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Introduction: Lysine crotonylation (Kcr) is a recently identified post-translational
modification that predominantly occurs on lysine residues and plays a crucial role
in regulating gene expression, cellular metabolism, and various biological
processes. Increasing evidence has linked Kcr to the pathogenesis of major
diseases such as cancer, highlighting the importance of accurately identifying
Kcr sites for understanding disease mechanisms and normal cellular function.

Methods: In this study, we present a novel deep learning-based computational
model, named iKcr-DRC, for the accurate prediction of lysine crotonylation sites.
The model leverages a densely connected convolutional network (DenseNet) as
its backbone to effectively capture high-level local features from protein
sequences. Additionally, we introduce an enhanced channel attention
mechanism with a short-circuit connection design, endowing the network
with residual properties and improved feature refinement capabilities.

Results: The experimental results show that the iKcr-DRC model achieves
90.30%, 78.35%, 84.33% and 69.15% for sensitivity, specificity, accuracy, and
Matthew’s correlation coefficients, respectively. These results indicate a
significant improvement over existing state-of-the-art Kcr prediction tools.

Discussion: The proposed iKcr-DRC model provides an effective and innovative
approach for predicting lysine crotonylation sites. It holds great potential for
advancing applications in bioinformatics and enhancing the understanding of
protein post-translational modifications. An online prediction tool based on the
iKcr-DRC model is freely accessible at: http://www.lzzzlab.top/ikcr/.

KEYWORDS

protein post-translational modification, lysine crotonylation site, deep learning,
DenseNet, channel attention mechanism

1 Introduction

Protein post-translational modifications (PTMs) (Hu et al., 2023) are widespread
physiological phenomena in organisms and play an important role in the functional
regulation of cells (Kouzarides, 2007; Verdin and Ott, 2015). Currently, modern
technology has discovered more than 600 different types of PTMs (Meng et al., 2022),
which include a variety of modifications such as phosphorylation, glycolysis, acetylation and
sacculation (Macek et al., 2019). These modifications can change protein structure,
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function, and interaction, thus producing important regulatory
effects on biological processes within the cell (Fu et al., 2018).
Protein lysine crotonylation (Kcr) (Tan et al., 2011) is an
important PTM modality that occurs on lysine residues.
Catalyzed by acyltransferases, acetyl groups are added to residues
of lysine, thereby changing protein chemical structure and function.
Kcr plays an important role in several cells processes, including key
processes such as gene transcription and cellular metabolism (Patel
et al., 2024). It is involved in the regulation of these cells processes by
modulating protein interactions, activity, and stability (Hou et al.,
2021). Medical research has shown that Kcr plays an important
regulatory role in major diseases such as tumors and cancer (Gao
et al., 2023; Jiang et al., 2021). Therefore, accurate prediction of the
Kcr site is critical for understanding an organism’s normal function.

In the past, In order to explore the importance of Kcr sites in
biological processes, researchers have developed a number of
biological experimental methods (Yu et al., 2020) to identify Kcr
sites. However, these methods suffer from high costs. Therefore,
researchers urgently need to develop more convenient and efficient
computational methods to replace the traditional biomedical
experimental methods. Computational methods enable the
prediction of Kcr sites, while biological experiments provide
validation and contextual support for these predictions. In recent
years, researchers have developed a series of compelling Kcr site
models. These models can accurately predict Kcr sites of proteins,
thus helping researchers to further explore the functions and
regulatory mechanisms of protein modifications in biology. In
2016, researchers created a small dataset of Kcr sites and applied
a discrete hidden Markov model (DHMM) to predict them (Qiu
et al. 2017). Subsequently, many researchers (Ju and He, 2017; Liu
et al., 2020; Malebary et al., 2019; Qiu et al., 2017; Qiu et al., 2018;
Wang et al., 2020) have worked based on this dataset. In 2017, Qiu
et al. (2017) developed a model called Position-weight. The model
encodes the Kcr site sequence using position-weighted amino acid
composition (PWAA) (Ismail et al., 2016) and predicts it by support
vector machine (SVM). The results of the study show that the model
exhibits good performance in prediction. In the same year, Ju and
He (2017) developed a model called CKSAAP-CrotSite, which
utilizes k-spaced amino acid pairs (CKSAAP) and SVM to
encode and predict Kcr sites. In 2019, the iKcr-PseEns model
(Qiu et al., 2018) and the iCrotoK-PseAAC model (Malebary
et al., 2019) used Random Forest and Artificial Neural Network
(ANN) to predict Kcr sites, respectively. These two models employ
different algorithms and feature coding methods to further improve
the accuracy and performance of the Kcr site prediction models. In
2020, Liu et al. (2020) developed a model called LightGBM-CroSite.
The model encodes Kcr site sequences with multiple complicated
coding methods and uses the LightGBM algorithm for prediction.
Experimental results showed that the model demonstrated the best
prediction results. These models performed well in predicting the
Kcr site, especially the iCrotoK-PseAAC and LightGBM-CroSite
models, which had a prediction accuracy of 99%. However, machine
learning predictive models usually perform well on small datasets,
but they are relatively less innovative. In addition, these machine
learning models are highly dependent on complex feature encoding
methods to improve predictive performance, yet the complexity of
feature coding is a rather difficult task. All these limitations are
drawbacks of current machine learning models.

