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Objective: Coat color is a complex trait and plays an important role in breed
identification. However, information regarding genes associated with coat color
in cattle is limited, especially at the skin transcriptome level.

Methods: We investigated the differential expressed genes (DEGs) and genomic
selection signal underlying the coat color variation between black and brown
cattle breeds. A total of 19 cattle (Brangus, Angus, Simmental, and Guanling) were
performed skin transcriptome analysis and 262 cattle (Angus and Simmental)
were performed whole genome analysis.

Results: Angus cattle (black coat) had a significantly higher melanin content in
both their hair and skin compared to that of Simmental and Guanling cattle
(brown coat). Transcriptomic analysis identified 14,118 expressed genes, with
principal component analysis and hierarchical clustering revealing clear
differences between black and brown cattle. DEGs analysis across four
pairwise breed comparisons highlighted 343 downregulated and
54 upregulated genes common to all comparisons, with the ASIP gene (agouti
signaling protein) emerging as a key gene linked to melanogenesis. The ASIP
expression was several dozen-fold higher in brown cattle than in black cattle,
suggesting a crucial role in coat color determination. Path-way enrichment and
gene set enrichment analysis (GSEA) identified the “Melanogenesis” pathway as
significantly enriched and central to coat color variation. Genes such as FZD10,
WNT6, and ASIP showed differential expression patterns that correlated with coat
color. Genomic analysis revealed strong selection signals in the ASIP gene region,
with several SNPs exhibiting high linkage disequilibrium. Notably, the mutation
type was predominant in Simmental cattle, while the reference allele was more
common in Angus cattle.

Conclusion: Based on the skin transcriptomic and genomic analyses, we found
that ASIP was significantly differential expressed between black and brown cattle
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breeds and under strong positive selection. These findings provide valuable insights
into the genetic basis of coat color variation in cattle and highlight the ASIP gene as
a critical determinant of this trait.
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1 Introduction

Coat color is an essential phenotypic trait that is shaped by long-
term natural or artificial selection (Cieslak et al., 2011; Ollivier et al.,
2013). The classification, quantification, and registration of coat
color are important in animal breeding, as it is a distinguishing
characteristic in population status, and can be linked to adaptive
traits such as environmental tolerance and disease resistance (Farias
et al., 2024). There are numerous famous cattle breeds worldwide
with colorful coat colors (Wang et al., 2023; Kunene et al., 2022). For
instance, black-coated breeds like Angus and Brangus are highly
favored in the beef industry due to their market value and uniform
appearance (Farias et al., 2024), while brown-coated breeds such as
Guanling are valued for their environment adaptability in the
Southwest of China (Xu et al., 2024). In cattle breeding, research
attention has focused on meat and milk traits (Congiu et al., 2024),
and there is limited information on the functional genes of
coat color.

The process of melanin deposition (melanogenesis) is
governed by melanocytes, which can be classified into
eumelanin and pheomelanin (Marks and Seabra, 2001).
Eumelanin is responsible for black to brown colors while
pheomelanin is responsible for the red to yellow coloration of
mammal coats. Melanogenesis is regulated by a complex network
of genes and signaling pathways and several dozens of genes have
been linked to coat color in animals (Slominski et al., 2012; Park
et al., 2018). Of all mammals, the coat color in horses is the most
studied, and genes linked to melanogenesis include KIT, MITF,
PAX3, PATN1, and MATP (McFadden et al., 2024; Mariat et al.,
2003). The same genes might have similar pigmentation functions
in different species, such as theMC1R gene in goats (Li et al., 2019),
sheep (Zhou et al., 2023), and water buffalo (Liang et al., 2021).
Currently, several genes including TYR (Kholijah et al., 2021),
MC1R (Silva et al., 2021), COPA (Dorshorst et al., 2015), and KIT
(Jakaria et al., 2023), and seven QTLs (https://www.animalgenome.
org/cgi-bin/QTLdb/) were reported to be associated with skin
pigmentation in cattle. As a complex trait, coat color in cattle is
not fully elucidated.

