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Introduction: Pharmacogenomic (PGx) testing improves drug efficacy and
reduces risk of toxicity for commonly prescribed medications, with most
pharmacogenomic studies largely focused on individuals of European descent
to date. The impact of pharmacogenomic testing in a racially diverse population is
still emerging, especially for Admixed American patients.

Methods: In this study, we assessed the frequency of actionable PGx variants by
analyzing anonymized exome sequencing data of a racially diverse cohort of 1777
pediatric patients, collected for routine clinical genetic diagnosis at Children‘s
Hospital Los Angeles (CHLA). Utilizing exome data, we used the Illumina DRAGEN
germline pipeline v4.2, to determine the predicted phenotypes of 25
pharmacogenes including HLA-A and HLA-B, including CPIC Level A genes
and genes recommended for PGx testing by the U.S. Food and Drug
Administration. To assess cross-platform consistency, we compared our
results to those generated by PyPGx, a pharmacogenomic genotyping tool
developed by the same author as Stargazer. As the distribution of PGx alleles
is ancestry specific, we estimated genetic ancestry bioinformatically using the
Somalier tool.

Results: Genetic ancestry analysis demonstrated that 62% of our cohort was
Admixed American, followed by 23% European, 8% East Asian, 5% African
American, and 2% South East Asian. Actionability analysis showed that: 1) 93%
of all exome cases had at least one actionable PGx phenotype, 2) one in five cases
(22%) had at least three actionable PGx phenotypes, and 3) CYP2B6 (54%) and
CYP2D6 (33%) had the highest number of actionable phenotypes. Further analysis
revealed notable differences, including higher rates of poor metabolizers for
CYP2B6 and variations in CYP2D6 metabolizer statuses, in PGx phenotypes
compared to previously collated frequencies in the PharmGKB database,
especially within the Admixed American population.
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Discussion: In conclusion, our study reinforces the importance of PGx testing,
underscores the diversity of PGx variation in ancestral backgrounds, and supports
the clinical utility of preemptive PGx testing using exome or genome sequencing
approaches.
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admixed american pharmacogenomics, pharmacogenomics data

Introduction

The field of pharmacogenomics began to develop in the 1950s
(Pirmohamed, 2011), and has advanced considerably with the advent of
molecular biology techniques. Economic analyses have shown cost
savings of approximately $4000 USD per patient per year by
incorporating pharmacogenomic testing for drug selection for
patients with depression (Maciel et al., 2018). However, the clinical
implementation of pharmacogenomics in specialties such as cardiology,
hematology and oncology has been underutilized, despite the finding
that most patients have at least one actionable pharmacogenomic
genotype (Mizuno et al., 2022; Klein et al., 2017; Luzum et al.,
2021). Although challenges with interpreting DNA copy number or
sequence variants previously limited the wide adoption of
pharmacogenomic testing, this has largely been overcome by
emerging consensus clinical guidelines (Abdullah-Koolmees et al.,
2020), with strong contributions from several key organizations and
databases, including Pharmacogenomics Knowledgebase (PharmGKB)
(Hewett et al., 2002), the Clinical Pharmacogenetics Implementation
Consortium (CPIC) (Relling et al., 2020), the Dutch Pharmacogenetics
Working Group (DPWG) (Abdullah-Koolmees et al., 2020), the
Pharmacogene Variation Consortium (PharmVar) (Gaedigk et al.,
2018), and the Association for Molecular Pathology (AMP)
Pharmacogenomics Working Group. With clear guidelines
emerging, broader implementation of pharmacogenomic testing
requires not only cost reduction but also the development of robust
infrastructure, including clinical decision support (CDS) systems, data
pipelines, and seamless integration of test results into electronic medical
records (EMRs) (Klein et al., 2017; Luzum et al., 2021; Morris
et al., 2024).

A potential way to reduce costs would be to interpret
pharmacogenomic variants from previously generated data.
Exome sequencing, which includes the targeted sequencing of all
exons and intron boundaries in the genome has become an excellent
first line tool for molecular diagnosis of suspected genetic disorders
(Fung et al., 2020; Ross et al., 2020; Clark et al., 2018; Wang et al.,
2013) as up to 80% of pathogenic disease variants are attributed to
protein-coding variants. The ability to identify variations in many
pharmacogenes, that is, genes responsible for drug metabolism,
efficacy, and toxicity, increases the clinical utility of exomes to
include pharmacogenomics (van der Lee et al., 2020; Ji and
Shaaban, 2024). This is greatly facilitated by the development of
multiple bioinformatics tools for genome-wide pharmacogenomic
analyses, such as PharmCAT (Sangkuhl et al., 2020), Aldy (Hari
et al., 2023), and PyPGx (Lee et al., 2022), which not only
incorporate published clinical recommendations but also enable
genotype calling, allele phasing, phenotype prediction, and
automated interpretation to support clinical decision-making.

Furthermore, the costs of exome and genome sequencing have
been continuously dropping and in high throughput settings, and
have reached less than $500 per sample. The ability to preemptively
determine the genotypes of the most important pharmacogenes with
exome and genome sequencing would obviate the need for different
assays, reduce the cost of pharmacogenomic testing and greatly
eliminate another hurdle in implementation.

Assessing the impact of pharmagogenomic testing on
populations has additional barriers. To date, pharmacogenomic
research has largely focused on populations of European descent,
leading to a significant gap in knowledge regarding drug response in
ancestral minorities, especially for Hispanic populations within the
United States (Claudio-Campos et al., 2015). Hispanics are the
largest minority group in the U.S., and as of the 2020 census,
make up to 40% of the state of California’s population (Bureau
USC, 2020). It is important to note that Hispanic is a term to
represent a highly admixed population with ancestries primarily
from Indigenous American, European, and African origins,
contributing to unique genetic variability (Claudio-Campos et al.,
2015; Maldonado et al., 2023). To eliminate disparities in providing
pharmacogenomic testing, it is imperitive that robust data for all
ancestral groups be gathered for appropriate variant interpretation.

