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1 Introduction

Rubroshorea johorensis (Foxw.) P.S. Ashton and J. Heck, which is a synonym of Shorea
johorensis Foxw, commonly referred to as red meranti, is a species belonging to the
Dipterocarpaceae family (Ashton and Heckenhauer, 2022). This species is found in the
tropical rainforests of the Indo-Malayan region (Aisha et al., 2014; Fathiya et al., 2018). R.
johorensis is naturally distributed across Peninsular Malaysia, Sumatra, and Borneo,
particularly in South and East Kalimantan, Brunei, and Central and Western Sarawak
(Widiyatno et al., 2014). Typically, R. johorensis grows on hillsides at altitudes below 600 m
above sea level, on undulating terrain, fertile clayey loam soils, and well-drained alluvial
soils (Wahyudi et al., 2014). Shorea species, including R. johorensis, are essential timber trees
known for their high economic value and significant presence in the international tropical
timber market (Fathiya et al., 2018; Harahap et al., 2018). These species from the
Dipterocarpaceae family are key products of tropical rainforests and serve as symbols of
these ecosystems (Widiyatno et al., 2013; Yu et al., 2021). The wood of R. johorensis is widely
used as a raw material for buildings, furniture, and various other applications
(Purwaningsih, 2018; Suciyati et al., 2021).

The IUCN (International Union for Conservation of Nature) Red List of Threatened
2024 categorizes R. johorensis as vulnerable (VU) (IUCN, 2024). The population of species
within the Dipterocarpaceae family, including the Shorea species, R. johorensis, has been
declining due to logging, the conversion of forest land into plantations, and the
establishment of industrial plantations (Widiyatno et al., 2013; Gaveau et al., 2016;
Harahap et al., 2018). These activities are contributing to a continuous decrease in the
global population of R. johorensis. Projections indicate that over three generations
(1,860–2,100), the population of this species is expected to decline by 30%–50% (IUCN,
2024). This situation highlights the urgent need for conservation efforts to protect and
sustain the existing populations of R. johorensis.
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Data on the genomic resources of R. johorensis are still limited,
which poses a significant challenge to advancing research in genetic
conservation and forest landscape restoration. Unlocking genomic
data for R. johorensis is vital for enhancing both genetic conservation
strategies and tree breeding programs. Among these genomic
resources, organellar genomes are particularly valuable, providing
crucial insights into genetic variation among closely related species.
In plants, organellar genomes, including mitogenome and plastome,
are semi-autonomous structures encased in double membranes,
housing independent genetic material. These organelles possess
molecular machinery that regulates gene expression (Chevigny
et al., 2020) and play a vital role in various physiological
processes within plants (Mahapatra et al., 2021).

The plastome is a valuable tool for genetic studies due to its slow
evolutionary rate, maternal inheritance in most angiosperms, and its
conserved structure and gene sequences (Zulfahmi et al., 2015;
Fathiya et al., 2018; Song et al., 2019; Lim et al., 2020). In
angiosperms, the plastome typically ranges from 107 kb to
218 kb (Daniell et al., 2016; Li J. et al., 2024) and contains 120 to
130 genes that are crucial for transcription, translation, and
photosynthesis (Daniell et al., 2016; Lim et al., 2020). Due to its
conserved nature, the plastome is a reliable resource for molecular
identification, genetic diversity assessments, and phylogenetic
studies (Chew et al., 2023; Kim et al., 2024). In contrast, plant
mitogenome exhibit greater variability in size and structural
complexity (Burger et al., 2003; Sloan et al., 2012). Their sizes
can range from 200 kb to 2,900 kb, with larger genomes typically
found in seed plants, which have an abundance of introns, intergenic
regions, and repetitive sequences (Mower et al., 2012; Morley et al.,
2019). The high rates of sequence repetition, recombination, and
rearrangement contribute to the structural diversity of plant
mitogenome (Johnston, 2019). Despite these challenges,
mitogenome remain invaluable for understanding genome
architecture and evolutionary dynamics (Drouin et al., 2008).
Therefore, this study aims to sequence, assemble, and
characterize the plastome and mitogenome of Rubroshorea
johorensis. This research enhances understanding of its genetic
diversity and contributes to conservation and breeding efforts. It
represents a vital step toward preserving this species and enriching
the knowledge of plant genetics.