Fortunately, advances in transcriptomics and genomics now
provide powerful tools for identifying the functional genes of
complex traits on a molecular level. Messenger RNA sequencing
(RNA-seq) is widely used to measure RNA abundance across the
whole transcriptome (Stark et al., 2019), and differentially expressed
genes (DEGs) can be identified from comparisons. Xiong et al.
compared the skin transcriptome data of black and white-coated
regions in the same goats, and identified DEGs such as ASIP, DCT,
and TYRP1 (Xiong et al., 2020); while Zhang et al. identified TYR,
TYRP1, DCT, PMEL, MLANA, and SLC45A2 as being differentially
expressed in black and white sheep, and affecting the pigmentation
of the skin and tongue of sheep (Zhang et al., 2024). Leng et al.

identified the DCT, TYR, TYRP1, and MITF genes involved in
melanin pigmentation in embryonic chickens (Leng et al., 2025).
Similarly, comparative genomics has been used to identify species-
specific genomic regions, aiding in the discovery of functional genes.
Based on whole genome sequencing data and the calculated XP-CLR
and FST values, Sun et al. identified IRF2BP2 as a candidate gene
affecting fleece traits in sheep (Sun et al., 2024). Also, by calculating
the genetic differentiation index (Fst) and nucleotide diversity (theta
pi) ratios, Chen et al. identified ATP5E, EDN3, and LOC101750371
as candidate genes influencing skin color in black-bone chickens
(Chen et al., 2024). Additionally, some studies integrated
transcriptome and genomic approaches to enhance statistical
power. For example, Tan et al. explored egg production traits in
Taihe black-bone silky fowls (Tan et al., 2024), Dorshorst et al.
studied coat color in Holstein cattle (Dorshorst et al., 2015), and Ren
et al. investigated plumage color in Matahu ducks (Ren et al., 2024).

Encouraged by these successes, we aimed to identify the core
genes associated with coat color in cattle on both transcriptomic and
genomic levels. Therefore, we collected hair and skin samples from
14 cattle (Angus, n = 6; Simmental, n = 5; Guanling, n = 3) to
determine their melanin content and perform transcriptome
sequencing. This data was compared to the downloaded skin
transcriptome data of five Brangus cattle and the genome data of
262 cattle (Angus, n = 149; Simmental, n = 113) for transcriptomic
and genomic analyses. This study conducted a systemical
investigation of coat color in cattle from the phenotypical,
transcriptomic and genomic levels.

2 Materials and methods

2.1 Animals and experimental design

This study was approved by the Guizhou University
Experimental Animal Ethics Committee (No. EAE-GZU-2024-
E053). Cattle used in the present study were raised on the
Guizhou cattle Industry Group Co., LTD. farm and were fed a
diet that met the National Research Council’s requirements for cattle
maintenance. These animals were bred by the commercial company,
and their purebred status was confirmed based on pedigree records
and body characteristics. A total of 14 two-year-old adult animals,
including six Angus cattle (coat color: black), five Simmental cattle
(coat color: brown), and three Guanling cattle (coat color: brown)
were selected and slaughtered in a abattoir. When the animal was
pronounced dead, the hair fibers on the body (the center point from
the dorsal to abdomen) were shaved and collected to determine hair
melanin content. Then, four skin samples of approximately 1 cm ×
1 cm were taken from the same site using a surgical scissor. For each
individual, two skin samples were stored in a 4% paraformaldehyde
fixation solution and two skin samples were snap-frozen in liquid
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nitrogen, then transferred to the laboratory and stored at −80°C. As
shown in Figure 1, 14 hair samples were used for hair melanin
content analysis, and 14 skin samples were used for skin melanin
content determination and mRNA sequencing.

Additionally, the skin transcriptome data of five Brangus cattle
(a breed developed by crossing Angus (Bos taurus) and Brahman
(Bos indicus), and black coat is their typical characteristic) was
obtained from the biological project PRJNA1023902 (Álvarez Cecco
et al., 2024); and the genome resequencing data of 262 cattle were
downloaded from public biological projects, including
PRJNA343262 (100 Angus cattle and 40 Simmental cattle),
PRJNA474946 (30 Angus cattle and 54 Simmental cattle), and
PRJNA1141206 (9 Angus cattle and 9 Simmental cattle), and
CRA017637 (10 Angus cattle and 10 Simmental cattle). Detailed
information on downloaded transcriptome and genome data is
available in Supplementary Tables S1, S2, respectively. Overall,
transcriptome analysis is the first step to screen genes for coat
color, while genomic analysis is used to observe genomic differences
of candidate genes among different coat color breeds. Only genes

that show positive results in both transcriptome and genome levels
are considered key genes affecting cattle coat color.