In this study, we present results from a comprehensive
pharmacogenomic analysis of 1777 pediatric clinical exome cases,
demonstrating the expanded utility of exomes beyond traditional
rare disease diagnostics. By leveraging bioinformatics tools such as
DRAGEN and PyPGx, we were able to efficiently extract and
interpret pharmacogenomic data, providing valuable insights into
drug metabolism, efficacy, and toxicity for each patient. Through
these efforts, we aim to contribute to the growing body of evidence
supporting the clinical and economic benefits of pharmacogenomics
and advocate for preemptive pharmacogenomic testing and its
broader adoption in healthcare systems. This research is
particularly important as it addresses the underrepresentation of
Hispanic populations in pharmacogenomic studies, a significant gap
in the current landscape of precision medicine. Furthermore, our
results reinforce the necessity of incorporating pharmacogenomic
data into EMRs and implementing CDS systems to facilitate real-
time, evidence-based treatment recommendations.

Methods

Study cohort

The Center for Personalized Medicine (CPM) at Children’s
Hospital Los Angeles (CHLA) has been providing clinical exome
sequencing since 2016. Reanalysis of anonymized exome data sets
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was performed from 1,777 pediatric patients with suspected genetic
disorders, along with the parents of a subset of these patients, for a
total of 2,549 individuals. This research was approved by the CHLA-
IRB (CHLA-17-00374-AM001). Genome data integrity and privacy
was maintained as all data from samples processed at CPM are
de-identified.

Analytic workflow

DNA was extracted from peripheral blood using a commercially
available kit (Promega Maxwell RSC DNA Extraction Kit), or for
reference samples, DNA was obtained from the Coriell Institute for
Medical Research Biobank. Each exome sequencing library was
generated from 500 ng of DNA sheared to target fragments of
approximately 250bp in size, which were then captured using the
Agilent SureSelect Human All Exon V6 (Agilent, CA, USA) plus a

custom mitochondrial genome capture kit. (Falk et al., 2012).
Paired-end 2 × 100 bp sequencing was performed using the
Illumina NextSeq 500, HiSeq 4000, or Illumina NovaSeq X Plus
sequencing system. For whole genome sequencing, 150 ng of DNA
was sheared to an average size of approximately 350bp and libraries
were created with the IDT xGen cfDNA and FFPE DNA Library
Prep Kit. Libraries were sequenced at 2 × 150bp on the Illumina
HiSeq 4000 or 2 × 165bp on the Illumina NovaSeq X Plus. As shown
in Figure 1, Illumina DRAGEN version 4.2 with pharmacogenomic
specific flags was utilized to realign these data sets to the
GRCh38 reference genome. To assess exome sequencing
coverage, a text file (Supplementary Data sheet S1) containing
GRCh38 genomic locations of pharmacogenomic variants was
used with the tool Sambamba (Tarasov et al., 2015) to assess the
depth of coverage at pharmacogenomic variant positions. Genetic
ancestry was estimated from .gvcf files using the bioinformatic tool
Somalier (Pedersen et al., 2020).

FIGURE 1
Bioinformatic workflow. As illustrated, 2549 previously sequenced exome cases were re-processed using DRAGEN V4.2. We activated specific flags
(--enable pgx and--enable hla) to enable pharmacogenomic analysis. As shown in step 3, we utilized .gvcfs as it is recommended to use .gvcf for
pharmacogenomic analysis. Furthermore, we used the results to estimate global genetic ancestry using the Somalier (Pedersen et al., 2020) tool.
Coverage analysis of pharmacogenes was evaluated using the Sambamba (Tarasov et al., 2015) tool. Finally, we compared the pharmacogenomic
output from DRAGEN V4.2 to that of PyPGx (Lee et al., 2022). Created with BioRender.com.
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DRAGEN whole exome sequencing pipeline

Exome sequencing analysis was performed using the Illumina
DRAGEN pipeline. Paired-end reads were aligned to the reference
genome, and outputs were generated in sorted and indexed BAM
format with duplicate reads marked. Variant calling was conducted
to produce both VCF and GVCF files. Further details of the Dragen
bioinformatic command line are provided in Supplementary Data
sheet S2). The DRAGEN pharmacogenomic pipeline assesses the
following genes CYP2D6, CYP2B6, CACNA1S, CFTR, CYP2C19,
CYP2C9, CYP3A5, CYP4F2, IFNL3, RYR1, NUDT15, SLCO1B1,
TPMT, UGT1A1, VKORC1, DPYD, G6PD, MT-RNR1, BCHE,
ABCG2, NAT2, F5, UGT2B17, HLA-A, HLA-B, HLA-C. The
majority of these genes are assigned CPIC Level A and/or are
included in the FDA’s Table of Pharmacogenetic Associations.
DRAGEN V4.2 examines .gvcf file (recommended) for known
pharmacogenomic variants and presents results in JSON format.
This was converted to a CSV file for ease of analysis using a custom
Python script. An example JSON report (Supplementary Data sheet
S2), CSV converted file (Supplementary Data sheet S3) and the
Python script (Supplementary Data sheet S4) are provided in
Supplementary Materials.

