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Background: Non-alcoholic steatohepatitis (NASH) commonly complicates
coronary artery disease (CAD), yet the interaction mechanism remains unclear.
Our research seeks to investigate the common mechanisms and key signature
genes between CAD and NASH.

Methods: RNA sequence information for CAD and NASH was screened from the
GEO database. Weighted gene co-expression network analysis (WGCNA) and
differentially expressed gene analysis identified key genes, followed by functional
enrichment analysis of these shared genes. Three machine learning
methods—LASSO, random forest, and SVM-RFE—were used to identify
signature genes. Gene set enrichment analysis (GSEA) was then performed to
explore potential mechanisms associated with the signature genes. In addition,
single-sample gene set enrichment analysis (ssGSEA) evaluated immune
infiltration in CAD and NASH and its correlation with the signature genes.

Results: WGCNA has revealed two key modules for CAD and NASH. The
intersection of the CAD modules and their differential genes narrowed the key
genes down to 2,808 shared genes. Finally, 44 shared genes were selected for
both CAD and NASH. Kyoto Encyclopedia of Genes and Genomes analysis
showed that these genes were primarily enriched in insulin resistance and
inflammation pathways. Machine learning identified the signature genes
BATF3, SOCS2, and GPER, all with ROC values above 0.7, validated in external
datasets. GSEA revealed that these genes act through common mechanisms in
CAD and NASH, regulating metabolic, inflammatory, and cardiovascular
pathways. In addition, ssGSEA suggested their involvement in immune cell
infiltration.

Conclusion: BATF3, SOCS2, and GPER have emerged as promising gene
candidates that may serve as biomarkers or potential therapeutic targets for
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CAD combinedwith NASH, linked to the regulation ofmetabolic, inflammatory, and
cardiovascular pathways. We also identified insulin resistance and inflammation
pathways as common mechanisms underlying both diseases.
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1 Introduction

Coronary artery disease (CAD) is a significant type of
cardiovascular disease (CVD) and one of the leading causes of
global mortality and the loss of disability-adjusted life years
(Ralapanawa and Sivakanesan, 2021). There are several risk
factors that can lead to CAD. These include family history,
smoking, alcohol consumption, diabetes, age, obesity, and
hypertension (Madhavan et al., 2018). The development of
atherosclerotic plaques is the main pathological feature of CAD.
This process involves the continuous deposition of excess
cholesterol and cholesterol esters in the arterial intima, resulting
in the proliferation of connective tissue, thickening and hardening of
the arterial wall, and subsequent connective tissue necrosis (Chiu
et al., 2018).

Non-alcoholic fatty liver disease (NAFLD) has emerged as the
most common chronic liver condition in adults globally, affecting
roughly 25% of the population (Powell et al., 2021). NAFLD
represents a significant public health issue, contributing greatly to
liver-related morbidity and mortality. In addition, it has become the
most rapidly increasing cause of hepatocellular carcinoma. Non-
alcoholic steatohepatitis (NASH) is a more severe form of NAFLD. It
is characterized by the development of hepatocellular ballooning,
lobular inflammatory infiltrates, and fibrosis developing atop simple
hepatic steatosis (Książek et al., 2024). Current studies have found
that the incidence of cirrhosis in NASH patients within 10–15 years
is ten times higher than that in patients with simple steatosis,
reaching 15%–25%. Moreover, the five-year and ten-year survival
rates for patients with NASH are 67% and 59%, respectively (Wang
et al., 2014; Fan et al., 2019). Therefore, NASH is the primary target
for clinical interventions aimed at preventing the progression of
NAFLD and represents a critical stage in the progression of liver
disease in NAFLD patients. Patients with NAFLD exhibit
cardiometabolic risks comparable to those observed in
individuals with CAD, including inflammation, dyslipidemia, and
endothelial dysfunction. The presence of NAFLD may serve as a
considerable risk factor for the advancement of CAD (Zhang et al.,
2020; Zhang and Fang, 2021). One study found that among the
subtypes of NAFLD, patients with NASH pose a greater risk of dying
from CVD than those with simple steatosis alone (Vanni
et al., 2015).

A robust correlation exists between NASH and atherosclerotic
cardiovascular disease. NASH has been demonstrated to contribute
to the onset and progression of CVD. This is accomplished through
inflammatory mediators released systemically (e.g., TNF-α, CRP,
PCF) and oxidative stress markers (Targher et al., 2010).
Nevertheless, the precise mechanisms through which NASH
contributes to the development of atherosclerosis remain poorly
understood. The molecular biology research on the shared
mechanisms of the two diseases is limited. Genetic variants in
PNPLA3, TM6SF2, and GCKR have been proposed as potential
drivers of atherosclerosis in NAFLD patients, though this remains a
topic of debate (Petta et al., 2013; Dongiovanni et al., 2015; Xia et al.,
2016). Acute myocardial infarction constitutes an acute
manifestation of CAD. A study in China found that elevated
serum FSTL3 levels may increase the risk of fibrosis and acute
myocardial infarction in type 2 diabetes patients with NAFLD
(Duan et al., 2023). Bioinformatics studies have identified
PLCXD3, CCL19, PKD2 and MMP9 as signature genes in
atherosclerosis and NAFLD (Mo et al., 2023; Lv et al., 2024).
Although NASH has received widespread attention as an
important subtype of NAFLD, there is still a lack of
bioinformatics studies directly focusing on the link between
CAD and NASH.