2 Methods

2.1 Plant material, DNA extraction and
sequencing

Fresh leaves of R. johorensis were collected from the Bogor
Botanical Garden in West Java, Indonesia (6° 35′51.46″S, 106°
47′58.44″E), specifically from plot XXV, with collection number
237. The herbarium voucher for this sample has been deposited in
the Herbarium Bogoriense (BO) with passport data BO 1997911. A
total of 100 mg of fresh leaves was used for genomic DNA isolation,
following the CTAB protocol (Doyle and Doyle, 1990). The initial
quality of the extracted genomic DNA was assessed by visualizing it
on a 1% agarose gel electrophoresis in TAE buffer, run for 30 min at
100 V. Subsequently, the purity and quantity of the extracted
genomic DNA were determined using a NanoPhotometer® NP80

(IMPLEN) and a Qubit 1.0 Fluorometer (Thermo Fisher Scientific),
utilizing the Qubit dsDNA BR assay kit. The long-read sequencing
library was prepared according to the protocol provided by Oxford
Nanopore Technologies (ONT) for Ligation Sequencing DNA V14
(SQK-LSK114), version ACDE_9163_v114_revQ_29 Jun 2022.
Sequencing was conducted using a MinION Mk1C device
equipped with an R10.4.1 flow cell (FLO-MIN114). All laboratory
work was carried out at Forest Genetics and Molecular Forestry,
Department of Silviculture, Faculty of Forestry and Environment,
IPB University in Bogor, West Java.

2.2 Organelle genome assembly and
annotation

Raw reads from MinION sequencing (POD5) were base-called
into raw Fastq files using Dorado Basecaller v0.8.0. The resulting
Fastq files were subsequently processed using Porechop v0.2.4 (Wick
et al., 2017) and Chopper v0.5.0 (De Coster, 2018) to trim adaptors,
remove low-quality bases (Phred score <9), and eliminate potential
sequence contamination. The parameters used for Chopper
included -l 500, -q 9, --head crop 10, and–tail crop 10. The
cleaned Fastq data were then analyzed statistically using
NanoPlot v1.31.0 (De Coster et al., 2018) to calculate and
visualize the read distribution.

The de novo assembly of the R. johorensis organelle genome was
performed using Flye v2.9.4 (Kolmogorov et al., 2019) to construct
both the plastome and mitogenome. To enhance accuracy, the
assembled contigs were polished using the Pilon v1.20.1 (Walker
et al., 2014). These contigs were then mapped to the reference
plastome of Shorea macrophylla, a synonym of Rubroshorea
macrophylla (GenBank accession: ON321899), and to the
mitogenome of Arabidopsis thaliana (GenBank accession: GCF_
000001735.4).

The annotation was carried out using CPGAVAS2 (http://47.96.
249.172:16019/analyzer/annotate) (Shi et al., 2019), with the
plastome of S. macrophylla (accession number: ON321899)
serving as the reference. The results of the annotation were
manually verified using Unipro UGENE v45.1 (Okonechnikov
et al., 2012) and NCBI Genomic Workbench v3.8.2 (Kuznetsov
and Bollin, 2021). For the mitogenome, annotation was conducted
using PMGA (http://47.96.249.172:16084/annotate.html) (Li L. F.
et al., 2024). These results were also manually verified using Unipro
UGENE v45.1 and NCBI Genomic Workbench v3.8.2. The circular
genome was visualized using Organellar GenomeDRAW
(OGDRAW), accessible through the MPI-MP Chlorobox
platform (Greiner et al., 2019).

