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Objective: Genomic best linear unbiased prediction (GBLUP) is a key method in
genomic prediction, relying on the construction of a genomic relationship matrix
(G-matrix). Although various methods for G-matrix construction have been
proposed, the performance of these methods across different species has not
been thoroughly compared.

Methods: This study systematically evaluated the performance of six genomic
relationship matrix (G-matrix) construction methods in improving the prediction
accuracy of GBLUP models across four species: pigs, bulls, wheat, and mice. The
methodological framework included: (1) an initial unscaled matrix; (2) five scaled
methods utilizing allele frequency centralization. The scaledmethods comprised:
(a) three variance-weighted approaches using allele frequencies fixed at 0.5
(G05), observed frequencies (GOF), or average minor allele frequencies (GMF);
(b) two centralized methods with weighting by either the trace of the numerator
matrix (GN) or reciprocals of each locus’s expected variance (GD).

Results: TheGDmatrix demonstrated significant prediction accuracy improvements
for pig traits. Conversely, most scaled G-matrices showed minimal effects on mice,
wheat, and bull, even with underperforming unscaled baselines in prediction
accuracy compared to the original unscaled matrix. The learning curve for bull
data showed the choice of G-matrix had minimal impact on prediction accuracy
when the reference population size and genetic marker density reached a
certain threshold.

Discussion: The study concluded that the optimal G-matrix constructionmethod
varies across species, with population structure being a key factor. These findings
highlight the importance of species-specific optimization in genomic prediction
and suggest that the influence of G-matrix construction diminishes in large-scale,
high-density genomic datasets.
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1 Introduction

Genomic prediction (GP) is a method of genetic evaluation of
individuals using information from genome-wide genetic markers
(Desta and Ortiz, 2014). With the rapid development of sequencing
technology (Slatko et al., 2018), the cost of high-throughput single
nucleotide polymorphism (SNP) marker detection continues to
decrease. GP is widely used in animal and plant breeding
practices nowadays. Compared with conventional breeding
approaches, this method offers significant advantages, including
shorter generation intervals, higher predictive accuracy, and reduced
operational costs (Zhang et al., 2010). Various models have been
used for genomic prediction. Bayesian variable selection models are
generally more accurate than genomic best linear unbiased
prediction (GBLUP) in predicting genomic breeding values
(VanRaden et al., 2009). However, GBLUP is generally used for
routine genomic evaluations because of lower computation.
Compared with traditional BLUP (Momen and Morota, 2018),
the genomic matrix (G-matrix) of GBLUP can reflect differences
in genetic information between individuals and reduce the deviation
caused by Mendelian sampling (El-Kassaby et al., 2012). The
accuracy of predicting breeding values using genomic data is
significantly higher than that when using genealogical records
(Jonas and de Koning, 2015).

The G-matrix could be constructed simply by multiplying
genotype matrix M and its transpose matrix M′ to count the
number of alleles shared by relatives. This method was directly
derived according to the properties of variance. Several methods
were then proposed to modify the G-matrix to make it comparable
to the A-matrix (Wright, 1922). A normalized matrix (GN) ensured
that the average diagonal element was close to 1. In other methods,
the allelic frequency from the base population was needed in
constructing G to increase the weight of rare alleles. However, it
was not available since those individuals in the base population were
not genotyped in reality. Therefore, researchers have proposed a
variety of alternative approaches to obtain the frequencies: 0.5 for all
markers (G05), the average minor allele frequency (GMF), or the
observed allele frequency of each SNP (GOF). The covariance
matrix of additive genetic effects is generally defined as
proportional to G in GBLUP. The four previously described
G-matrices assumed that all markers contribute equally to the
genetic variation of the same trait. This assumption is not
desirable if the trait is influenced by major genes. To address this
limitation, the GD matrix weight markers are evaluated by
reciprocals of their expected variance instead of applying uniform
scaling across all loci (VanRaden, 2008). The efficiencies of different
G-matrices were compared in a previous study, which mainly aimed
to identify the optimal method for constructing the G-matrix in
single-step BLUP. The mean and variance of the diagonal and off-
diagonal elements, the variance of genotyped individuals, and the
accuracy of genotyped female individuals varied among the different
G-matrices. The authors recommended using the GN matrix in
single-step BLUP since it was the most compatible matrix with the
A-matrix. G05 does not require the frequency of the second allele,
which is suitable for the situation where the total population or the
genotype of some individuals is unknown. GMF is similar to G05,
except that 0.5 is replaced by the mean value of the frequency, which
is suitable for the base population when some allele frequencies are