This study aims to investigate the common pathogenic
mechanisms of CAD and NASH by analyzing transcriptomic
data sourced from the Gene Expression Omnibus (GEO)
database. To this end, bioinformatics approaches and machine
learning methods will be employed to explore common
pathogenic pathways, signature genes, and immune infiltration
profiles associated with CAD and NASH.

2 Materials and methods

2.1 GEO dataset download and process

The key terms “coronary artery disease” and “non-alcoholic
steatohepatitis”were employed to search for gene expression profiles
associated with CAD and NASH in the GEO database (Home - GEO
- NCBI (nih.gov)). The datasets were considered eligible if they met
the following criteria: high-throughput expression data, human
tissue samples, and at least 10 samples per group to ensure the
reliability of the weighted gene co-expression network analysis
(WGCNA). Finally, the following datasets were chosen for
analysis: GSE113079, GSE66360, GSE89632, and GSE135251. Of
these, GSE113079 and GSE89632 were subjected to comprehensive
analysis, while GSE66360 and GSE135251 were employed for
validation purposes. The GSE113079 dataset comprises 93 CAD
patients and 48 normal controls, while the GSE89632 dataset

Abbreviations: CAD, Coronary artery disease; NASH, Non-alcoholic
steatohepatitis; WGCNA, Weighted gene co-expression network Analysis;
GO, Gene ontology; KEGG, Kyoto encyclopedia of genes and genomes;
GSEA, Gene set enrichment analysis; ssGSEA, Single-sample gene set
enrichment analysis; γδ T Cells, gamma delta T cells.
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contains 19 NASH patients and 24 normal controls. The
GSE64566 dataset (GPL6947 platform, 26 CAD cases, and
20 controls) and the GSE135251 dataset (155 NASH cases and
10 controls) were employed to validate the results further. The
“limma” package in R was used to normalize the data, ensuring
appropriate corrections across datasets were implemented. Probe
annotations have been mapped to gene symbols by means of the
annotation files provided by the respective platforms. The resulting
gene expression matrices were utilized for subsequent analyses, with
samples as rows and gene symbols as columns.

2.2 Weighted gene co-expression
network analysis

The modules associated with CAD and NASH were explored
using WGCNA (Langfelder and Horvath, 2008). First, hierarchical
clustering was performed using the “hclust” function in R to remove
outliers. The “pickSoftThreshold” function in the WGCNA package
was used to search for the best soft-threshold power and adjacency
according to scale-free network criteria. The adjacency matrix was
converted into a topological overlap matrix, and phase differences
were calculated. A hierarchical clustering dendrogram was
constructed, and genes exhibiting analogous expression patterns
were grouped into discrete modules. The dynamic tree-cut method
was employed to construct the co-expressed gene modules, with the
minimummodule size set to 50. Finally, the relationship between the
gene module and the disease was assessed using the gene significance
and module membership values to identify the core module.

2.3 Identifying differentially expressed genes
between CAD samples and controls

Differential expression analysis was performed on the CAD dataset
to further narrow down the number of genes identified in the key CAD
module obtained fromWGCNA. The R package “limma” (Ritchie et al.,
2015) was used to identify differentially expressed genes(DEGs) in
GSE113079 using the inclusion criteria |log2 FoldChange |≥ 0.5 and
p − adjust < 0.05. Volcano plots were generated to characterize the
DEGs, and the expression levels of the 50most significantly represented
genes were plotted using the heatmap. The intersection of key modules
and differentially expressed genes in the CADdataset is defined as CAD
key genes. We employed the JVenn online tool to construct a Venn
diagram (Philippe Bardou et al., 2014).

2.4 Identification and enrichment analysis of
shared genes between CAD and NASH

Genes that are present in both the CAD and NASH key modules
and have the same expression trend in both diseases are defined as
shared genes. The visualization was carried out using Venn diagrams
(Philippe Bardou et al., 2014). To investigate the potential functions of
the genes shared between CAD and NASH, we performed Gene
Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathway analyses using the org. Hs.e.g.,.db, ggplot2,
clusterProfiler, and enrichplot packages in R. GO analysis was

utilized to clarify the biological processes (BP), molecular functions
(MF), and cellular components (CC) involved in the overlapping genes.
KEGG pathway analysis was conducted, aiding in the identification of
the underlying biological mechanisms within the shared genes.