PyPGx pipeline

The tool PyPGx (Lee et al., 2022) is a multifaceted
pharmacogenomic Python package which has been developed by
Lee, et al., who previously published the Stargazer pharmacogenomic
pipelines (Lee et al., 2019a; Lee et al., 2019b). The current PyPGx tool
assesses 87 pharmacogenes (Lee, 2024). We utilized the PyPGx pipeline
to compare the pharmacogenomic output against DRAGEN V4.2.
Briefly, we utilized create-input-vcf from PyPGx which uses BAM
files to create a VCF file containing only those pharmacogenes
assessed by the PyPGx tool (Lee, 2024). As per the recommended
workflow, we also created necessary sample statistics and depth of
coverage files necessary for analysis of pharmacogenes with copy
number variation (CNV). We then utlized the GNU parallel tool
(Tange, 2018) to run the PyPGx pipeline using the run-ngs-pipeline
for each pharmacogene for all samples. The PyPGx tool returns results
per gene in a TSV format with genotype, phenotype, haplotypes,
alternative phase data and CNV data if available. Detailed
documentation, example outputs and a step-by-step tutorial of the
PyPGx tool are available online (Lee, 2024).

Data analysis

Data manipulation, analysis and graphing were performed in R
studio using R version 4.3.1. Pharmacogenomic phenotypes
reported in this study are bioinformatically predicted based on
available sequencing data and do not include functional assays or
direct drug response measurements. Predicted phenotype
classifications by both DRAGEN and PyPGx utilize established
pharmacogenomic variant functionalities, as defined by
standardized guidelines. Both tools report the genotype; however,
when a variant’s functionality is not characterized or unknown, the
tools classify the phenotype as indeterminate.

Results

Pharmacogenomic and coverage analysis

A primary objective of this analysis was to assess
pharmacogenomic specific information from exome data using
the DRAGEN V4.2 pipeline. Secondly, we compared the
pharmacogenomic output, specifically predicted
pharmacogenomic genotype and phenotype classification of
DRAGEN V4.2 against the pharmacogenomic pipeline PyPGx.
For pharmacogenomic analysis and pipeline comparison we
excluded parental samples (n = 772) from duos or trios and only
analyzed probands (n = 1777; Figure 2). The average sequencing
coverage for the exome and selected pharmacogenes was on average
162X, ensuring sufficient depth for reliable variant calling in these
genes. However, we excluded five genes from analysis due to poor
(<20X) or variable coverage (see Figure 3) in core pharmacogenomic
variants. These variants (CYP1C19*17 – Figure 4, UGT1A1*80,
CYP3A5*3, INFL3 variants–rs12980275, rs8099917, rs12979860,
VKORC1 variant- rs9923231 (figures showing coverage for all
genes assessed are shown in Supplementary Data sheet S5) are
important haplotype-defining variants that occur in either promoter
or intronic regions, and are not covered adequately by the exome
capture kit utilized. Surprisingly, rs776746 which defines CYP3A5*3
is located one base prior to the start of exon four of CYP3A5 had an
average coverage of only 15X (Supplementary Data sheet S6). On
examining the Agilent.bed file, we found that the CYP3A5*3 SNP
(chr7:99672916) was not covered by the capture probeset, with the
closest targeted regions flanking but not overlapping this position
(chr7:99671711–99671921, chr7:99672662–99672783, and chr7:
99674455–99674752). This explains the failure to detect
CYP3A5*3 in the exome data.

The average coverage for each pharmacogene including variants
used to determine haplotype and therefore phenotype are presented
in Supplementary Data sheet S5. As a result, we limited our analysis
to the following genes assessed by the DRAGEN V4.2 pipeline;
CYP2D6, CYP2B6, CACNA1S, CFTR, CYP2C9, CYP3A5, CYP4F2,
RYR1, NUDT15, SLCO1B1, TPMT, DPYD, G6PD, MT-RNR1,
BCHE, ABCG2, NAT2, F5, HLA-A, HLA-B, HLA-C.

Coriell sample assessment and comparison
against genome sequencing

To evaluate the accuracy of the DRAGEN V4.2 and PyPGx
pharmacogenomic pipelines, we assessed 10 DNA samples from the
Coriell Institute of Medical Research with previously published
pharmacogenomic data (Lee et al., 2022; Pratt et al., 2016) and
conducted both exome and genome sequencing as described. The
selected samples included those with challenging haplotypes, such as
CYP2B6 *1/*6, CYP2D6 *1/*5 and CYP2D6 *2/2+2, which are difficult
to assess due to structural variations and the close proximity of
homologous pseudogenes that affect the accuracy of CYP2D6 and
CYP2B6 genotyping (Desta et al., 2021; Turner et al., 2023; Chen
et al., 2021; Tremmel et al., 2023). DRAGEN V4.2 utilizes the Cyrius
tool, which accurately calls CNV from genome sequence data for
CYP2D6 and CYP2B6, while PyPGx utilizes a machine learning-
based approach to estimate copy number and detect SVs and has
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demonstrated accuracy in calling CNVs from various NGS data sources
(Lee et al., 2022; Sherman et al., 2024). Notably, two of the Coriell
samples (NA17280, NA02016) also had existing consensus HLA typing
data (Bettinotti et al., 2018). This study aimed to evaluate the
pharmacogenomic accuracy of these pipelines, including their ability
to accurately call CNVs in challenging genotypes, by leveraging well-
characterized reference samples with known CNVs and previously
established consensus genotypes (Pratt et al., 2016; Scott et al., 2021;
Calendo et al., 2024; Gharani et al., 2024).