2.2 Hair and skin melanin content

Coat color was quantified as hair melanin content and skin
melanin content based on the NaOH assay method. Hair samples
were washed with ethanol, dried, and cut into 1–2-mm lengths.
Then, 20–30 mg of each hair sample was placed in a 5 mL centrifuge
tube containing 3 mL of 1 mol/L NaOH and water bathed at 95°C for
1 h (Figure 2A). Skin samples were cut into 50–100 mg pieces and
placed in a 10 mL centrifuge tube containing 7 mL of 1 mol/L NaOH
and water bathed at 95°C for 1 h. The supernatant was removed, and
the absorbance was measured at 450 nm using a microplate reader
(Bio-rad, America). The working curve was established based on
standard melanin (Aladdin, China) at different concentrations,
including 0, 0.01, 0.02, 0.04, 0.08, 0.12, 0.16, and 0.2 mg/mL
(Figure 2B). Then, the hair melanin content and skin melanin

FIGURE 1
Experimental design for detecting genes associated with coat color in cattle. We selected 14 adult cattle, including Angus (n = 6), Simmental (n = 5),
and Guanling (n = 3) for hair and skin sample collection. These samples were used for determining hair/skin melanin content and skin mRNA-seq.
Additionally, the publicly available skin transcriptome data of five Brangus cattle and the whole genome data of 149 Angus and 113 Simmental cattle were
downloaded. The transcriptome and genome data were used for screening candidate genes related to coat color in cattle.
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content were calculated using the optical density value and the
standard working curve.

2.3 Transcriptome sequencing and gene
quantization

Fourteen skin samples were sent to Biomarker Technologies
Co., Ltd. (Biomarker, Beijing, China) for mRNA extraction,
library construction, and mRNA sequencing on the BGI-T7
platform. Adapter sequences, low-quality reads, and those with
poly-N’s were removed using the Trimmomatic software (Bolger
et al., 2014). Then, the Q20, Q30, GC-content, and sequence

duplication levels of the clean data were calculated. The STAR
software (Dobin et al., 2013) was used to map clean reads to the
reference genome (ARS-UCD2.0 (Bickhart et al., 2017)) and the
StringTie (Pertea et al., 2016) software was used to quantify the
mRNA expression levels as fragments per kilobase
million (FPKM).

2.4 Differentially expressed gene
(DEG) analysis

This study included four cattle breeds with black and two breeds with
brown coats. Principal component analysis (PCA) was used to visualize

FIGURE 2
Comparison of hair/skin melanin content in different cattle breeds. (A) Photos of the three cattle breeds used in this study. Angus has black coats,
while Simmental and Guanling cattle have brown coats. (B) The fitted work curve of absorbance corresponds to different concentrations of standard
melanin. (C) The hair melanin content in Angus, Simmental, and Guanling. (D) The skin melanin content in Angus, Simmental, and Guanling.
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distance matrices and evaluate the global differences between samples.
The hierarchical clustering of the top 5000 genes with the largest
variance was generated on a heatmap to reflect the relationship
between samples. The DEGs were identified between any two
cattle with different coat colors, and four comparisons,
including Brangus vs. Simmental, Brangus vs. Guanling,
Angus vs. Simmental, and Angus vs. Guanling were
generated. For each comparison, we conducted an
independent samples t-test (two-tailed, assuming equal
variances) for each gene using the R language. Considering
that the P-values of some comparison groups are relatively
high, strict P-value correction would lead to an increase in
false negatives. Therefore, we did not adjust these P-values for
all four comparisons. The criteria for identifying DEGs included
a P-value of <0.05 and fold change (FC) of >2. A Venn diagram
was used to visualize overlapping DEGs to find stable DEGs
among the above-mentioned comparisons. Stable DEGs that are
associated with terms such as “melanin,” “melanogenesis,” or
“melanosome” in the following gene annotation, were
highlighted in the Venn plot.