2.5 Machine learning and signature gene
identification

The shared genes between CAD and NASH were investigated
using three machine-learning methods. The goal was to find
common signature genes using Least Absolute Shrinkage and
Selection Operator (LASSO) Regression, random forest (RF), and
support vector machine recursive feature elimination (SVM-RFE).
LASSO regression is an improved form of linear regression which
introduces an L1-norm penalty to the least squares objective
function. This regularization shrinks some regression coefficients
to zero, thereby enabling effective variable selection (Tibshirani,
1996; Ranstam and Cook, 2018). The LASSO analysis was
performed using the “glmnet” package, with the penalty
parameters selected through 10-fold cross-validation. RF is an
ensemble learning method that enhances prediction stability and
accuracy by aggregating the results of multiple decision trees (Cutler
et al., 2012). In this study, gene importance scores were computed
using the RF algorithm to identify candidate genes that may play a
crucial role in the development and progression of disease. The
“randomForest” package was used to perform the analysis. To
identify the ideal number of trees for the RF algorithm executed
by the “randomForest” package, the error rate was initially
computed for a series of values ranging from 1 to 500 trees.
Ultimately, the significance of each candidate signature gene was
assessed using the “importance” function, and the top five genes
were chosen according to the computed importance scores. SVM-
RFE is a recursive feature elimination method based on support
vector machines that iteratively trains the model and removes the
least informative features to identify the most significant variables
for classification (Guyon et al., 2002). The SVM-RFE algorithm was
trained and evaluated using the “e1071”and “caret” packages.

The overlapping genes between the genes derived by the three
machine learning algorithms were called signature genes. A Venn
diagram was constructed to illustrate the overlap between the two
groups. The diagnostic performance of these signature genes was
evaluated using the area under the receiver operating characteristic
(ROC) curve (AUC). An AUC value greater than 0.7 was considered
indicative of excellent diagnostic performance, while values between
0.5 and 0.7 were considered indicative of satisfactory performance.
To facilitate the visualization of gene expression in the
GSE113079 and GSE89632 datasets, boxplots were generated
using the R package “ggplot2”.

2.6 Validating key genes

Validation was conducted using the GSE66360 and
GSE135251 datasets to confirm the reliability of the expression
levels of these signature genes in CAD and NASH. We compared
the expression levels of the signature genes between the patient and
control cohorts to determine significant differences and generated

Frontiers in Genetics frontiersin.org03

Lin et al. 10.3389/fgene.2025.1573621

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2025.1573621


boxplots for visual representation. The diagnostic performance of
these signature genes was then evaluated using the AUC.

2.7 Gene set enrichment analysis

To analyze the role of the signature genes in these two diseases, we
used gene set enrichment analysis (GSEA) with GSEA software version
4.3.2. The gene set “c2. cp.kegg_legacy.v2023.2. Hs.symbols.gmt” was
taken as the reference. The genes were then separated into two groups
based on the expression levels in the software, andGSEAwas conducted
to identify significant pathways with a p-value below 0.05.

2.8 Immune infiltration analysis

The variations in immune cell infiltration in peripheral blood
samples from CAD and NASH patients were compared with normal
peripheral blood samples using single-sample gene set enrichment
analysis (ssGSEA). We calculated Spearman’s rank correlation
coefficients in R for immune cells with differentially signature
genes to analyze their relationship with specific genes. The
CIBERSORT immunization algorithm was validated against
immune cells associated with and expressing the same trend of
signature genes in both diseases.

2.9 Statistical analysis

Statistical analyses were performed with R software (version
4.3.1). P-values below 0.05 were deemed statistically significant, and
all P-values were computed as two-tailed. The flowchart in Figure 1
shows the methodology of the study.

3 Results

3.1 Identifying co-expression modules in
CAD and NASH

WGCNA analysis of CAD and NASH-related genes was
performed to identify key genetic modules. As a result,
Spearman’s correlation coefficient was employed to create heat
maps of module-trait associations. Each color represents a
different module (Figures 2A,B). Figure 2C shows that eight gene
modules were detected in the GSE113079 dataset. The MEturquoise
module demonstrated a robust positive correlation with the disease
(r � 0.79, p � 1e − 31), whereas the MEgreen module exhibited a
negative correlation (r � −0.45, p � 2e − 08). Accordingly, the
MEturquoise and MEgreen modules were identified as CAD key
modules, encompassing a total of 5,202 genes. In the
GSE89632 dataset, three gene modules were identified

FIGURE 1
The process diagram of this research.

Frontiers in Genetics frontiersin.org04

Lin et al. 10.3389/fgene.2025.1573621

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2025.1573621


(Figure 2D). The MEblue (r � 0.88, p � 6e − 15) and MEbrown
(r � 0.69, p � 3e − 07) modules were selected as key modules for
NASH, comprising 375 and 147 genes, respectively.

3.2 Identifying DEGs between CAD samples
and controls

In total, 3,935 genes were screened, including 2,078 upregulated
genes and 1,857 downregulated genes (Figure 3A). A heatmap
displaying the top 50 upregulated and DEGs between CAD
samples and the healthy group is shown in Figure 3B. The
intersection of DEGs in CAD and the key modules in WGCNA
was taken, resulting in a total of 2,808 genes, and a Venn diagram
was drawn (Figure 4A).

3.3 Identifying of shared gene signatures in
CAD and NASH

A total of 44 genes were recognized by the overlap of the
previously identified key CAD genes and the genes from the blue
and brown modules of NASH (Figure 4B).