3 Result

Long-read sequencing of R. johorensis yielded a total of
1,657,747 reads, amounting to 5,759, 232, 230 base pairs (bp) of
raw data. The mean read length was 3,474.1 bp, and the N50 value
for read length was 5,104 bp. The mean read quality of the raw data
was recorded as 12.7. After filtering, the number of reads that passed
the quality assessment reached 1,463,146, totaling
5,198,148,860 bp. The mean read length increased to 3,552.7 bp,
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with the N50 value remaining stable at 5,105 bp. Additionally, the
mean read quality improved to 15.1 after filtering. A total of
29,886 reads (30.94%) were successfully mapped to the plastome,

resulting in a mean depth of coverage of 104.4×. For the
mitogenome, mapping of sequencing reads to the A. thaliana
reference genome resulted in a mean coverage depth of 44×, with

FIGURE 1
The organelle genome map of Rubroshorea johorensis. (A) The circular map of plastome genome in R. johorensis. (B) The circular map of the
mitogenome in R. johorensis.
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23.4% of the genome covered by at least one read. In contrast, the
assembly of the R. johorensis mitogenome yielded an average
coverage depth of 31×, indicating reliable sequencing depth
across the majority of the mitochondrial genome.

The assembled plastome of R. johorensis has a total length of
149,968 bp, while its mitogenome spans 296,595 bp, with a GC
content of 44.63% (Figure 1). The plastome structure consists of a
Large Single Copy (LSC) region of 82,920 bp with a GC content of
35.39%, a Small Single Copy (SSC) region of 19,837 bp with a GC
content of 31.55%, and two Inverted Repeat (IR) regions, each
measuring 23,584 bp, with a GC content of 43.36%. Among
these regions, the IR regions exhibited the highest GC content.
Overall, the average GC content of the plastome was 37.39%.

Annotation of the R. johorensis plastome identified 126 genes,
comprising 76 protein-coding genes, 29 tRNA genes, and four rRNA
genes. Among them, 15 genes contain a single intron, while three

genes (rps12, ycf3, and clpP) contain two introns. These genes were
categorized into four functional groups: self-replicating genes,
photosynthetic genes, genes with other functions, and genes of
unknown function (Supplementary Table S1).

In the mitogenome of R. johorensis, a total of 44 genes were
identified, which include two rRNA genes, 17 tRNA genes, and
25 protein-coding genes. Additionally, six of these genes contain
introns, suggesting that RNA processing events may play a crucial
role in gene expression and regulation, with further details provided
in Supplementary Table S2. Similar to the mitogenome of other
plants, R. johorensis likely exhibits high rates of recombination and
structural rearrangements, features that are characteristic of plant
mitogenome and contribute to genome plasticity. The number of
protein-coding genes (22) in R. johorensis is comparable to that
found in other land plants, supporting the idea that core
mitochondrial functions are conserved across species. However,

FIGURE 2
Frequency of simple sequence repeat (SSR) and repetitive regions in the Rubroshorea johorensis plastome. (A) Number of different SSRs types. (B)
Distribution of repetitive regions. (C) Number of different SSRs motifs.
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variations in gene content and the presence of introns may indicate
species-specific adaptations that could be linked to environmental
factors or evolutionary history. The results of the mitogenome
sequencing revealed that the assembled genome is still limited.
This finding is significant as this study represents the first
comprehensive characterization of the mitogenome for a species
within the Dipterocarpaceae family. It underscores the need for
further research in this area. Conducting additional comparative
genomic studies could provide deeper insights into the functional
implications of these genomic features in R. johorensis.

Microsatellites (SSRs), or simple sequence repeats (1–6 bp), are
widely distributed throughout genomes and hold significant
importance in genomic analysis. This study identified various
types of SSRs in the genome, with trinucleotide repeats being the
most prevalent at 54%, followed by mononucleotide repeats at 31%.
Dinucleotide, tetranucleotide, and pentanucleotide repeats were less
common, comprising 8%, 4%, and 3%, respectively. Adenine-rich
sequences were particularly abundant, with A (57), AAA (39), AAG
(26), and AAT (25) emerging as the most frequent types. The
analysis of longer repeats showed a dominance of forward
repeats (51.82%), followed by palindromic repeats (32.12%).
Reverse and complementary repeats were less prominent,
representing for 10.22% and 5.84%, respectively (Figure 2).
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