Deep learning models (Sun et al., 2022; Wang T. et al., 2023;
Wang et al., 2022; Zhang L. et al., 2021) show great potential in a big
data-driven context. In 2020, Lv et al. (2021a) created a balanced
benchmark dataset of Kcr sites, while they developed a predictive
model called Deep-Kcr by using a convolutional neural network. In
2021, Qiao et al. (2022) based on this dataset, they encoded the Kcr
site sequences by the BERT model (Le et al., 2021) and utilized the
BiLSTM network (Sharma et al., 2022) to capture the global features
of the Kcr site sequences, so as to extract richer feature information
for predicting the Kcr site. Experimental results show that this model
achieves good results. In the same year, Khanal et al. (2022)
introduced capsule network (Chen Z. et al., 2023) to replace the
traditional convolutional neural network, because the traditional
convolutional neural network may lose the spatial information when
compressing the feature information, and the introduction of
capsule network further improved the experimental results.
However, the main network structures adopted by these
prediction models are too basic and lack innovation, and thus
there is still a wide scope of exploration in the field of deep
learning methods.

We propose a deep learning model called iKcr-DRC, which
employs DenseNet (Wei et al., 2022) as the core network structure to
extract advanced local feature information. Traditional
convolutional neural networks pass feature information from
layer by layer, whereas DenseNet networks use a densely
connected structure that allows each layer to be directly
connected to all previous layers, thus effectively utilizing the
feature map information of the previous layers. This dense
connection structure allows our model to avoid network
degradation problems and extract richer feature information. In
addition, we have made innovative improvements to the channel
attention mechanism (Chen W. et al., 2023; Meng et al., 2023) by
introducing the design of short-circuit connections, which makes
the channel attention mechanism internally equipped with residual
structures. The improved channel attention mechanism can more
accurately compute the channel weights of the output feature maps
of the DenseNet network, thus improving the performance and
accuracy of the model. With these improvements, our iKcr-DRC
model shows better performance in the Kcr site prediction task. This
study provides new ideas and methods for the application of deep
learning in bioinformatics.

2 Materials and methods

2.1 Benchmark dataset

In this study, we used the benchmark dataset created by Lv et al.
(2021b). The protein sequences in this dataset were extracted from
the UniProt database (UniProt Consortium, 2011), and to avoid
redundancy, they applied the CD-HIT tool (Huang et al., 2010) to
remove duplicate protein sequences with more than 30% similarity.
In the end, they obtained 9,964 samples of real Kcr site and
9,964 samples of spurious Kcr site. Based on experimental
confirmation, the appropriate length for positive and negative
samples is 29, and they are both centered at the K site. In
positive samples, K indicates crotonylation, while in negative
samples, K indicates no crotonylation modification. Finally, they
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randomly split the positive and negative samples into a training set
and an independent test set in a ratio of 7:3. The final training
dataset contained 6,975 Kcr site samples and 6,975 non-Kcr site
samples, while the independent test dataset contained 2,989 Kcr site
samples and 2,989 non-Kcr site samples. To ensure the uniqueness
of each sequence, different classes of protein sequences are mutually
independent. The details of the benchmark dataset are shown
in Table 1.