Consensus genotypes from the Genetic Testing Reference
Materials Coordination Program (GET-RM) were available for
seven of the ten samples (See Supplementary Table S1). Assessing
the accuracy of genotyping across selected genes (CYP2B6,
CYP2C19, CYP2C9, CYP2D6, CYP3A5, CYP4F2, DPYD, and
SLCO1B1), PyPGx outperformed DRAGEN overall,
particularly for genome data, where PyPGx achieved a 94.6%
accuracy rate compared to DRAGEN’s 87.5%. For exome data,
PyPGx also showed better performance with an 85.7% accuracy
rate compared to DRAGEN’s 75.0%. Both methods performed
perfectly for genes such as CYP2C9, CYP4F2, and TPMT, but
PyPGx consistently outperformed DRAGEN for more complex
genes, especially with genomes where PyPGx had 100% correct

calls for CYP2D6 and other challenging genes. As previously
noted, while both callers successfully called CYP3A5 accurately,
the overall average read-depth across the *3 SNP was too low
(<20×) to include this in our overall analysis. As already
mentioned, the Agilent SureSelect Human All Exon probeset
does not cover this region which explains the insufficient read
depth in exome data, whereas whole-genome sequencing (WGS)
is expected to provide full coverage at this locus. Furthermore, as
noted for CYP2C19 in NA12813 and NA19908, these samples
were heterozygous and homozygous for the *17 SNP respectively,
and were incorrectly genotyped using exomes, which
significantly altered the final phenotype. This was also
noteworthy for the CYP2D6 and CYP2B6 genes which were
incorrectly assigned duplications, by both callers for exomes
only. It is important to note that DRAGEN, which uses the
Cyrius tool for CYP2D6 and CYP2B6 genotyping, advises
using genomes for accurate genotyping. In some instances, the
DRAGEN tool provided multiple potential genotype assignments
likely due to limitations in allele phasing. For example, DRAGEN
occasionally reported two possible CYP2B6 genotype
combinations (*1/*6 or *4/*9), whereas PyPGx assigned a
single genotype (*1/*6) based on population frequency data.

FIGURE 2
Workflow illustrating pharmacogenomic analysis. 1777 probands were assessed for pharmacogenes using DRAGEN V4.2 and PyPGx. * The exome
capture kit used did not provide sufficient coverage for some important genetic variants crucial to determining proper haplotypes and therefore
phenotypes (e.g., CYP2C19*17, CYP3A5*3). As a result five genes were excluded from our pharmacogenomic actionability analysis due to risk of incorrect
phenotype assignment. Created with BioRender.com
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Further, for the DPYD gene, DRAGEN was unable to accurately
call *9/*9, and for one Coriell sample, unable to genotype *1/*9.
However, PyPGx was able to call these genotypes accurately. For
SLCO1B1, DRAGEN also identified one sample with two
potential genotype assignments (*4/*44 or *43/*1). These
observations reflect the distinct approaches each software
employs when allele phasing ambiguity is encountered;
DRAGEN reports all possible genotype combinations,
highlighting uncertainty, whereas PyPGx resolves ambiguities

by selecting the most commonly reported genotype from
population data. Therefore, several of these discrepancies are
not strictly errors, rather limitations of phasing (i.e., is the allele
in cis or trans) by the Dragen caller. PyPGx reports the most
frequent diplotype when phasing is a concern using a method
referred to as “Phase-by-extension algorithm“ as mentioned in
the tools online documentation (Lee, 2024). Furthermore,
“diplotyping” errors are likely due to the complexity of
variants present in each star allele, especially for complex and/

FIGURE 3
Inadequate (≤20X) coverage of important pharmacogenetic variants across all exome cases. Firgure shows average coverage (COV) in shaded bars
and error bars show standard deviation (SD).

FIGURE 4
Average coverage of the CYP2C19 gene for all exome samples. As shown, coverage for the critical CYP2C19*17 SNPwas close to zero. Firgure shows
average coverage (COV) in shaded bars and error bars show standard deviation (SD).

Frontiers in Genetics frontiersin.org06

Maggo et al. 10.3389/fgene.2025.1574325

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2025.1574325


or pharmacogenes with extensive genetic variation (Gaedigk
et al., 2018).

Genetic ancestry of exome cases

Genetic ancestry analysis of 1,777 probands indicated that
62% of all exome cases analyzed were predicted to be of AMR
genetic ancestry (Figure 5), consistent with the geographical
location of CHLA. Owing to the mixed ancestry makeup, we
conducted phenotype analysis by predicted-ancestral
proportions.

Phenotype analysis

Phenotypes as defined by DRAGEN V4.2 are shown in Figure
6a-i for the pharmacogenes CYP2D6, CYP2B6, CYP2C9, NUDT15,
TPMT, DPYD and SLCO1B1 (All gene graphs are presented in
Supplementary Data sheet S7). Phenotypes for G6PD and BCHE
were not automatically assigned by DRAGEN, only genotypes were
provided. Existing guidelines from CPIC and Zhu et al. (2020) were
utilized to ascertain phenotypes for G6PD and BCHE respectively
(Gammal et al., 2023) (Zhu et al., 2020). Extended analysis for star
alleles (Supplementary Table S2) and phenotypes (Supplementary
Table S3) was also conducted and this data is available for each gene
by predicted ancestry in Supplementary Materials.