unknown. When the average inbreeding coefficient is low or the
number of generations is small, the mean value of the diagonal and
off-diagonal elements is greater than the coefficient in the pedigree
in G05 or GMF. On the contrary, the mean of the diagonal elements
in GOF will be smaller than the coefficient in the pedigree, and the
mean of the off-diagonal elements is 0. GOF is currently the most
widely used G-matrix. If the amount of data is small, a G-matrix
with an average diagonal coefficient not equal to 1 will result in a
large additive variance. The normalized GN matrix can reduce the
additive variance. GN can better correspond to the pedigree matrix
(A-matrix) when pedigree information is needed and the inbreeding
coefficient is low. GD has a higher pertinence to the trait affected by
major genes. The calculation process of GD is relatively complex, but
it is more effective in researching human genetic diseases (Amin
et al., 2007) compared with GOF and GMF. However, how different
G-matrices performed in GBLUP and which method was robust in
different species were not investigated in previous studies.

The objective of this study was to compare the impacts of six G
matrices on the accuracy of GBLUP. Four different species were
used, namely, pigs, mice, wheat, and cattle, which also differed in
population size and the number of genetic markers.

2 Materials and methods

2.1 Data

Four different species were used in the study, namely, pig, wheat,
mice, and bull. Details of the data are shown in Table 1.

There were 820 commercial female pigs from a published study
(Fan et al., 2011), which were genotyped using the Illumina
PorcineSNP60 BeadChip. After quality control, 44,580 SNPs
remained. Phenotypic traits comprised the 10th rib backfat
(bf10), last rib backfat (lastrib), and loin muscle area at the 10th
rib (LMA).

Mice and wheat datasets were obtained from the BGLR reference
manual (https://cran.r-project.org/web/packages/BGLR/BGLR.pdf)
of R software (de los Campos et al., 2009). The mice dataset was
composed of 1,814 individuals, each genotyped for
10,346 polymorphic markers. The traits presented here were
body mass index (Obesity_BMI), body weight (EndNormalBW),
and body length (Obesity_BodyLength). The wheat dataset was
from the Global Wheat Program of the International Maize and
Wheat Improvement Center (CIMMYT), Mexico. Information was
collected from 599 historical CIMMYT wheat lines. Wheat lines
were genotyped using 1,447 Diversity Arrays Technology (DArT)
generated by Triticarte Pty., Ltd. The number of DArT MMs after
editing was 1,279. The environments in the trials were grouped into
four typical agro-climatic regions, and the trait analyzed was the
average grain yield (GY) of 599 wheat lines in each of these four
mega-environments.

Bull data were derived from the study by Zhang et al. (2015),
which used a GermanHolstein population of 5,024 bulls provided by
Vereinigte Informationssysteme Tierhaltung w.V. (Zhang et al.,
2015). All bulls were genotyped using the Illumina
BovineSNP50 BeadChip (Matukumalli et al., 2009), and
42,551 SNPs remained after quality control. The three traits were
milk fat percentage (FP), milk yield (MY), and somatic cell score
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(SCS), which had highly reliable conventional estimated breeding
values. They may represent three genetic structures of complex
traits, namely, one major gene and many small effect loci (FP), few
moderate effect loci and many small effect loci (MY), and many
small effect loci (SCS) (Hu et al., 2013; Zhang et al., 2014).

Genetic markers were screened by deleting SNPs with a minor
allele frequency (MAF) less than 0.05.

2.2 GBLUP statistic model

The GBLUP model used in this study was as follows:

y � Xb + Zg + e,

where y is the phenotypic vector; b is the fixed effect vector; X is the
design matrix for b; g is the random additive genetic effect vector
following a normal distribution N(0,Gσ2g); G is the genomic
relationship matrix; σ2g is the genomic additive variance; Z is the
design matrix for g; and e is the random residual, which obeyed the
normal distribution with mean 0 and variance Iσ2

e .

2.3 Genomic relationship matrix

The G-matrix was constructed based on genetic markers. This
study compares the effects of six G-matrix construction methods on
the accuracy of GBLUP.