3.4 GO and KEGG enrichment analysis of
shared genes

The KEGG and GO analyses identified several enriched
pathways relevant to the investigated diseases. In the KEGG
analysis results, we displayed only the pathways related to our
disease research, including apoptosis, FoxO signaling pathway,

FIGURE 2
Detection of module genes usingWGCNA in GSE113079 for CAD and GSE89632 for NASH. (A)Clustering dendrogram showing gene co-expression
modules in various colors for CAD. (B) Clustering dendrogram for gene co-expression modules in NASH. (C) Heatmap of module-trait relationships in
CAD, with row-column intersections indicating correlation and p-values. The x-axis represents different samples, with blue indicating healthy controls
and red indicating disease group samples. The y-axis represents differentially expressed genes. Color intensity reflects the expression level of each
gene across the samples. (D)Heatmap ofmodule-trait relationships in NASH, with intersections showing correlation and p-values. Axes and box colors as
described above.
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insulin signaling pathway, cytokine-cytokine receptor interaction,
arginine and proline metabolism, lipid and atherosclerosis, TGF-
beta signaling pathway, TNF signaling pathway, etc. and drew a bar
graph (Figure 5A). Three categories make up the GO analysis: BP,
CC, and MF. The BP analysis results revealed that the three most
notable processes were integrated stress response signaling, cellular
response to vascular endothelial growth factor stimulus, and cellular
response to xenobiotic stimulus. In the CC analysis, the top three
categories were identified as phosphatidylinositol 3-kinase complex,
nuclear inner membrane, and nuclear lamina. In addition, 1-
phosphatidylinositol 3-kinase regulator activity, cytokine activity

and cytokine receptor binding were observed to have a significant
role in the MF category (Figure 5B).

3.5 Machine learning and identification of
signature genes

The LASSO analysis revealed 12 signature genes (Figures 6A,B),
whereas the RF analysis highlighted the top five most significant
signature genes (Figures 6C,D). Genes selected based on LASSO are
in Supplementary Table S1. The SVM-RFE analysis indicated that a

FIGURE 3
Identification of DEGs in coronary artery disease. (A) The volcano plot displays DEG expression between CAD and healthy groups. (B) Heatmap
showing the top 50 upregulated and downregulated DEGs. Blue squares indicate the healthy group, and red squares indicate the disease group.

FIGURE 4
Venn diagrams for differential analysis and common gene screening. (A) The Venn plot illustrated the overlap between DEGs and genes identified in
WGCNA. (B) Venn diagram of the shared genes in CAD and NASH. The gene we selected is circled in red.
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model containing 44 genes demonstrated the highest accuracy
(Figures 6E,F). The genes obtained from the three algorithms
were ultimately found to be in common, identifying three
signature genes. The final signature genes were BATF3, GPER,
and SOCS2 (Figure 6G). Both BATF3 and SOCS2 were lowly
expressed in CAD and NASH (Figures 7A,B; Figures 7G,H). This
suggests that those genes are suppressed in the disease. In both
conditions, the parameter test for these two genes yielded p-values
less than 0.05, indicating a statistically significant difference in
expression between the normal and disease groups. In patients
with CAD, the area under the AUC for the signature genes
BATF3 and SOCS2 were 0.781 and 0.915, respectively (Figures
7D,E). In NASH, the AUC values for BATF3 and SOCS2 were
0.906 and 1, respectively (Figures 7J,K). Both genes exhibited AUC
values exceeding 0.7, indicative of robust predictive efficacy.
Conversely, GPER was highly expressed in both CAD and NASH
(Figures 7C,I), suggesting that this gene is upregulated significantly
in both diseases. The area under the AUC for the signature gene
GPER in CAD was 0.871 (Figure 7F). In NASH, it was 0.930
(Figure 7L). Once more, both AUC values exceeded 0.7,
indicating robust predictive efficacy.

3.6 Hypothesis testing of GPER across
different genders

Since GPER acts as an estrogen receptor, it functions mainly in
women (Morán-Costoya et al., 2021). To avoid the bias caused by
gender differences, we verified whether GPER still has expression
differences in male patients by significance testing. Due to the
absence of gender-specific data in the remaining datasets, the
NASH dataset GSE89632 was the sole source available for this
analysis. The samples were divided into two groups, one
comprising male subjects and the other composed of female
subjects. We then separately compared the differences between
the two groups of patients and normal samples. Male and female
patient groups showed statistically significant differences compared
to normal subjects (p < 0.001) (Figure 8).

3.7 Validating key genes

Next, we assessed whether the signature genes were significantly
different in diseased and normal tissues in external validation

FIGURE 5
Functional enrichment analysis of shared genes. (A) KEGG analysis of shared genes. (B) The top 10 functional enrichments in each of the three GO
categories. In both panels, the y-axis represents KEGG or GO enrichment pathways, and the x-axis represents the number of enriched genes. The color
gradient indicates the p-value of enrichment.
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FIGURE 6
Machine learning model construction. (A) LASSO penalty plot with error bars for standard errors. (B) LASSO L1 norm path plot. (C) Top 15 important
genes. (D) Random Forest error rate vs number of trees. (E) SVM-RFE accuracy rate curve. (F) SVM-RFE error rate curve. (G) Venn diagram of genes from
the three algorithms.