HLA Analysis

As part of the pharmacogenetic analysis pipeline, DRAGEN
V4.2 reports HLA-A, HLA-B and HLA-C genotypes. The following
HLA genotype-drug combinations were identified from CPIC (CPIC)
and the literature (Manson et al., 2021) and defined asHLA-actionable.
For the purpose of this analysis; B*57:01 = abacavir, B*57:01 =
flucloxacillin, B*58:01 = allopurinol, A*31:01 = carbamazepine, B*15:
11 = carbamazepine, B*15:02 = carbamazepine, B*15:02 =
oxcarbazepine, B*15:02 = lamotrigine, B*15:02 = phenytoin, and
B*15:02 = fosphenytoin. HLA-drug actionability analysis revealed
differences based on genetic ancestry (Supplementary Data sheet S8).
For example, phenytoin and allopurinol are less pertinent in AMR
patients comparing to East Asian (EAS) patients, while the opposite is
true for lamotrigine and flucloxacillin. The results from this analysis
showed that approximately 8% of the population analyzed had at least
one of the HLA-genotypes defined as actionable. As our exome data is
anonymized we were unable to link to prescribed medication, however,
extrapolating the data, we predicted the percentage of medication likely
to be impacted, based on the prevalence of the selected HLA-A and
HLA-B alleles in our population (Supplementary Data sheet S8).

Actionability analysis

For this analysis we defined specific predicted
pharmacogenomic phenotypes as “actionable”, and assigned them
a value of “1”. A full list of possible phenotypes is as follows; Normal
Function = 0, Decreased Function = 1, Poor Function = 1, Uncertain

Susceptibility = 0, NA (No Call) = 0, Intermediate Metabolizer = 1,
Normal Metabolizer = 0, Poor Metabolizer = 1, Rapid Metabolizer =
1, Normal = 0, Possible Decreased Function = 0, Increased
Function = 1, Favorable Response = 0, Ultra Rapid Metabolizer =
1, Possible Intermediate Metabolizer = 0, Malignant Hyperthermia
Susceptibility = 1, Normal Risk = 0, increased risk of
aminoglycoside-induced hearing loss = 1, uncertain risk of
aminoglycoside-induced hearing loss = 0, normal risk of
aminoglycoside-induced hearing loss = 0, moderate
deficiency–BCHE = 1, mild deficiency or normal
activity–BCHE = 0, G6PD variable or deficient or G6PD deficient
with CNSHA–G6PD = 1, G6PD Normal = 0. Further, the following
HLA variants were assigned a value of “1′ B*57:01, B*58:01, A*31:01,
B*15:11, B*15:02. The following genes were included in the
actionability analysis; ABCG2, CACNA1S, CFTR, CYP2B6,
CYP2C9, CYP2D6, CYP4F2, DPYD, G6PD, BCHE, NAT2,
NUDT15, RYR1, SLCO1B1, TPMT, MT-RNR1, HLA-A, HLA-B.

Using this criteria we observed that 92.8% (Figure 7a) of all
exome cases assessed had at least one actionable pharmacogenomic
variant. Furthermore, one in five individuals (21.8%) had at least
three actionable pharmacogenomic variants. The top five
pharmacogenes with actionable phenotypes (Figure 7b) were
CYP2B6, CYP2D6, ABCG2, CYP2C9 and SLCO1B1. Actionability
scores by gene are likely to reflect the presence of well-characterized
deleterious or unregulated star alleles. Notably, CYP2B6 exhibited
higher actionability than CYP2D6, which is somewhat unexpected
given the clinical significance of CYP2D6 phenotypes. However, as
previously noted, Dragen’s gene-specific caller is not suitable for
identifying CYP2B6/CYP2D6 genotypes fromWES data, which may
contribute to the presented data.

Phenotype frequency and comparison
with PharmGKB

An analysis of frequencies of the top five pharmacogenes with
actionable phenotypes; CYP2B6, CYP2D6, ABCG2, CYP2C9, and
SLCO1B1 showed notable differences in metabolizer status
(Table 1). This comparative analysis of exome data with existing
data from PharmGKB across various ancestries shows ancestry-
specific genetic variability in drug metabolism and immune
response, particularly among Hispanic individuals (AMR genetic
ancestry). For example, CYP2B6 - exome data showed a higher
prevalence of poor metabolizers (13.2%) compared to PharmGKB
(9.5%) in the AMR group. For CYP2D6, the AMR cohort had
notable fewer intermediate metabolizers (25.5% exome vs. 34.2%
PharmGKB) and fewer ultrarapid metabolizers (exome-0.2%
compared with PGKB-3.8%). Data for AMR was not available
from PharmGKB for SLCO1B1, however, exome data for
SLCO1B1 showed notable differences for individuals predicted to
be of African (AFR) ancestry. ABCG2 phenotype frequencies were
largely consistent between exome and PharmGKB (5.5% vs. 5%). For
CYP2C9, the exome cohort showed a slightly higher frequency of
normal metabolizers (76.6%) and a reduced proportion of poor
metabolizers (0.2% vs. 1%). HLA allele analysis showed comparable
frequencies ofHLA-A andHLA-B alleles. It is important to note that
this analysis of 1,777 exomes comprises predominantly (60%)
individuals predicted to be of AMR genetic ancestry. Finally, we
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have included phenotype data from a recent comprehensive analysis
of the 1000 genomes data using the PyPGx tool (Sherman et al.,
2024). Given the inherent differences between the datasets we did
not conduct statistical analyses.

Discussion

This study provides a comprehensive pharmacogenomic
analysis using data from exomes of a large cohort of
1,777 probands. We utilized two bioinformatics tools,
DRAGEN V4.2 and PyPGx to call genotypes and assign
phenotypes. While our findings suggest that PyPGx may be
preferable for WES-based pharmacogenomic analyses, further
validation in independent datasets is needed to assess tool
performance across different sequencing platforms and variant
types. These findings highlight the importance of selecting
bioinformatics tools that are appropriately designed for the
sequencing data type used in pharmacogenomic research and
clinical implementation. The comparison of exomes to genomes
highlights the limitations of exomes in capturing key
pharmacogenomic variants. Exomes exhibited significant
coverage gaps, particularly in non-coding regions crucial for
correct phenotype assignment. In addition, for the
pharmacogene CYP2D6 which has a wide array of structural
variation, duplications were often misassigned in exome data;
however deletions such as *5 were accurately identified.