2.2 Feature extraction methods

There are some shortcomings in the current methods of protein
feature coding. First, some feature coding methods encode protein
sequences as fixed-length vectors or matrices, but these methods can
be improved in capturing contextual information between proteins.
Second, traditional coding methods rely on manual design, which
leads to complex and difficult feature construction. In summary, these
traditional methods have some limitations in protein feature coding.

Word embeddingmodel (Ren et al., 2022) is a feature codingmodel
based on contextual semantic information and shallow neural network
training. In the field of bioinformatics, word embedding models are
widely applied. Word embedding coding of protein sequences involves
the following steps: first, the protein sequence is divided into K-mers of
fixed length using a sliding window. Next, these k-mers are transformed
to binary vectors using One-hot coding (Abbas et al., 2022). All binary
vectors are trained using a two-layer neural network to generate the
weight parameter matrix. Finally, this weight parameter matrix is
multiplied with a binary vector to obtain a dense vector for
representing K-mer words. By training the word embedding model,
we can obtain a dense vector representation of each K-mer word, and it
possesses contextual semantic relations. We set the sliding window size
to 1, the fixed length to 1-mers, and use an 80-dimensional word vector
to represent each 1-mer. Therefore, the length of each Krc site sequence
is 29, which can be expressed as a feature matrix of size 80 × 29.

2.3 Model construction

In this study, we propose a deep learning predictionmodel called
iKcr-DRC, which is capable of automatically coding protein
sequences and extracting high-level feature information to
improve the prediction accuracy. First, we apply a word
embedding technique to each Krc site sequence and convert it
into a feature encoding matrix of size 80 × 29. Then, we directly
input this feature encoding matrix into the DenseNet network with
Dense Connectivity to fully explore the deep features of the
sequences. Subsequently, we introduce the residual channel
attention mechanism on the high-level feature maps extracted by

DenseNet, which further enhances the representation of the feature
maps by emphasizing the importance of the information of each
channel. Finally, we input the feature maps evaluated by the
attention mechanism into the fully connected neural network for
prediction. Figure 1 illustrates the specific details of this
network framework.

2.3.1 DenseNet
In this study, we make structural improvements based on the

standard DenseNet framework. The traditional DenseNet usually
contains an initial convolutional layer, multiple Dense blocks, and
several Transition layers, where low-level features are first extracted
from the initial convolutional layer, and then input into the Dense
blocks and Transition layers to obtain richer high-level representations.
In our improved scheme, the initial convolutional layer is first
eliminated, and the feature coding matrix is directly input into the
Dense blocks to fully utilize the information of the original data. At the
same time, we also add an additional batch normalization layer (Berrar
and Dubitzky, 2021) between each Dense block and Transformation
layer, which improves the robustness and stability of the model while
reducing its complexity.

2.3.1.1 Dense block
Dense block (Yang et al., 2020) is a key component of DenseNet

network and it plays an important role. The Dense block consists of
multiple densely connected convolutional layers, where the output
of each convolutional layer is connected to the outputs of all
previous convolutional layers to produce a densely connected
network structure. The Dense block equation is shown below.

xl � Fl x0, x1,/, xl−1[ ]( ), l � 1, 2,/, L. (1)
Fl x( ) � Conv ReLU BN x( )( )( ) (2)

where xl denotes the concatenation operation in the feature channel
dimension and F is a composite function consisting of the batch
normalization (BN), ReLU activation function and convolution
(Conv) operation.

This densely connected structure can effectively integrate
shallow features with deeper features, thus realizing the reuse of
feature information. The Dense block structure improves the overall
performance of the model in terms of gradient flow, computational
efficiency, and model generalization ability, enabling iKcr-DRC to
perform Krc site prediction more accurately. The Dense block
structure is shown in Figure 2.

2.3.1.2 Dense block
The Transition layer (Jia et al., 2023a) in the DenseNet network

is mainly designed to reduce the size of the feature map and thus
control the complexity of the model. The Transition layer is located
between adjacent Dense blocks and consists of a convolutional layer
(1 × 1) and an average pooling layer (2 × 2). The parameters of the
Dense block’s output feature maps are huge, which can lead to
parameter explosion and slower training. Therefore, the Transition
layer uses a convolutional layer (1 × 1) to reduce channel number of
the feature map and an average pooling layer (2 × 2) to compress the
spatial size of the feature map. This reduces the parameters of the
feature map and reduces the complexity of the model, thus
improving the generalizability of the model.