SNP information was transformed into a digital matrix
containing the number of minor alleles (M matrix), represented
by 0, 1, and 2, respectively. The number of rows in M is the number
of individuals (n), and the number of columns is the number of
markers (m). M matrix times its transpose is MM′, which is the first
method of constructing the G-matrix.

To set the mean values of the allele effects to 0, M was modified
by subtracting 2 pi, where pi is the frequency of the second allele at
locus i. Each column i of matrix P corresponds to 2pi. In addition,
2∑pi(1 − pi) was used as the denominator to scale the G-matrix,
making it comparable to the A-matrix. The formula can be
expressed as follows:

G � M − P( ) M − P( )′
2∑pi 1 − pi( )

.

Allele frequencies should ideally be obtained from the unselected
base population, but this was not available. Instead, these
frequencies were expressed as 0.5 for all markers (G05), the
average minor allele frequency (GMF), and the observed allele
frequency of each SNP (GOF).

In the GN and GD method, pi in matrix P is the observed allele
frequency of each SNP.

G is normalized in the GN method. We obtain the normalized
GN by dividing by the mean of the trace of (M − P)(M − P)′
as follows:

GN � M − P( ) M − P( )′
trace{ M − P( ) M − P( )′[ ]}/n

.

For the GDmethod, the diagonal D-matrix is used to add weight
to markers. D is a diagonal matrix in which all off-diagonal elements
are 0, and the diagonal elements are calculated as follows:

Dii � 1
m 2pi 1 − pi( )[ ]

.

GD modifies itself using the inverse of the markers’ expected
variances rather than relying on the sum of expectations across
multiple loci.

GD � M − P( )D M − P( )′.

2.4 Cross-validation

K-fold cross-validation was used to test the accuracy of genomic
prediction using different G-matrices. First, the data were divided into k
folds.One foldwas used as the test set each time, and the other foldswere
used as the training set. The training set was used to build the association
between genetic markers and phenotypes. The test set was used to
predict the phenotype based on the constructed model and compare it
with real observations to verify the accuracy of genomic prediction.

For cross-validation, pigs and wheat were divided into 10 groups
for phenotypic value prediction. Mice were randomly divided into
15 groups, and bulls were randomly divided into 32 groups. Notably,
the number of individuals in one group in the wheat and mouse
datasets was one less than the other groups, which did not affect the
results (Wang et al., 2017).

GBLUP analysis is performed using self-coded scripts running
in R software (R 4.1.1). The result analysis mainly refers to R2

(coefficient of determination), which was used to measure the
goodness of fit. The closer the value of R2 is to 1, the better the
regression line fits the observed data. The calculation formula of R2 is
as follows:

R2 � 1 − PRESS

SST
,

where PRESS is the predicted residual error sum of squares and SST
is the sum of the squared total.

TABLE 1 Summary of datasets.

Species Number of individuals Number of genetic markers

Pig 820 44,580

Mice 1,814 10,346

Wheat 599 1,279

Bull 5,024 42,551
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2.5 Learning curves with bull data

The learning curve was used to compare the performance of
genomic prediction strategies (Ou and Liao, 2019). To evaluate the
effects of reference population size andmarker density on the accuracy
of genomic prediction across different genomic relationship matrices
(G-matrices), we implemented a comprehensive sampling strategy
involving systematic variations in both parameters.

We examined seven levels of reference population size (500,
1,000, 1,500, 2,000, 2,500, 3,000, and 4,000 bulls), with each size level
independently replicated six times through random sampling to
ensure robust estimates of prediction accuracy.

For the marker density analysis, we fixed the reference
population size at 5,024 bulls and created 5 geometrically spaced
density levels by subsampling from all available markers, specifically
analyzing milk yield as our target trait. These density levels were
generated by sampling one SNP per 16 markers (yielding
2,660 SNPs), per 8 markers (5,319 SNPs), per 4 markers
(10,638 SNPs), and per 2 markers (21,276 SNPs) while
maintaining consistent genomic distribution and quality control
standards across all subsets.

All the scenarios used 10-fold cross-validation.