This study also reinforces the variation in pharmacogenetic
phenotypes by genetic ancestry, with 62% of all exome cases
analyzed predicted to be of AMR ancestry, adding to the
pharmacogenomic knowledgebase for this population, and

specifically for CHLA and the wider Los Angeles area. The
analysis of HLA genotypes showed that approximately 8% of
exome cases carry actionable HLA variants, especially for drugs
used in neurology such as phenytoin and carbamazepine. A
critical finding of our analysis is that 92.8% of exome cases had
at least one actionable pharmacogenomic phenotype, with
21.8% having three or more. This study is unique as it
utilizes exome sequencing data from a predominantly
Hispanic pediatric cohort at CHLA, revealing that 62% of the
population is predicted to be AMR. Such findings underscore
the need for more inclusive pharmacogenomic research to
improve precision medicine approaches in populations with
complex ancestries that significantly influence pharmacogenetic
variability (Claudio-Campos et al., 2015; de Andres et al., 2017;
Popejoy, 2019; Magavern et al., 2022).

A recent study evaluating pharmacogenetics of 5,001 clinical
exome cases reported that 95% of individuals carried one actionable
phenotype (Lanillos et al., 2022). While our study reports ~93%, it is
important to note we excluded five important pharmacogenes due to
limitations of the exome capture kit currently utilized. It would be
safe to assume that inclusion of the pharmacogenes UGT1A1,
CYP3A5, CYP2C19, VKORC1 and IFNL3 would have likely
increased our percentage actionability. Further, recent analyses of
large biobanks have shown similar pharmacogenetic actionability
findings. A pharmacogenomic analysis of the UK-Biobank showed
that 100% of all individuals (N = 200,044) had a pharmacogenetic
variant of interest (Li et al., 2023). An analysis of 98,950 individuals
from the All of US study, has reported that 100% of study
participants carried a pharmacogenetic variant and 99% had a
phenotype with prescribing recommendations (Haddad et al.,
2024). Finally, an analysis of the Penn Medicine BioBank

FIGURE 5
Genetic ancestry distribution of exome probands. Figure shows the 1000 Genomes super population categories identified in our cohort.
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reported that 100% of individuals with genotype information
(~43,000) had at least one non-reference pharmacogenomic
allele, and 98.9% had one or more actionable pharmacogenomic

phenotypes (Verma et al., 2022). In addition, Verma et al (2022)
reported that over 14% of patients were prescribed a medication for
which they possess an actionable allele during the 8-year study

FIGURE 6
(a–i) Stacked bar plots showing the distribution of predicted pharmacogenetically relevant enzyme activity phenotypes by genetic ancestry (n =
1777). The y-axis represents phenotype categories, and the x-axis indicates the percentage of individuals within the total population. Phenotype
abbreviations: NM, Normal Metabolizer; RM, Rapid Metabolizer; UM, Ultrarapid Metabolizer; IM, Intermediate Metabolizer; PM, Poor Metabolizer; N/A,
Not available or Indeterminate phenotype classification.

FIGURE 7
(a) shows the average % of actionable phenotypes per exome case, indicating that the majority – 92.8% of all exome cases had at least one
actionable PGx phenotype. (b) shows the distribution of genes with actionable phenotypes. As shown CYP2B6 had the largest number of actionlable PGx
phenotypes.
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TABLE 1 Phenotype frequency (%) comparison of theWhole Exome Sequencing cohort (CES) against data published on the PharmGKB (PGKB) website and a
recent publication (LIT) (Tremmel et al., 2023). For population comparisons, AMR (Admixed American) from CES was compared against LAT (Latino) from
PGKB due to differences in biogeographical classifications. Blank values for, PGKB, or LIT indicate values not available at the time of publication.

CYP2B6 AFR AMR EAS EUR SAS

CES PGKB LIT CES PGKB LIT CES PGKB LIT CES PGKB LIT CES PGKB LIT

Normal Metabolizer 22 33.4 25.4 34.2 33.6 35.4 54.5 48.6 51.2 48.2 43 51.2 34.2 42.2 30.9

Intermediate
Metabolizer

54.9 46.6 47.7 42.1 42.2 43.5 26.9 32.6 33.1 37.1 38 35.1 42.1 36.5 45.4

Poor Metabolizer 20.9 15.7 21.5 13.2 9.5 16.4 7.1 4.4 5.2 6.2 7.4 5.8 13.2 6 15.1

Rapid Metabolizer 1.1 1.2 2.7 5.3 12.3 1.4 10.3 11.7 9.3 5.2 5.4 4.8 5.3 12.9 6.5

Ultrarapid Metabolizer 0 0 0 2.6 1.1 0 0 0.7 0.4 0.2 0.2 0.4 2.6 1 0.0

Indeterminate 1.1 3.1 2.2 2.6 1.4 3.1 1.3 2 0.8 3.1 6.1 2.8 2.6 1.5 2.0

CYP2D6 AFR AMR EAS EUR SAS

CES PGKB LIT CES PGKB LIT CES PGKB LIT CES PGKB LIT CES PGKB LIT

Normal Metabolizer
(1.25 ≤ x ≤ 2.25)

62.6 31.4 50.1 64.3 54.6 65.1 62.8 52.1 52.4 49.6 48.2 48.4 65.8 57.8 59.7

Intermediate
Metabolizer (0 <
x < 1.25)