TABLE 1 The details of the benchmark dataset.

Original dataset Positive Negative

Training Dataset 6,975 6,975

Testing Dataset 2,989 2,989

Total 9,964 9,964
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We add a batch normalization layer to the Transition layer. The
batch normalization layer can normalize the input data to optimize
and accelerate the model training and improve the model
performance. The Transition layer equation is shown below.

xtrans � T xblock( ) � AvgPool Conv1×1 BN x0,/, xL[ ]( )( )( ) (3)

2.3.2 Residual channel attention mechanisms
In convolutional neural networks, the weights of each channel of

the feature map are fixed, and there is no adaptive learning based on
the importance of the features. However, the importance of feature
information is not the same for different channels. By using the

channel attention mechanism, we can adaptively weight the channel
feature information according to its importance, thus enhancing the
attention of the model on important feature information. This
improves the representation of features, which in turn improves
the performance and generalization of the model. The structure of
the channel attention mechanism is shown in Figure 3.

We assume that in the channel attention mechanism, useless
feature information is already filtered when the feature map is
dimensionally compressed using the Pooling layer. In a way, the
feature vectors obtained by pooling layer compression already has
the potential role of channel attention weights. Based on this
assumption, we improve the channel attention mechanism by
introducing a short-circuit connection structure to improve its
performance. The improved channel attention mechanism is
called residual channel attention mechanism. The residual
channel attention mechanism equation is shown below.

Mc F( ) � σ FNN AvgPool F( )( ) + FNN MaxPool F( )( )( ) (4)
Mr F( ) � σ AvgPool F( ) +MaxPool F( )( ) (5)

Mrc F( ) � Mc F( ) +Mr F( ) (6)
F � Fscale F,Mrc F( )( ) � Mrc F( ) · F (7)

where the pooling here is global max pooling and global average
pooling. Mrc(F) denotes the residual weight value. Fscale denotes
each channel specific value F multiplied by the weight.

In this residual channel attentionmechanism, we add the feature
vectors compressed by the pooling layer with the weight vectors
obtained from the network training. In this way, the generated
channel weight vectors can more accurately represent the
importance of each channel in the feature map, thus improving
representation of key feature information by the model. The purpose

FIGURE 1
An overview of iKcr-DRC model. (A) Feature coding. (B) iKcr-DRC network framework.

FIGURE 2
The structure of Dense block.
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of this improvement is to make the network more attentive to
important channel features and thus improve the performance of the
model. The structure of the residual channel attention mechanism is
shown in Figure 4.

The original channel attention mechanism first uses global max
pooling and global average pooling compresses on the feature map
to obtain pooled vectors of two channel dimension sizes. Next, we
input these two pooled vectors into a fully connected neural network
for training to get two trained vectors. Then, we sum these two
training vectors to get a summation vector. Finally, the summation
vector is normalized using the sigmoid activation function to obtain
the channel attention weights. To improve the channel attention
mechanism, we introduce a short-circuit connection structure. First,
we add the two pooling vectors to obtain a summation pooling
vector. Next, we process the summation pooling vector using a
sigmoid activation function to obtain a residual weight vector.
Finally, the residual weight vector is summed with the channel
attention weights to obtain the final residual channel
attention weights.

2.3.3 Fully connected neural network
We use DenseNet and residual channel attention mechanism as

advanced feature extraction methods. With these methods, we can
obtain a set of advanced feature representations. Next, the extracted
advanced features are flattened into vectors and fed into a Fully
connected neural network. Finally, we employ the softmax function
(Duhan et al., 2022) to predict classification results.

2.4 Performance evaluation

To evaluate the predictive performance of the model more
comprehensively, we used four common scientific evaluation
metrics for the assessment. These evaluation metrics include
sensitivity (Sn), specificity (Sp), accuracy (Acc) and Matthew’s
correlation coefficient (MCC) (Jia et al., 2023b). By using these
evaluation metrics, we can understand the experimental effect of the
model in detail, which helps us to further improve and optimize the
model. The evaluation metrics are as in Equation 8.

