
applying RFdecd, mean correlations (mean PCC) increase from
0.75 to 0.995 for Mouse-Mix and from 0.451 to 0.963 for Immune
data. Figure 4B shows bar plots of the Pearson correlations between
the reference-based solved and estimated proportions for each cell
type in the five datasets. Overall, RFdecd demonstrated superior
performance compared to not using the feature-selection method, as
evidenced by higher correlations between the reference-based
resolved and estimated proportions for each cell type across the
seven datasets. Evidently, our proposed method provides a higher
mean correlation than PreOpt (0.39 versus 0.21). Moreover, we
found that the correlations in Figure 4B are lower than those in

FIGURE 4
Performance assessment of RFdecd on seven real datasets. (A) Scatterplots depicting the estimated and true proportions ofMouse-Mix and Immune
data for each cell type at the initial point (PreOpt, i.e., number of iterations = 0) and after applying RFdecd. (B) Bar plots illustrating Pearson correlations
between reference-based resolved and estimated proportions for each cell type across the five datasets, based on the assumption of six constituent cell
types (CD8T, CD4T, NK, Bcell, Mono, and Gran) in blood. (C) Boxplots representing Pearson correlations between the actual (or reference-based
resolved) and estimated proportions for each cell type in the seven datasets. Themean Pearson correlations across cell types for Mouse-Mix and Immune
data are shown in (A).
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Figure 4A. Nevertheless, these results still demonstrate that the
proposed method achieves a significant enhancement in proportion
estimation. To comprehensively evaluate the robustness of RFdecd
across diverse datasets, Figure 4C presents boxplots of Pearson
correlations between the actual (or reference-based resolved) and
estimated proportions for each cell type aggregated across all seven
datasets. Clearly, our proposed method demonstrates significant
improvements in the composition estimation.

3.2.2 Study of the biological significance of
proportion estimation in rheumatoid arthritis

Finally, we examined whether the estimated proportion was
biologically significant. Research has indicated that the proportions
of certain blood cell types in individuals with rheumatoid arthritis
(RA) deviate from those observed in healthy individuals (Hidaka
et al., 1999; Kikuchi et al., 2015). Consequently, the proportion of
blood cells can serve as a predictive marker for RA. Estimates of
proportions that more accurately predict disease are considered to
be superior. The RA dataset included 354 patients with RA and

335 healthy controls, with male and female subjects in each group
(Liu et al., 2013). We used the RB method EpiDISH, along with the
RF methods RefFreeEWAS and RFdecd, to decompose the 689 RA
samples. The reference panel for EpiDISH was obtained from the R
package FlowSorted.Blood.450k. Because the 689 samples had a
disease status (control or patient), we trained a nonlinear support
vector machine (SVM) with radial basis function (RBF) kernel using
the estimated proportion to predict the disease status. The SVM
model was trained through the “svm” function of the R package
e1071, with kernel parameters optimized via grid search and feature
vectors standardized to zero-mean unit-variance prior to model
fitting. A 10-fold cross-validation was used to evaluate and compare
the classification accuracies of the three methods. Figure 5A shows
the estimated proportions of RA patients and controls using the
three methods. Figure 5B presents the precision–recall curves for
disease status prediction based on the estimated proportions of
689 samples from the three methods. It is evident that RFdecd
achieved the best disease prediction performance, followed by
EpiDISH and RefFreeEWAS. This result is reasonable. This is

FIGURE 5
Results of the analysis of RA datasets. (A) Boxplots of proportion estimations of patients with RA and controls from EpiDISH, RefFreeEWAS, and
RFdecd. (B–D) Precision–recall curves for predicting the disease status using estimated proportions for 689 samples (B), of which 492 female samples (C)
and 197 male samples (D) from the three methods. Curves were generated using the averaged results of the 10-fold cross-validation.
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because the top 1,000 variable sites used in RefFreeEWAS contained
contributions from within-cell-type variances (biological variation
among samples for pure cell types), cross-cell-type variances (mean
differences among pure cell types), and variation from the mixing
proportions. EpiDISH is an RB method, and the reference panel
provides useful information for deconvolution, resulting in a better
estimation than RefFreeEWAS. When the reference panel is
obtained from subjects with different phenotypes, such as age,
sex, and disease status, RF can provide better proportion
estimates than the RB method (Rahmani et al., 2017). In
addition, RFdecd iteratively searches for cell-type-specific features
and performs composition estimation, resulting in better estimation
than EpiDISH. We also investigated the impact of sex on the
prediction performance. Figures 5C,D show the precision–recall
curves from the analysis of the RA datasets by gender. The results in
Figure 5C are consistent with those in Figure 5B, indicating that
RFdecd achieves better performance. Additionally, we observed
greater improvements using RFdecd in female subjects than in
male subjects. We believe that this could be explained by sex
differences in RA etiology (Abbas et al., 2009; Affleck et al., 1999;
Ahlmen et al., 2010) and sample size differences (197 male and
492 female subjects); future studies should incorporate multi-
covariate analyses to disentangle the interplay of sex, age, and
other clinical variables. Overall, RFdecd provides a favorable and
robust performance for improving proportion estimations and
disease predictions.