22 59.7 36.2 25.5 34.2 24.2 28.8 40 44.6 36.8 39.3 38.4 23.7 28.4 25.4

Poor Metabolizer (0) 3.3 2.3 2.1 3.6 3.1 3.5 1.9 0.8 0.0 7.1 6.5 6.2 2.6 2.4 2.9

Ultrarapid
Metabolizer (>2.25)

0 2.6 5.1 0.2 3.8 3.2 0 0.8 1.0 0 2.3 3.0 0 1.5 1.2

Indeterminate 12.1 6.5 6.3 4.0 6.4 2.0 6.4 4.0 7.9 10.8

ABCG2 AFR AMR EAS EUR SAS

CES PGKB LIT CES PGKB LIT CES PGKB LIT CES PGKB LIT CES PGKB LIT

Normal Function 92.3 93.1 98.2 61.8 60.2 79.3 50 48 72.0 81.7 80.4 89.0 86.8 82.2 81.4

Decreased Function 7.7 6.7 1.8 32.7 34.8 19.9 42.9 42.6 23.8 17.1 18.6 10.2 10.5 16.9 18.2

Poor Function 0 0.1 0.0 5.5 5 0.9 7.1 9.4 4.2 1.2 1.1 0.8 2.6 0.9 0.4

CYP2C9 AFR AMR EAS EUR SAS

CES PGKB LIT CES PGKB LIT CES PGKB LIT CES PGKB LIT CES PGKB LIT

Normal Metabolizer 79.1 75.9 78.5 76.6 74.3 72.9 89.1 83.8 91.7 62 62.8 63.1 60.5 59.6 68.7

Intermediate
Metabolizer

20.9 23.6 21.2 23.1 24.6 26.2 9.6 15.2 8.1 35.6 34.5 34.7 36.8 36.2 27.2

Poor Metabolizer 0 0.5 0.3 0.2 1 0.9 0 0.6 0.2 2.1 2.6 2.2 2.6 3.8 2.7

Indeterminate 0 0 0.0 0.2 0.1 0.0 1.3 0.5 0.0 0.2 0.1 0.0 0 0.4 1.4

SLCO1B1 AFR AMR EAS EUR SAS

CES PGKB LIT CES PGKB LIT CES PGKB LIT CES PGKB LIT CES PGKB LIT

Normal Function 69.2 98 51.7 76.7 50.4 70.5 75.7 72.2 63.2 65.6 39.2 89.5 86.5 72.6

Decreased Function 13.2 2 1.4 18.7 19.9 26.3 21.8 19.8 25.7 28.3 20.1 7.9 13 7.0

Possible Decreased
Function

1.1 0 5.1 0.6 0.0 0.6 0.1 0.0 0.7 0 0.0 0 0 0.0

Poor Function 0 0 0.2 0.8 1.7 1.9 1.6 2.0 3.8 2.9 2.0 0 0.5 0.4

(Continued on following page)
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period (Verma et al., 2022). While our analysis was limited to
pharmacogenomic information, we can extrapolate medical
specialties (neurology, pain, psychiatry, oncology, cardiology and
others) which would benefit from integrating pharmacogenomic
information into routine patient care. As shown in Figure 7b, the top
five genes with actionable phenotypes were CYP2B6, CYP2D6,
ABCG2, CYP2C9 and SLCO1B1. These five genes are involved in
multiple drug-gene pathways (Supplementary Data sheet S9), and
several of them have existing prescribing recommendations in the
form of CPIC guidelines.

To replicate the requirements of clinical genetic sequencing, we
conducted a depth of coverage analysis for each pharmacogenetically
actionable allele and collected genotype information across all relevant
loci. This step helped us to prevent inaccurate genotyping caused by
low coverage. Among the pharmacogenes assessed, >99% of
pharmacogenetic variants were covered at a diagnostic threshold of
20x. As previously mentioned, we excluded five genes from analysis
due to poor (<20X) or variable coverage (see results, Figures 3, 4) in
core pharmacogenomic variants. These variants (CYP1C19*17,
UGT1A1 *80, CYP3A5*3, INFL3 variants–rs12980275, rs8099917,
rs12979860, VKORC1 variant- rs9923231) are important phenotype
defining variants, and as they occur in either promoter or intronic
regions, they were not covered adequately by the exome capture kit
utilized. It is important to note that next-generation reagent
companies are now realizing the importance of covering clinically
important intronic and intergenic variants and now offer extended
exome capture kits, including important pharmacogenomic regions.

This analysis of 1,777 exomes from a predominantly Hispanic
cohort revealed differences in the frequency of pharmacogenomic
phenotypes when compared to those previously reported in the
PharmGKB database (Hewett et al., 2002). Focusing on the AMR
super population group, for CYP2B6, the exome data showed a
higher proportion of poor metabolizers (13.2%) compared to that
reported in PharmGKB (9.5%) and a lower frequency of rapid
metabolizers (5.3% vs. 12.3%). In the case of CYP2D6, normal
metabolizers were more prevalent in exomes (64.3%) relative to
PharmGKB (54.6%), while exomes exhibited a reduced prevalence
of ultrarapid metabolizers (0.2% vs. 3.8%). The lack of genetic

reference data on admixed American populations (Secolin et al.,
2019), particularly those with significant Hispanic ancestry,
presents a critical challenge in pharmacogenomics (Zhang et al.,
2019). Historically, the majority of pharmacogenomic studies have
focused on individuals of European descent, with recent estimates
suggesting that up to 86% of genomic research has been conducted
in these populations (Popejoy, 2019).