FIGURE 7
Signature genes performance in GSE113079 and GSE89632. (A–C) Expression levels in CAD vs healthy cohorts. The x-axis represents the sample
groups, and the y-axis shows the expression level of the gene (log2normalized counts). Blue boxes represent the healthy group, and red boxes represent
the disease group. (D–F) ROC curves showing diagnostic performance in CAD. (G–I) Expression levels in NASH vs healthy cohorts. Axes and box colors as
described above. (J–L) ROC curves illustrating diagnostic performance in NASH.
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cohorts. We also evaluated the ROC curves of these genes to
determine their diagnostic efficacy in predicting NASH and
CAD. In the GSE66360(CAD validation cohort), the expression
of GPER was significantly higher in the disease cohort than in the
control cohort. The other genes showed lower expression levels,
consistent with the findings in GSE113079 (Figures 9A–C). All
three genes in this group were statistically different between the
disease and normal groups (p < 0.05). The AUC values derived
from the ROC curves for BATF3, SOCS2, and GPER were 0.622,
0.695, and 0.666, respectively (Figures 9D–F). All AUC values were
greater than 0.5 but less than 0.7, indicating moderate
predictive ability.

In the GSE135251 (NASH validation cohort), GPER was once
more identified as being highly expressed relative to the control
group. In contrast, the other genes displayed lower expression levels,
consistent with the findings from GSE89632 (Figures 9G–I). All
three genes showed statistically significant differences between the
disease and normal groups (p< 0.05). The AUC values for BATF3,
SOCS2 and GPER were 0.822, 0.741 and 0.948, respectively. Each

AUC value was greater than 0.7, demonstrating robust predictive
ability (Figures 9J-K).

3.8 GSEA analysis

GSEA analysis assessed the pathways related to the signature
genes to identify their relevance to the disease. In the context of
CAD, The upregulation of BATF3 was found to have statistically
significant relevance to several pathways, including adipocytokine
signaling pathway, endocytosis, Fc gamma R-mediated
phagocytosis, glycolysis gluconeogenesis, glycosaminoglycan
degradation, lysosome, Notch signaling pathway, oxidative
phosphorylation, pantothenate and CoA biosynthesis, and Toll-
like receptor signaling pathway (Figure 10A). The upregulation of
SOCS2 was significantly associated with aminoacyl-tRNA
biosynthesis, cell cycle, O-glycan biosynthesis, protein export,
RNA degradation, and valine leucine and isoleucine degradation
(Figure 10B). The upregulation of GPER is significantly associated

FIGURE 8
(A) Expression levels of GPER in NASH vs. healthy cohorts in females. (B) Expression levels of GPER in NASH vs. healthy cohorts in males.

FIGURE 9
Evaluation of signature genes in GSE66360 and GSE135251. (A–C) Expression levels of signature genes in CAD vs healthy cohorts. (D–F) ROC curves
demonstrating the predictive power of signature genes in CAD. (G–I) Expression levels of signature genes in NASH vs healthy cohorts. (J–L) ROC curves
showcasing the diagnostic efficacy of the signature genes in NASH.
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with pathways related to arginine and proline metabolism,
glycerolipid metabolism, insulin signaling pathway, etc. Its
downregulation was significantly associated with riboflavin
metabolism (Figure 10C). In the context of NASH, the
upregulation of BATF3 was significantly associated with
glycosaminoglycan biosynthesis of chondroitin sulfate
(Figure 10D). The upregulation of SOCS2 was significantly
associated with O-glycan biosynthesis (Figure 10E). The
upregulation of GPER was significantly associated with other
glycan degradation, whereas the downregulation was associated
with ECM-receptor interaction, cardiac muscle contraction, and
dilated cardiomyopathy (Figure 10F).

In conclusion, BATF3 is involved in the metabolic pathways
related to both diseases. SOCS2 has been shown to activate the
O-glycan biosynthesis pathway in both CAD and NASH. GPER’s
upregulation is associated with pathways related to glycolipid
metabolism in both conditions, while its downregulation is linked
to pathways concerning cardiovascular function. This suggests that
GPER may be important in regulating metabolism and maintaining
cardiovascular health.

3.9 Immune cell infiltration analysis

For CAD, CAD patients showed higher infiltration levels of
CD56bright natural killer cells, gamma delta T cells (γδ T cells),
immature B cells, neutrophils, regulatory T cells, etc., compared to
the normal group. Conversely, infiltration levels of activated B cells,
activated CD4 T cells, activated CD8 T cells, CD56dim natural killer
cells, myeloid-derived suppressor cells (MDSC), etc. were lower
(Figure 11A). For NASH, the patients showed higher infiltration
levels of activated CD8 T cells, CD56bright natural killer cells, γδ
T cells, immature B cells, and monocytes compared to the normal

group. In contrast, activated CD4 T cells, activated dendritic cells,
CD56dim natural killer cells, MDSCs, etc., showed lower infiltration
levels (Figure 11B).

Notably, in both diseases, the infiltration levels of CD56bright
natural killer cells, γδ T cells, and immature B cells were significantly
elevated compared to the normal group, whereas the infiltration
levels of activated CD4 T cells, CD56dim natural killer cells, and
MDSCs were reduced.