4 Discussion

In this study, we systematically evaluated five feature-selection
options for reference-free deconvolution and presented an optimal
feature selection-based reference-free deconvolution method,
RFdecd. Our proposal iteratively searches for cell-type-specific
features by integrating cross-cell-type differential analysis
between one cell type and the other cell types, as well as between
two cell types and the other cell types, and performs composition
estimation. RFdecd does not require any prior knowledge of the cell
types or their proportions; therefore, it is purely data driven.
Moreover, they are not limited to specific RF deconvolution
methods. Currently, most existing RF methods can be
incorporated into this procedure. The application of deconf and
RefFreeEWAS demonstrated this flexibility.

The proposed method is primarily aimed at microarray data of
gene expression and DNA methylation. However, the idea and
principle of this method can also be applied to other data types,
such as RNA-seq data. A simulation study based on a real RNA-seq
dataset has shown that differential analysis between one cell type and
other cell types (i.e., SvC) can accurately identify cell-type-specific
features (Li et al., 2019). Our current study demonstrates through
comprehensive simulation analyses and real-data benchmark tests
that RFdecd outperforms SvC in both cases, highlighting its stronger
ability to resolve cell-type-specific features through iterative
optimization. Our future work will explicitly validate these
strategies in RNA-seq data.

Our selection of 1,000 features was motivated by balancing
computational efficiency and biological signal preservation, which
is consistent with prior genomic studies (Li and Wu, 2019). This

heuristic threshold, analogous to conventional statistical cutoffs (p <
0.05), was further validated through 20 Monte Carlo simulations of
100-sample gene expression analyses (Supplementary Figure S4).
We evaluated algorithm performance across varying feature
numbers (500, 1,000, 1,500, up to 5,000). At 500 features, the
mean correlation coefficient was 0.87, which significantly
improved to 0.96 with 1,000 features. Although results for
1,500 to 4,000 features were comparable to those of
1,000 features, computational time increased by 40% (7.8 min for
1,000 features vs. 31.2 min for 4,000 features). Notably, when
exceeding 4,000 features (e.g., 4,500–5,000 genes), correlation
coefficients decreased. This supports 1,000 features as an optimal
trade-off for balancing accuracy and efficiency in our framework. It
is worth mentioning that in practical problems, this number should
be case specific, and for different species, it may not hold universally.

Importantly, as discussed in recently published studies (Feng
et al., 2018; Wang et al., 2019), good features for deconvolution are
those with low within-cell-type variation and high cross-cell-type
variation. If we select features solely based on the variance of raw
observations, features with high within-cell-type variances could
also be included, which would have a negative impact on the RF
deconvolution in a later step, resulting in the poor performance of
RefFreeEWAS. Thus, RFdecd’s iterative differential analysis
framework inherently enforces this dual criterion, dynamically
selecting features that maximize the biological signal while
minimizing noise propagation.

Despite its merits, RFdecd has the following limitations. First, RF
methods must estimate a large number of unknown parameters.
Therefore, a large sample size is required to obtain accurate estimates
of the cell composition. This hinders the application of RF deconvolution
to small-scale studies. To evaluate this limitation, we tested RFdecd’s
performance under reduced sample conditions using 30 simulated
samples. As shown in Supplementary Figure S5 (parts A and B), both
gene expression and DNA methylation data revealed significant
improvements in mean Pearson correlations between estimated and
true cell proportions across iterations for all six methods compared.
Specifically, RFdecd outperformed alternatives like DvC and SvC, with
mean correlations increasing from 0.85 (30 samples and 30 iterations) to
0.95 (30 samples and 100 iterations) for gene expression data (Part C),
highlighting how iterative refinement mitigates sample scarcity by
enhancing feature selection. Parallel analysis with 10 simulated
samples demonstrated comparable trends, where 100 iterations
maintained robust performance despite limited sample size, achieving
a correlation of 0.93 versus 0.95 with 30 samples (Supplementary Figure
S6). So, for studies with ≤50 samples, we recommend 100 iterations as a
default to balance accuracy and computational efficiency. For datasets
with smaller sample sizes, for example, those with fewer than 20 samples,
especially those obtained frommodel animals (Li et al., 2020), provided a
promising solution for gene expression. Second, a common challenge in
applying RFmethods is determining an appropriate number of cell types.
For tissues that have been well studied, such as the blood and brain, prior
knowledge of cell types can be easily obtained (Montano et al., 2013;
Reinius et al., 2012). When there is no prior information about the
number of cell types, many RF methods recommend selecting them
based onmodel selection criteria, such as comparing the estimation error
and approximation error (Lutsik et al., 2017), AIC, and BIC (Zhang et al.,
2021). However, for tumor tissues, this problem is much more
complicated because every two cells in the tumor tissue may be
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different. Under similar thresholds, cells in tumor tissues can be classified
into different groups. Therefore, we propose combining model selection
criteria with biological knowledge to determine the number of cell types
in complex tissues. Third, assigning cell-type labels to the estimated
anonymous cell types is difficult in real RF method applications.
However, Rahmani et al. (2018) developed a promising Bayesian
model that incorporated prior cell composition knowledge in
deconvolution to solve this problem. However, prior knowledge exists
only for a small number of well-studied tissues, which limits its
application to real data. We provided a data-driven geometric
approach to address this issue in the study of DNA methylation data
(Zhang et al., 2021), which can be easily applied to gene expression data.
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