Limitations and future directions

There are limitations to note from our analysis.
This study provides valuable pharmacogenomic insights in an

admixed population; however, its primary focus was on evaluating
Dragen and PyPGx calls for known pharmacogenomic variants
using standard clinical pipelines rather than assessing the impact
of ancestry-specific reference genomes or graph genomes. Given
that clinical pharmacogenomic databases such as PharmGKB and
CPIC rely on hg38, and clinical sequencing workflows
predominantly utilize this reference, we aligned our analysis
with current clinical standards. While ancestry-aware
approaches, such as graph genomes or population-specific
references, may offer additional insights for certain genes, their
implementation in clinical pharmacogenomics remains limited.
Future work could explore the added benefits of these approaches
in refining PGx variant interpretation across diverse populations.
In addition, this study was designed to evaluate how Dragen and
PyPGx bioinformatically predict known pharmacogenomic
genotypes and phenotypes, rather than to identify novel or rare
variants with potential pharmacogenomic impact. While our
dataset may include sequencing data that could support such an
analysis, our approach specifically focused on assessing these tools
against established pharmacogenomic alleles as curated in
databases such as PharmVar, PharmGKB, and CPIC. As a
result, this study does not explore the potential contribution of
novel or rare variants, including stop-gain/loss and frameshift
mutations, which may have functional implications for drug
response. Future research incorporating functional validation and

TABLE 1 (Continued) Phenotype frequency (%) comparison of theWhole Exome Sequencing cohort (CES) against data published on the PharmGKB (PGKB)
website and a recent publication (LIT) (Tremmel et al., 2023). For population comparisons, AMR (Admixed American) from CES was compared against LAT
(Latino) from PGKB due to differences in biogeographical classifications. Blank values for, PGKB, or LIT indicate values not available at the time of
publication.

SLCO1B1 AFR AMR EAS EUR SAS

CES PGKB LIT CES PGKB LIT CES PGKB LIT CES PGKB LIT CES PGKB LIT

Increased Function 2.2 0 0.7 0 0 3.3 3 2.6 0

Indeterminate 14.3 0 33.3 2.6 13.8 0.6 0.8 5.4 3.3 0.1 18.7 0 0.1 8.4

HLA - Allele AFR AMR EAS EUR SAS

CES PGKB CES PGKB CES PGKB CES PGKB CES PGKB

HLA-A*31:01 0 0.99 1.63 4.52 0.96 3.45 0.59 2.64 0 3.3

HLA-B*15:02 0.55 0.1 0 0.03 6.73 4.56 0 0.01 0 2.59

HLA-B*57:01 0 0.61 0.56 1.39 0.32 0.98 3.09 3.6 5.26 6.81

HLA-B*58:01 2.75 3.82 1.07 1.35 3.85 6.04 0.48 0.77 3.95 4.19
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expanded cohort analyses will be necessary to fully characterize the
impact of rare pharmacogenomic variants, particularly in
underrepresented populations such as the AMR cohort.

The exclusion of five important pharmacogenes from our
actionability analysis is a major limitation. However, for the
purposes of accurate phenotype assignment, these genes had to be
excluded. The use of genomes will provide accurate pharmacogenetic
information for alleles missed by exomes, as well as accurate detection
of structural variation in pharmacogenes such asCYP2D6 andCYP2B6.
Further, it is important to note that genetic ancestry tools rely on
reference populations such as the 1000 Genomes database. While such
databases have improved representation from diverse populations, they
could still be enhanced (Bolnick et al., 2007; Royal et al., 2010). Further,
grouping populations into AMR as a single category can be misleading
due to the substantial genetic diversity within this group. The grouping
“AMR” encompasses individuals from various regions, including
Central and South America, the Caribbean, and even parts of
Europe (Maldonado et al., 2023; Koehl and Long, 2018). This
diversity-within-diversity may result in significant differences in
genetic markers, health risks, and responses to medications. Finally,
the differences in phenotypic frequencies among the three
datasets—our study population, PharmGKB (Hewett et al., 2002),
and a recent pharmacogenetic study assessing 1000 Genomes data
(Sherman et al., 2024) (Table 1) could be attributed to several factors.
Our study population, primarily Hispanic reflects a unique genetic
admixture characteristic of the diverse populations in the Southwestern
United States. This admixture likely results in allele frequencies that
differ from the more homogenous ancestry-specific datasets of
PharmGKB and 1000 Genomes. In addition, methodological factors
such as sample size, bioinformatic pipelines, criteria for genetic ancestry
estimation or self-reported ancestry are likely contributing factors.

Conclusion

In a recent white paper by the Pediatric Task Team of the
Global Alliance for Genomics and Health, Friedman et al. (2024)
evaluated the ethical, clinical, and policy considerations of actively
screening and reporting secondary pharmacogenomic variants in
children undergoing diagnostic genome-wide sequencing for
suspected genetic diseases. The white paper highlighted
potential benefits such as reducing adverse drug reactions and
improving treatment efficacy, while addressing concerns about
data storage and equitable access (Friedman et al., 2024).
Analyzing pharmacogenomic markers as part of clinical exome
or genome testing will allow clinicians to personalize medication
regimens based on an individual’s own genetic makeup, improving
therapeutic outcomes and minimizing adverse drug reactions.
While exomes exhibit coverage gaps, particularly in non-coding
regions crucial for correct phenotype assignment, application of
exomes and genomes to both diagnose genetic disorders and
inform pharmacogenomic strategies significantly broadens their
clinical utility, making them powerful tools in molecular
diagnostics. These results highlight and reinforce the staggering
fact that close to 100% of patients undergoing pharmacogenetic
screening have at least one actionable variant. This underscores the
need to readily offer pharmacogenomic testing and integrate
comprehensive pharmacogenomic data into EMRs with CDS

systems to ensure accurate, safe and personalized therapeutic
recommendations.
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