FIGURE 3
Structure of the channel attention mechanism.

FIGURE 4
Structure of the residual channel attention mechanism.
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Sp � TN

TN + FP

Sn � TP

TP + FN

Acc � TP + TN

TP + TN + FP + FN

MCC � TP × TN − FP × FN��������������������������������������������
TP + FP( ) × TP + FN( ) × TN + FP( ) × TN + FN( )√

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(8)
Among them, True Positive (TP), True Negative (TN), False

Positive FP) and False Negative (FN) are the four important
indicators in the confusion matrix (Niu et al., 2021). These
metrics represent the model’s accuracy in predicting positive and
negative samples, respectively, and they are the basis for computing
the evaluationmetrics. To characterize the model performance more
accurately, we also used ROC curves and AUC metrics (Jia et al.,
2022) for evaluation. Higher values of all these evaluation metrics
indicate better model performance.

3 Results and discussion

3.1 Comparing parameter combinations of
dense blocks

In this study, DenseNet serves as the core network structure
of the iKcr-DRC model, and we conduct an in-depth
exploration of the parameter combinations of the Dense
block to effectively avoid overfitting while ensuring model
performance. Specifically, we compare the model
performance by adjusting the number of Dense blocks and

the number of convolutional layers inside them. According
to the experimental results in Figure 5, when the number of
Dense blocks is set to four and the number of convolutional
layers in each Dense block is set to 2, the Acc and MCC metrics
of the model reach their maximum values. Based on this finding,
we finally chose this parameter configuration to build the
DenseNet network to achieve the best prediction results
while balancing the complexity and performance.

3.2 Comparison of different codingmethods

In this study, we compare several matrix feature coding
methods because our model network structure can only accept
feature matrices as input. These matrix feature coding methods
include Word embedding, One-hot and AAindex (Wang X. et al.,
2023). In addition, we discuss the application of Word
embedding coding in three cases: 1-mer, 2-mer and 3-mer.
We also compare the current popular protein large language
model ESM-2. We input these matrix feature codes into the
network framework and then compare the performance of the
models. According to the experimental results in Figure 6, Word
embedding coding has the highest value of all evaluation metrics
when comparing the other three coding methods. The One-hot
coding method has problems of sparsity and information loss,
and the AAindex coding method mainly focuses on the amino
acid composition of proteins while ignoring other key structural
and functional information. The ESM-2 coding method generates
embedding vectors of protein sequences based on a large-scale
pre-trained language model, which is theoretically able to capture
the deep semantic and structural information in the sequences.
However, limited by computational resources, the ESM-2 model

FIGURE 5
Evaluation metrics for different parameter of Dense blocks.
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with the smallest parameters was chosen for encoding in this
study, which led to its relatively poor performance in the
experiments. In contrast, word embedding coding is a method
of encoding word vectors based on contextual semantic
information by network training, which is more efficient than
manual feature coding. Meanwhile, we compare the experimental
results of Word embedding coding in three cases (1-mer, 2-mer
and 3-mer), and the results show that simple 1-mer obtains the
best results. Therefore, we identified 1-mer Word embedding
coding as the preferred scheme for feature coding.

3.3 Comparison of different attention
mechanisms

In this study, we researched and analyzed the six attentional
mechanisms. These six mechanisms include SENet (Li et al., 2023),
channel attention mechanism (CAM), ECANet (Gong et al., 2023),
CBAM (Jia et al., 2023c), DANet (Bai et al., 2023) and residual
channel attention mechanism (RCAM). We combined these
attention mechanisms with Dense Net and tested them.
According to the results of the test experiments in Table 2, we

FIGURE 6
Comparative results of different coding schemes.

TABLE 2 Comparison of different attention mechanisms.