3 Results

3.1 Accuracy of phenotype prediction in pigs

The coefficients of determination (R2) for using different
G-matrices in pig data are presented in Figure 1. For all three
traits, GD obtained the highest R2 value (0.751 for bf10, 0.810 for
lastrib, and 0.474 for LMA). MM′ achieved the lowest R2 value,
equaling 0.574. Compared with MM′, G05, GMF, GOF, and GN all

increase R2 by less than 0.01, which is not obvious. The results of
lastrib and LMA prediction are similar to those of bf10. The
difference between values of R2 obtained by G05, GMF, GOF,
and GN and that obtained by MM′ is less than 0.01. Meanwhile,
the R2 value obtained by GD is significantly greater than that of
MM′, and the difference between them for lastrib and LMA was
0.16 and 0.12, respectively. The prediction accuracies of bf10 and
lastrib are higher than that of LMA in general.

3.2 Accuracy of phenotype prediction
in mice

Six methods were used to construct the G-matrix to predict
obesity correlation traits of mice. The results of the model accuracies
using these six matrices are shown in Figure 2.

3.3 Accuracy of phenotype prediction in
wheat lines

The traits of wheat used in this study were the average grain yield
(GY) in four main agro-climatic regions. The accuracies of genomic
prediction using these six matrices are shown in Figure 3.

The accuracies of prediction of GY in E2, E4, and
E5 environments are very low, and all values of R2

fluctuate
between 0.1 and 0.4. Values of R2 of GY predicted by MM′, G05,
and GMF in E1 exceed 0.5, especially the value of R2 obtained by
MM′, which reaches 0.69. However, the values of R2, obtained using
GOF, GN, and GD to predict GY in E1, are obviously lower than
those of the other three matrices. This result also applies to E2 and
E4. Overall, the unscaled MM′ performs better and more
consistently in GY of wheat.

FIGURE 1
Coefficient of determination (R2) using different G-matrices in pig data. bf 10, 10th rib backfat of the pig; lastrib, last rib backfat of the pig; LMA, loin
muscle area at the 10th rib of the pig.
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3.4 Accuracy of phenotype prediction
in bulls

The results obtained using these six matrices to predict the traits
of bulls are shown in Figure 4. Accuracies of genomic prediction for

these three traits are very high. The average values of R2 of FP, MY,
and SCS are 0.630, 0.893, and 0.777, respectively. In the prediction
results of MY, GD obtained the highest value of R2, which was 0.937.
There is no apparent difference in the influence of the six matrices
on the prediction accuracy of the GBLUP model.

FIGURE 2
Coefficient of determination (R2) using different G-matrices in mice data. Obesity_BMI, body mass index; EndNormalBW, body weight; Obesity_
BodyLength, body length. Obesity_BMI andObesity_BodyLength both had low values of R2, less than 0.2. The value of R2 of Obesity_BW is slightly higher
than that of the other two but notmore than 0.5. In general, the accuracy of the GBLUPmodel in predictingObesity_BMI, Obesity_BL, andObesity_BWof
mice was low. Values of R2 of Obesity_BL predicted by six types of G-matrices are almost the same, which is approximately 0.17. For values of R2

predicted by Obesity_BW and Obesity_BMI, G05 and GD were significantly higher than MM′. GOF and GN obtained similar accuracy for all these
three traits.

FIGURE 3
Coefficient of determination (R2) using different G-matrices in the wheat data. E means environment.
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3.5 Comprehensive comparison

The average values of R2
fitted to all the traits/environments of

the four species and the summary of population size and genetic
markers were compared horizontally, as shown in Figure 5.

3.6 Learning curves with bull data

Figures 6A–C showed that reference population size
significantly affected prediction accuracy across all three traits.
Although accuracy consistently improved as population size
increased from 500 to 5,024 individuals, none of the analyses
reached a clear plateau, suggesting the potential for further gains
with larger reference populations. The choice of the G-matrix
showed trait-dependent effects on prediction accuracy. For milk
yield, G-matrix selection had a substantial impact at smaller
reference sizes (<2,000 individuals), with the GD matrix
demonstrating superior performance in these scenarios. For
somatic cell score (SCS), prediction accuracy was less sensitive to
G-matrix construction methods across all population sizes. Marker
density analysis for milk yield revealed that prediction accuracy
plateaued at 10,638 markers (1/4 of the full panel), with minimal
improvements observed when including additional markers (Figure
6D). The GD matrix consistently outperformed other approaches
across most marker density levels, except when the marker density
was 1/8 of the full panel.