3.10 The expression of BATF3 shows a
positive correlation with γδ T cells

The Spearman rank correlation coefficients between the
differential immune cell populations and the feature genes were
evaluated (Figures 12A,B). The results of our analysis reveal that
there is a positive correlation between γδ T cells and the expression
levels of BATF3 in both disease states examined. As previously
stated, the number of γδ T cells is increased in both conditions. To
validate the expression trend of γδ T cells in both diseases, we
employed the CIBERSORT algorithm. The results obtained from
this analysis were consistent with those derived from ssGSEA
(Figures 12C,D).

4 Discussion

NASH and CAD are common diseases that significantly affect
the health of patients. In recent years, increasing epidemiologic,
genetic, pathologic, and clinical observational evidence suggests that
NAFLDmay be an independent risk factor for CAD (Zhang D. et al.,
2023). NASH is a subtype of NAFLD with more severe damage and
is an important intermediate link in the development from simple

FIGURE 10
GSEA of the signature genes in CAD andNASH. (A)GSEA of BATF3 in CAD. (B)GSEA of SOCS2 in CAD. (C)GSEA ofGPER in CAD. (D)GSEA ofBATF3 in
NASH. (E) GSEA of SOCS2 in NASH. (F) GSEA of GPER in NASH. In each panel, the x-axis represents all genes ranked by log2 fold change, and the y-axis
shows the running enrichment score.
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fatty degeneration of hepatocytes to liver fibrosis and liver cancer.
An epidemiologic study on NASH showed a global prevalence of
NASH of more than 15% as of 2016 (Dong et al., 2024). In addition,
approximately 20% of NASH patients will develop cirrhosis (Sheka
et al., 2020). Moreover, higher risk of CAD in NASH patients than in
those with simple steatosis, a Japanese study shows (Niikura et al.,
2020). Therefore, further research into the incidence and
development mechanism of NASH is especially important. This
study is designed to discover the common genetic markers and
pathogenesis of NASH and CAD and to evaluate the common
immune microenvironment of the two diseases in pursuit of
more effective preventive measures, diagnosis, and treatment
approaches for these diseases. In this study, WGCNA and
differential gene selection were performed on the two diseases to
find out the common key gene sets. By performing GO and KEGG
functional analysis on 44 potential target genes related to the two
diseases, the various biological processes and pathways associated
with these genes were uncovered, thereby determining their
potential modes of action in the disease. In addition, three
machine learning algorithms were applied to identify three
signature genes, BATF3, SOCS2, and GPER, and their respective
roles in the disease were explored. Finally, ssGSEA was employed to
assess the shared immune infiltration in CAD and NASH and to
analyze its correlation with signature genes.

At present, the recognized common risk factors for NAFLD and
CAD include metabolic syndrome, insulin resistance, dyslipidemia,
as well as obesity (Brouwers et al., 2019). While our KEGG pathway
analysis confirmed the involvement of shared pathways such as the
insulin signaling and FoxO signaling pathways, a deeper
understanding of their functional implications is warranted.
FoxO transcription factors are downstream mediators of insulin
signaling. Their activity is regulated by serine/threonine
phosphorylation catalyzed by protein kinase B and other kinases.
Prior research has demonstrated their substantial contribution to
lipid homeostasis in diet-induced fatty liver disease (Pan et al.,
2017), thereby indicating a mechanistic association with NASH
pathogenesis. Based on the analysis as mentioned above and

conclusions, we postulate that FoxO may influence the
pathogenesis of CAD by regulating mechanisms such as insulin
signaling, oxidative stress, and inflammatory responses. In light of
these findings, the FoxO signaling pathway may serve as a viable
intervention target for CAD in conjunction with NASH.

In addition, our study demonstrated that the development of
both diseases is also significantly influenced by inflammatory
pathways, including cytokine-cytokine receptor interaction, TNF
signaling pathway and TGF-beta signaling pathway. Endothelial
dysfunction, a hallmark of early-stage CAD, initiates an
inflammatory cascade by promoting the infiltration of
macrophages and the release of pro-inflammatory mediators,
including cytokines and chemokines, thereby amplifying local
vascular inflammation (Zouridakis et al., 2004; Ebadi et al.,
2022). Studies have demonstrated that levels of inflammatory
factors are statistically significantly increased in the epicardial
tissue of CAD patients (Zhou et al., 2011). Similarly, NASH is
characterized by hepatic lipid accumulation, hepatocyte injury, and
fibrosis, all of which are closely linked to an enhanced inflammatory
milieu (Thibaut et al., 2022). Notably, TNF-α not only speeds up the
progression of NASH but also prevents hepatocyte apoptosis by
inducing TNF-α-induced protein 8-like 1. This action helps reduce
steatosis and fibrosis, offering protection against NASH (Wu et al.,
2021). In conclusion, inflammatory signaling pathways are of great
importance in the pathogenesis of both CAD and NASH and may
serve as common biomarkers for these diseases.