Model frameworks Sn Sp Acc MCC AUC

SENet 0.8855 0.7785 0.8320 0.6679 0.9169

CAM 0.9203 0.7236 0.8220 0.6568 0.9126

ECANet 0.7460 0.8909 0.8185 0.6437 0.9106

CBAM 0.9260 0.7363 0.8312 0.6746 0.9181

DANet 0.7708 0.8728 0.8218 0.6470 0.9137

RCAM 0.9030 0.7835 0.8433 0.6915 0.9191

The highest score for each metric is highlighted by bold.
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can see that the RCAM shows better experimental results compared
to the CAM. This suggests that by introducing a short-circuit
connection structure into the CAM, the model can highlight
more important channel feature information. Compared to
simple SENet and CBAM, the RCAM is slightly better in terms
of performance. The two latest attention mechanisms, ECANet and
DANet, exhibit relatively poor performance, this is because complex
attention mechanisms are usually only fully utilized on large-scale
datasets. Synthesizing the experimental results, we finally chose the
Residual Channel Attention Mechanism.

3.4 Comparison of different network
frameworks

We researched the performance of multiple deep learning network
frameworks in the task of Kcr site prediction. Specifically, we researched
convolutional neural network models such as ResNet (Ge et al., 2022),
DenseNet, InceptionResNet (Zhang X. et al., 2021), and EfficientNet
(Dehghan Rouzi et al., 2023), and further experimented with two
temporal network frameworks, BiGRU (Zhang et al., 2023) and
Transformer (Zhou et al., 2022). In addition, we have tried the
Vision Transformer (ViT) (Khedr et al., 2023) model, which is very
compelling in the field of computer vision. According to the
experimental results shown in Table 3, compared to using only the
DenseNet network, the performance is significantly improved by
adding the RCAM. InceptionResNet and EfficientNet are two newer
deep neural network models that employ a series of complex structural
designs to improvemodel performance. However, the simple DenseNet
network structure shows better performance compared to these two
complex convolutional neural networks. This indicates that the use of
more complex network structures does not necessarily improve
performance on small datasets. Similarly, we tried the BiGRU and
Transformer models. These models showed good performance in the
experiments, but they were slightly less effective relative to the
combination of DenseNet and RCAM. ViT is a large model and
requires more data to fully utilize its superior performance.
However, in small data samples, the ViT network model cannot be
utilized to its full potential. This indicates that by using DenseNet and
the RCAM to extract features, we can obtain more advanced feature
information, which makes it easier to predict the Kcr site. Based on the

experimental results, we choose the combination of DenseNet and
RCAM to build the final network framework.

3.5 Comparing different combinations of
attention mechanisms and
DenseNet networks

In this study, we delve into three different approaches for
combining residual channel attention mechanisms with DenseNet
networks. The goal of these combined approaches is to fully utilize
the advantages of the residual channel attention mechanism and the
DenseNet network to further enhance model performance and
feature representation. These three different combinations are
shown in Figure 7. The first combination approach is called
Dense + RCAM + Net, which adds the residual channel attention
mechanism between the Dense blocks and the Transient layer. The
second combination approach is called Den + RCAM+ seNet, which
introduces the residual channel attention mechanism between the
Convolutional layers of each Dense block. The third combination is
called DenseNet + RCAM, which adds the residual channel
attention mechanism after the final output of DenseNet.

After researching and experimenting with the three combination
methods, we arrived at the experimental results shown in Figure 8.
Surprisingly, we found that the simplest DenseNet + RCAM
combination obtained the best results. We analyzed the effects of
these two complex combinations approaches, but found that they
led to a complication of the original DenseNet network and
triggered an overfitting problem. In contrast, DenseNet + RCAM
has less changes in the model structure, which may help to retain
DenseNet’s original feature extraction capability and information
mobility. This could also explain the better performance of
DenseNet + RCAM, because it better balances the complexity and
the generalization ability of the model.

3.6 Performance of iKcr-DRC on
training dataset

Cross-validation is a very important means to validate the
performance of a model. To validate the performance of the iKcr-

TABLE 3 Comparison of different network architecture models.