4 Discussion

This study used datasets from four different species to
investigate the impact of the G-matrix on the accuracy of

genomic prediction. The coefficient of determination, which was
calculated according to the sum of squared prediction errors, was
used to measure the accuracies of genomic prediction. The results
showed that the accuracies of prediction using different G-matrices
were not consistent in mice, wheat, and pig data, but they were quite
similar in bulls’ data. GD performed the best in all three traits of pigs,
while G05, MM′, and GMF performed better than the other methods
in wheat. GOF and GN obtained quite similar accuracies in most traits.

In most studies, the accuracy of genomic prediction is assessed
using the squared correlation between genomic estimated breeding
values (GEBVs) and pseudo phenotypes as the criterion (Ma et al.,
2019). In this study, we used R2, calculated as 1 minus the ratio of
PRESS to SST. R2 has been shown to be equivalent to the squared
correlation between GEBVs and the true breeding values (Xu, 2017).
This means that the predicted value ŷi explains the ratio of the
variance in the observed value yi. The higher the goodness of fit, the
higher the degree of explanation of the independent variable to the
dependent variable, and the higher the percentage of variation
caused by the independent variable to the total variation. It
means that the more intensive the observation points are near
the regression line, the higher the prediction accuracy of the model.

The genotyping of wheat lines was performed using Diversity
Arrays Technology (DArT) (Jaccoud et al., 2001). DArT markers
generate binary (0/1) calls that primarily reflect the presence/
absence variation (PAV) of genomic fragments rather than allelic
dosage information. This means that the technology detects whether
a specific genomic fragment is present (1) or absent (0) in a given
sample, without differentiating between different allelic states or
copy numbers across homologous chromosomes. For example, in
hexaploid wheat (AABBDD genome constitution), if a DArTmarker
is present in at least one of the A sub-genome chromosomes, it will
be scored as “1” (present), regardless of whether the marker is
present or absent in the B or D sub-genomes.

FIGURE 4
Coefficient of determination (R2) using different G-matrices in the bull data. FP, milk fat percentage; MY, milk yield; SCS, somatic cell score.
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The optimal method for constructing the G-matrix was not
consistent in different species since the population structures were
quite different. The single-marker weighted GD matrix could
significantly improve the accuracy of prediction for pig traits,
while the other five matrices showed no significant difference.
The possible reason could be that these traits were affected by
different loci, with the hypothesis that the markers were equally
informative (Speed and Balding, 2015). The prediction accuracies of
the three traits of bulls were high, and there were no significant
differences in genomic prediction calculated using the six matrices,
which may be due to the large size of the reference population and
reliable phenotypes used in the bull data. The comparative analysis
of the reference population size effects in bulls revealed patterns
consistent with those observed in pig data. Notably, the GD matrix
demonstrated superior predictive accuracy for milk yield at smaller
reference population sizes (<2,000 individuals), mirroring its
enhanced performance for porcine backfat and loin muscle area
traits under similar conditions. This consistency across species
indicates that the GD approach may be generally preferable for

traits influenced by a mix of major and minor genes when working
with limited reference data. G05 and GD could slightly improve the
prediction accuracy of mouse traits. The mouse population was
derived from eight different lines and had undergone more than
50 generations of random mating. According to the results, we
inferred that constant a value of 0.5 was suitable for the
heterogeneous population. Unlike the other three species, MM′,
G05, and GMF could improve the prediction accuracy of wheat
traits, and MM′ obtained the highest R2 value. The wheat data were
from the different lines; the value of 0.5 or without adjustment might
be two suitable choices. GOF and GN obtained similar accuracies for
almost all the traits, and the reason was that these two methods were
similar to the hypothesis that the number of individuals was high.