Basic leucine zipper ATF-like transcription factor 3 (BATF3) is a
member of the basic leucine zipper transcription factor family and
plays a part in controlling gene expression. This process is facilitated
by the formation of heterodimers with multiple transcription
factors. BATF3 is a key transcription factor involved in
generating CD8α+ dendritic cells within lymphoid tissues and
CD103+ dendritic cells in the skin. Our study shows that BATF3
levels are decreased in the peripheral blood of patients with CAD
and NASH and that this expression is positively correlated with γδ
T-cell infiltration in these conditions. Furthermore, elevated levels of
γδ T cell expression were observed in both diseases. This finding

FIGURE 11
Immune cell infiltration. (A) Immune cell infiltration comparison between CAD and healthy cohorts. (B) Comparison of immune cell infiltration
between NASH and healthy cohorts. “ns” indicates p≥0.05, * denotes 0.01≤p<0.05, ** indicates 0.001≤p<0.01, and indicates p<0.001. The x-axis
represents different immune cells, and the y-axis indicates the ssGSEA score. Each box represents the score distribution of a group: blue boxes represent
the healthy group, and red boxes represent the disease group.
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suggests that BATF3might contribute to immune regulation in both
diseases. A study on patients with CAD demonstrated elevated γδ
T cell expression in atherosclerotic plaque samples, which is
consistent with our findings (Liu et al., 2024). However, another
study reported a decreasing trend in the proportion of γδ T cells in
patients with CAD (Han et al., 2021). This discrepancy may be
attributed to differences in sample sources, as the study in question
used data from the GSE40231 dataset, which was derived from
carotid lesion tissues, whereas our samples were obtained from
peripheral blood. Furthermore, a study from China demonstrated
that in patients with acute myocardial infarction, certain γδ T-cell
subsets exhibited restricted expression, while others were markedly
elevated (Chen et al., 2018). This finding suggests that γδ T cells in
CAD patients may not be uniformly decreased, but rather exhibit
fluctuating expression patterns that are closely associated with
specific subsets. Despite the limitations of the GSEA approach
employed in our analysis, which precludes the capacity to discern
between distinct γδ T-cell subpopulations, our findings align with
those of the aforementioned study, collectively suggesting that γδ
T cells may have a pivotal function in the development and

progression of CAD. Nevertheless, the role of γδ T cells in
NAFLD remains underexplored. Our study demonstrates that γδ
T cells are upregulated in NASH. γδ T cells can detect pathogens and
stimulate dendritic cell maturation, functional activation, migration,
and antigen presentation. There has been evidence that mature
dendritic cells exhibit elevated levels of costimulation molecules in
the context of CD1-restricted T cells and reduced antigen uptake
when there are CD1-restricted T cells around (Leslie et al., 2002). It
is postulated that the downregulation of BATF3 may impair
dendritic cells function, thereby affecting γδ T cells and resulting
in aberrant γδ T cell infiltration in NASH and CAD. The precise
mechanisms remain unclear and require further investigation.

Suppressor of Cytokine Signaling 2 (SOCS2) is a critical protein
that plays a significant role in modulating cytokine responses. It acts
as a classic negative regulator of the JAK/STAT signaling pathway
(Cabrera-Galván et al., 2023). SOCS2 can mitigate inflammation by
attenuating inflammasome signaling pathways, including inhibiting
the NF-κB pathway to decrease macrophage apoptosis. This action
helps reduce inflammation and slows the progression of NASH
(Xiao et al., 2023). The observed reduction of SOCS2 in liver tissue

FIGURE 12
Association of immune cell infiltration with signature genes, validated by CIBERSORT. (A)Correlation of signature genes with differences in immune
cell infiltration in CAD. (B) Correlation of signature genes with differences in immune cell infiltration in NASH. The x-axis represents different immune cell
types, and the y-axis represents different genes. The color of each square indicates the corresponding p-value, with the color gradient reflecting the level
of statistical significance. (C)Gamma delta T cell expression in CAD versus healthy controls using CIBERSORT. (D) Gamma delta T cell expression in
NASH versus healthy controls using CIBERSORT.

Frontiers in Genetics frontiersin.org12

Lin et al. 10.3389/fgene.2025.1573621

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2025.1573621


under high-fat diet conditions and its inverse correlation with NASH
severity support its protective role in liver homeostasis (Li S et al.,
2021; Zhang Z. et al., 2023). It is consistent with our results. Research
suggests that SOCS2 may interact with the JAK/STAT3 pathway to
cause coronary CAD in diabetic patients (Sheng et al., 2017). While
the JAK/STAT3 pathway typically exerts cardioprotective effects by
inhibiting apoptosis, preserving mitochondrial integrity, and
promoting angiogenesis, its overactivation may trigger
proinflammatory cascades under certain conditions (Yasukawa
et al., 2012). For instance, in ApoE−/− mice, JAK2/
STAT2 activation has been shown to exacerbate macrophage-
mediated inflammation in response to homocysteine (Xu et al.,
2022). Therefore, we speculate that downregulation of SOCS2 may
reduce its inhibitory effect on the JAK2/STAT2 pathway, leading to an
enhanced macrophage inflammatory response in CAD.