Model frameworks Sn Sp Acc MCC AUC

DenseNet 0.9488 0.6306 0.7897 0.6112 0.9021

ResNet + RCAM 0.8752 0.6814 0.7783 0.5674 0.8503

InceptionResNet + RCAM 0.9973 0.1063 0.5518 0.2283 0.8146

EfficientNet + RCAM 0.7142 0.6219 0.6681 0.3376 0.7148

BiGRU 0.8159 0.8166 0.8163 0.6326 0.8884

Transformer 0.8591 0.7969 0.8280 0.6573 0.9077

ViT 0.8390 0.7039 0.7714 0.5480 0.8438

DenseNet + RCAM 0.9030 0.7835 0.8433 0.6915 0.9191

The highest score for each metric is highlighted by bold.
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DRC model in the task of predicting Kcr site, we performed a 5-fold
cross-validation on the training dataset. According to the results shown
in Figure 9, the values of other evaluation metrics show relatively stable
fluctuations when performing the 5-fold cross-validation, except for two
outliers in the Sp metric. This proves that the iKcr-DRC model has
more stable and superior performance. In addition, we also compared
the average results of the iKcr-DRC model with the DeepCap-Kcr
model for 5-fold cross-validation, and the comparison results are
displayed in Figure 10. The iKcr-DRC model improved Sn, Acc and
MCC by 4.97%, 1.01% and 1.56%, respectively. This indicates that the
iKcr-DRCmodel has good robustness in the task of predicting Kcr site.

3.7 Comparison of iKcr-DRC with existing
predictors

In recent years, many excellent computational methods have
emerged in the field of Kcr sites. To comprehensively evaluate the
performance of the iKcr-DRC model, we performed independent
tests on benchmark datasets and compared it with existing
models. In this way, we can better understand the
performance of the iKcr-DRC model on the benchmark
dataset. We show the experimental results in Table 4 and
found that the iKcr-DRC model significantly outperforms the

FIGURE 7
Three different network combination structures. (A) Dense + RCAM + Net. (B) Den + RCAM + seNet. (C) DenseNet + RCAM.

FIGURE 8
Experimental results for three different network combination structures.
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existing models on four important evaluation metrics (Sn, Acc,
MCC and AUC). Specifically, in independent tests, the iKcr-DRC
model improved Sn, Acc, MCC, and AUC by 7.9%, 2.03%, 3.55%,
and 0.91%, respectively, compared to the most advanced
DeepCap-Kcr model. This indicates that the iKcr-DRC model
has superior performance and can more accurately and reliably
predict Kcr sites. Although the iKcr-DRC model performs very
well, it may have a lower Sp metric value compared to other
models. This is because we are embedding coding (1-mer), which
works better for positive samples, but may slightly reduce the Sp

metric value while maintaining high accuracy. Nevertheless, the
iKcr-DRC model still has excellent performance and shows
higher accuracy in positive sample prediction. And in the field
of bioinformatics, accurate prediction of positive samples is a
very important task, so our model and coding method are more
meaningful in the field of bioinformatics.

Analyzing other predictors, Deep-Kcr is a predictor developed
based on traditional convolutional neural networks, however,
traditional convolutional neural networks are relatively low in
performance. Although BERT-Kcr utilizes the BERT model and
BiLSTM network to capture global features of Kcr site sequences, it
is deficient in extracting local feature information. In addition,
DeepCap-Kcr employs a capsule network for prediction, which
compensates for some of the shortcomings of CNNs, but the
performance improvement is limited. In contrast, DenseNet
extracts more advanced local information by iteratively utilizing
previous features, thus becoming the key to the superior
performance of this model.

3.8 Comparison of iKcr-DRC with existing
predictors in other datasets

Our model employs an adaptive coding method that is
capable of accomplishing coding based on the contextual
semantic information of the sequence. The core goal of this
experiment was to validate the migratory and cross-task
adaptation of the iKcr-DRC model, not for predicting other

FIGURE 9
Fluctuations in evaluation metrics for 5-fold cross validation.

FIGURE 10
Comparison of Cross-Verification of iKcr-DRC and DeepCap-Kcr.
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PTM tasks. In this experiment, we did not make any adjustments
to the hyperparameters of the iKcr-DRC model, but trained and
tested it directly on the training set and independent test set of

other PTMs. Despite the differences in the biological mechanisms
of different types of PTMs, we hypothesize that certain common
structural or functional features may be embedded in the
sequence contexts, thus giving the model some potential for
cross-task recognition. In addition, to further validate the
performance of the iKcr-DRC model, we tested the iKcr-DRC
model again on the serine/threonine (S/T) phosphorylation site
dataset of Lv et al. (2021b). The benchmark dataset contains
5,387 positive and 5,387 negative samples, and they randomly
divide the positive and negative samples into a training set and an
independent test set in the ratio of 8:2. The results of the
independent tests are shown in Table 5, where our model
significantly outperforms the other three prediction models in
the Sn, Acc, MCC and AUC metrics. Our model improves the
most important MCC metrics by 1.1%–4.3%. It means that the
iKcr-DRC model shows excellent robustness in the prediction
task of protein post-translational modification and is expected to
become the most representative protein post-translational
modification prediction model.