The size of the reference population and the number of effective
SNPs also influence the uncertainty of the estimated effect and
variance, whose importance has been demonstrated in many studies
(Daetwyler et al., 2008; MacEachern et al., 2009; Rolf et al., 2010;
Solberg et al., 2008). The results of the four species were as follows:
the average values of R2 of bulls were higher than that of pigs and

FIGURE 5
(A) Summary of the number of individuals and genetic markers. (B) Comparison of average values of R2.
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mice, and that of mice was slightly higher than that of wheat. The
population size and number of genetic markers of the four species
were as follows: bulls had the largest, followed by pigs, then mice, and
finally wheat. The bulls’ phenotypes, which were estimated using
records from many daughters and other relatives, had high reliability,
thereby ensuring high reliability in genomic prediction (Ding et al.,
2013). Since the size of the wheat genome is large (International
Wheat Genome Sequencing Consortium (IWGSC), 2014) and only
1,279 markers were used in this study, the accuracies of genomic
prediction were relatively low. The results of the learning curve using
bull data showed a clear pattern: R2 increased with the increase in the
size of the reference population. However, accuracy reached a plateau
at 10,638 markers (1/4 of full panel). The comprehensive results
showed that the reference population size exhibited substantially
greater impact on prediction accuracy than marker density.

The higher the heritability, the more the phenotype is influenced
by gene control, and the more accurately the regression model
predicted. However, the order of different methods for the traits of
the same species was similar. The three pig traits used in this study
had moderate to high heritability (Cabling et al., 2015). The
accuracies of genomic prediction for two backfat traits were
higher than that for LMA trait. SCS is affected by many small
effect loci, and the R2 value is lowest in bulls. MY is influenced by
few moderate effect loci, and the R2 value is the highest. FP is
influenced by one major gene and many small effector loci, and the R2

value is very close to MY. The results showed that major genes could
also affect the prediction accuracy of the model. However, the

differences among the three traits are not significant. It also shows
that when the number of reference populations and the number of
effective genetic markers reach a certain level, the G-matrix of these six
transformations has little influence on the prediction accuracy of the
GBLUPmodel. It is worthmentioning that G05 significantly improved
the prediction accuracy of BW and GD significantly improved the
accuracy of BMI among low heritability traits such as body weight and
body length related to obesity in mice. The mouse population came
frommultiple full sibling families with a high coefficient of inbreeding,
and body weight and body length were low heritability traits controlled
by multiple genes with a small effect. Therefore, for the three traits of
mice in the study, G05 can improve the prediction accuracy of the
genomic prediction model (Zhang et al., 2019).

This result is also reflected in wheat yield projects. The accuracies of
the G-matrix, obtained using the average allele frequency and MAF of
0.5, were higher than those of the other methods. This is related to the
strong influence of the plant environment, unknown allele frequency,
and a small number of reference populations and SNPs. The results
indicated that the optimal method for constructing the G-matrix in
genomic prediction was influenced by the population structure strongly
rather than the genetic character of the traits. GOF and GN obtained
similar accuracies for almost all the traits, and the reason was that these
two methods were similar with the hypothesis that the number of
individuals was high.

After deleting SNPs with MAF less than 0.05, the number of
SNPs in pigs and bulls was 40,653 and 39,117, respectively. The
changes in population numbers of wheat, mice, and bulls are

FIGURE 6
Effects of reference population size and marker density on the accuracy of genomic prediction across different G-matrices in bull data. (A)
Coefficient of determination for milk yield using different G-matrices and the number of individuals. (B) Coefficient of determination for milk fat
percentage using different G-matrices and the number of individuals. (C)Coefficient of determination for SCS using different G-matrices and the number
of individuals. (D) Coefficient of determination for milk yield using different G-matrices and the number of markers.
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consistent with the changes in the number of genetic markers. The
number of individuals and genetic markers in bulls is abundant. The
population size and genetic marker quantity of wheat and mice were
lower. Pigs have a relatively small number of individuals but the largest
number of genetic markers. The average values of R2 of wheat and
mice were both lower than 0.5, indicating low prediction accuracy.
Except for the LMA of pigs, the average values of R2 of pigs and bulls
were all greater than 0.6, indicating high prediction accuracy. Bulls had
the highest predictive accuracy among the four species.

A limitation to this study is the consideration of additive effects
only. Dominant variance components (DeVogel et al., 2021) could
also be considered in the future if the traits were also affected by
dominant effects.

5 Conclusion

Different G-matrix construction methods exhibit significant
differences in the accuracy of prediction, especially for pig and
wheat data. The performance of different G-matrix construction
methods in various species was not consistent. Population structure
could be considered one of the important factors for choosing the
method of constructing the G-matrix. When the reference
population and genetic marker density reached a certain scale,
the six matrices in this study had little influence on the
prediction accuracy of the GBLUP model.
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