OurGSEA analysis of SOCS2 demonstrated that SOCS2 expression
is associated with O-glycosylation biosynthesis in both diseases.
Glycosylation is among the most common post-translational
modifications in eukaryotic cells and is considered a key factor in
the progression of NAFLD (Zhan et al., 2016). The glycosylation of
apolipoprotein B, extensive N-linked glycosylation of fatty acid
translocase, and the interaction between carbohydrate response
element-binding protein and O-GlcNAc transferase have all been
closely associated with metabolic dysregulation and inflammatory
responses in the progression of NAFLD (Ihara et al., 1998; Guinez
et al., 2011). Additionally, previous studies have shown that patients
with NASH exhibit a distinct glycosylation pattern characterized by an
increase in core-fucosylated biantennary glycans and a decrease in
galactosylated, non-fucosylated biantennary glycans, which can help
distinguish between NAFLD and NASH(Verhelst et al., 2020). In
CAD, leukocyte recruitment is a critical step in the formation of arterial
plaques, and the function of adhesion molecules and chemokine
receptors involved in leukocyte recruitment is determined by
proper post-translational glycosylatio (Lowe, 2002; Frommhold
et al., 2008). For example, the inhibition of α2,3-sialyltransferase IV,
α2,3-fucosyltransferase, and core 2 β1,6-galactosyltransferase I has
been shown to suppress the development of atherosclerosis (Pu and
Yu, 2014). Our study suggests that SOCS2 may influence the
progression of both diseases through the O-glycosylation
biosynthesis pathway and serve as a potential molecular link
between them. However, this remains a hypothesis based solely on
bioinformatics predictions and requires further validation through in
vivo and in vitro experiments to determine whether and how SOCS2 is
involved in the regulation of this pathway.

G-protein coupled estrogen receptor 1 (GPER) is a seven-
transmembrane domain receptor that interacts with estrogen. It
acts mainly by activating several downstream signaling pathways.
(Revankar et al., 2005; Prossnitz and Barton, 2011). Emerging
evidence suggests that GPER plays a critical role in the progression
of NASH by activating the AMPK signaling pathway. This activation
modulates lipid metabolism by promoting lipogenesis while
simultaneously inhibiting lipolysis in both male and female mice.
The net effect is a reduction in hepatic fat accumulation and the
downregulation of fibrosis-related genes, ultimately alleviating liver
fibrosis (Li et al., 2024). GPER is also associated with immune cell
infiltration, fibrosis, and the release of inflammatory factors in the
liver. Additionally, it is correlated with HDL and LDL levels in the
blood. In endothelial cells, the activation of GPER by estrogen

decreases the transcytosis of LDL cholesterol into these cells,
thereby providing indirect protection to the vasculature (Ghaffari
et al., 2018). GPER activation promotes relaxation of the coronary
arteries and reduces smooth muscle cell proliferation and migration.
This helps prevent or reverse the progression of coronary
atherosclerotic disease by increasing coronary blood flow in the
affected arteries (Barton and Prossnitz, 2015).

However, the incidence of both NASH and CAD is sexually
dimorphic. The incidence and severity of CVD and NAFLD are lower
in premenopausal women than in men of the same age and
postmenopausal women (Mouat et al., 2018; Lonardo et al., 2019).
Higher levels of oestrogen may explain the lower prevalence in
women. And GPER is the primary receptor that mediates estrogen
levels (Li et al., 2024). However, studies report no significant sex-based
differences in GPER expression across major tissues such as the aorta,
heart, and kidney in Sprague-Dawley rats, suggesting estrogen may
exert similar signaling efficiency in both sexes (Hutson et al., 2019). In
addition, male GPER-deficient mice exhibit an overall increase in
body fat, insulin resistance and a pro-inflammatory phenotype
(Sharma et al., 2013), indicating that GPER may also play a crucial
protective role in males. These suggest that GPER also plays a
protective role in males. Our study indicates that GPER expression
is significantly associated with the development of NASH in bothmen
and women, reinforcing its importance in men as well. Thus, GPER
may serve not only as a sex-independent signature gene but also as a
potential therapeutic target. Future research is needed to clarify the
mechanistic roles GPER plays specifically in males and how its
modulation might be leveraged therapeutically.

We need to acknowledge the limitations of our study. First, the
data were obtained from a public database with a relatively limited
sample size, which may have some impact on the performance of the
machine learning model. The small sample size may lead to an
unstable model training process and increase the risk of overfitting.
In addition, the small sample size prevents ensemble methods such
as RF from fully exploiting their benefits. In addition, the data in
public databases may have certain biases, such as selection bias and
population bias. The CAD and NASH populations in this study were
from China and Canada, respectively. However, we obtained good
validation results in external datasets from the United States and the
United Kingdom. Nonetheless, the study remains a bioinformatics-
based investigation without supporting in vivo or in vitro
experimental validation. Therefore, further molecular biology
experiments and clinical studies are strongly recommended to
validate the biological functions and clinical significance of the
signature genes identified in this study.

5 Conclusion

This study identified three signature genes, BATF3, SOCS2, and
GPER, shared at the transcriptional level in both NASH and CAD.
Additionally, we demonstrated that insulin resistance-related and
inflammation-related pathways represent common mechanisms
underlying these two diseases. Moreover, we examined the
infiltration of immune cells in CAD and NASH and their
relationship with the characteristic genes, offering new
perspectives on the role of immunity in CAD complicated by
NASH. Nevertheless, further research is needed to help us

Frontiers in Genetics frontiersin.org13

Lin et al. 10.3389/fgene.2025.1573621

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2025.1573621


understand the mechanisms underlying the common pathways and
to address the potential limitations of this study.
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