3.9 Prediction of iKcr-DRC in the
crotonylation of non-histone lysine

Compared to the widely studied lysine crotonylation of
histones, non-histone Kcr modifications have shown broader

TABLE 5 Comparison of the serine/threonine (S/T) phosphorylation site
dataset with other models.

Predictor model Sn Sp Acc MCC AUC

DeepPSP 0.7665 0.8378 0.8021 0.606 0. 876

Bert-ST 0.8007 0.7460 0.7984 0.600 0.889

DeepIPs 0.7961 0.8350 0.8063 0.632 0.894

iKcr-DRC 0.8090 0.8341 0.8215 0.643 0.910

The highest score for each metric is highlighted by bold.

TABLE 4 Compared with other models on the same independent datasets.

Predictor model Sn Sp Acc MCC AUC

Deep-Kcr 0.630 0.871 0.751 0.516 0.859

BERT-Kcr 0.801 0.838 0.820 0.640 0.905

DeepCap-Kcr 0.824 0.836 0.823 0.656 0.910

iKcr-DRC 0.9030 0.7835 0.8433 0.6915 0.9191

The highest score for each metric is highlighted by bold.

FIGURE 11
Comparison of the non-histone lysine crotonylation dataset with other models.
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biological significance in the field of functional proteomics. Kcr
modifications of non-histone proteins have more diverse
regulatory functions in organelles and cellular processes, and
its sequence structure is more complex and exhibits a high degree
of heterogeneity. As a result, this type of dataset faces significant
challenges in the feature learning process, which puts the
generalization ability of the predictive model to a great test.
Accurate identification of Kcr sites on non-histone proteins not
only helps to reveal their potential functions beyond
transcriptional regulation, but also sets a higher standard for
constructing computational models with good generalization and
robustness. Specifically, we tested the iKcr-DRC model on the
non-histone lysine crotonylation dataset from Chen Z. et al.
(2021). The benchmark dataset contains 15,605 positive
samples and 75,111 negative samples, and they randomly
divided the positive and negative samples into a training set
and an independent test set in the ratio of 8:2. Note that this
benchmark dataset is unbalanced. The results of the independent
tests are shown in Figure 11, where our model slightly decreases
by less than 1% on the most important MCC metric. However, on
the Sn metric, our model improves by 11%. In the unbalanced
dataset, a higher Sn metric indicates that the model exhibits
higher accuracy in the prediction of positive samples. This result
re-validates the effectiveness of our model and coding method in
positive sample prediction and further demonstrates their
importance in the field of bioinformatics. With this extended
study, we can more comprehensively assess the performance and
potential of the iKcr-DRC model, which will provide an
important reference and guidance for further development in
the field of non-histone lysine crotonylation research.

4 Conclusion

This study is devoted to the development of a new Kcr sites
prediction model named iKcr-DRC. we employ the DenseNet
network as the core network framework to extract advanced local
feature information of Kcr sites. At the same time, we have improved
the Channel Attention Mechanism so that it can better highlight
important channel feature information. The iKcr-DRC model
significantly outperforms other existing models in all evaluation
metrics, which proves its excellent expressiveness and performance.
We are committed to combining deep learning methods with Kcr
site research to drive progress in the Kcr field. The iKcr-DRC model
shows potential not only in Kcr site prediction, but also has a value
of application in predicting serine/threonine (S/T) phosphorylation
sites. This means that the iKcr-DRC model provides researchers
with a convenient tool to help advance the field of post-translational
modification of proteins.

Although iKcr-DRC performs well on balanced data, it still has
shortcomings on unbalanced datasets and requires further research
and improvement. Unfortunately, the interpretability of the iKcr-
DRC model has not been systematically investigated, which will be
one of the core research elements in our follow-up work. As we
continue to study the Kcr site, we expect that more advanced deep
learning methods will bring more possibilities for Kcr site prediction.
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