2.5 Enrichment analysis and gene set
enrichment analysis (GSEA)

To identify significant biological signaling pathways, DEGs
were annotated by Gene Ontology (GO) analysis and enriched by
Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. The
gene annotation was performed and visualized on the OmicShare
platform (http://www.omicshare.com/tools, an online platform for
data analysis and visualization). Furthermore, the GSEA
(Subramanian et al., 2005) tool on the OmicShare platform was
used to identify whether there was significant up- or
downregulation of melanogenesis-related pathways between
black and brown cattle. The GSEA was carried out with
Signal2Noise values for all detected 14,118 genes as the ranking
metric and the gene expression profile in the core pathway
was explored.

2.6 Genome data and variant calling

The downloaded genome data of 262 cattle underwent quality
control using the Fastp tool [v0.23.4, (Chen et al., 2018)]. Sequence
alignment and variant detection were then performed using the
Sentieon Genomics software [v202308, (Freed et al., 2017)], where
the clean reads were aligned to the cattle reference genome [ARS-
UCD2.0, (Bickhart et al., 2017)] using the bwa software [v0.7.17,
(Li and Durbin, 2009)], and the BAM files were sorted and
duplicates were marked (v2.25). The Sentieon haplotyper
module was used to call variants for each sample, generating a
genomic Variant Call Format (gVCF) file for each while the joint
variant calling was carried out by the Sentieon GVCFtyper module
to create a common VCF file. The SelectVariants module in GATK
[v4.1.8.1, (McKenna et al., 2010)] was used to split the
SNP variants.

2.7 Selective sweep and integrative
genomics viewer (IGV) analysis

In this part, we aimed to identify the genomic regions that differ
between black and brown cattle breeds, and we focused on the genomic
regions where the core genes identified in the transcriptome analysis are
located. We estimated the signal scanning regions using the fixation
index (FST) with VCFtools, employing 10 kb sliding windows and 5 kb
sliding steps. The FST values in the top 5% were taken to indicate
significant selection. Additionally, Tajima’s D (Sun et al., 2024) statistic
was employed to identify potential regional differences between the two
cattle breeds. Given the numerous differences between the two breeds,
we only conducted detection on the genomic regions around DEGs
identified by the transcriptome analysis. The FST and Tajima’s D values
on the ASIP gene region were focused, and the Linkage disequilibrium
(LD) analysis was performed using Haploview [version: 4.2, (Barrett
et al., 2005)]. Based on the 19 BAM files of four cattle breeds and the
joint VCF file of 262 cattle (Angus, n = 149; Simmental, n = 113), the
Integrative Genomics Viewer [v2.19.1, (Robinson et al., 2011)] was used
to visualize transcript abundance and variants in the ASIP gene region.
Finally, the reference allele and mutation of the ASIP gene region were
compared between Angus and Simmental populations.

3 Results

3.1 Hair and skin melanin content

The cattle breeds have different coat hairs, with Angus cattle being
black, and Simmental and Guanlling cattle being brown. After
quantifying the melanin content, we found that the hair melanin
content in Angus was 13.0% ± 0.9%, which was significantly higher
(p < 0.01) than that of Simmental and Guanling cattle (Figure 2C).
Also, the melanin content of Simmental cattle hair was significantly
higher (p < 0.01) than that of Guanling. Similarly, the skin melanin
content in Angus was 0.88% ± 0.32%, which was significantly higher
(p < 0.05) than that of Simmental and Guanling cattle, but there was
no difference between the melanin content in the skin of Simmental
(0.42% ± 0.16%) and Guanling cattle (0.39% ± 0.11%) (Figure 2D).

3.2 Transcriptomic profiles of cattle skin

We obtained 103.4 Gb of raw data from the skin transcriptome
sequencing data of 14 cattle (Table 1). On average, each sample was
sequenced using approximately 24.7 million reads, and the Q20
(sequencing error rate < 0.01) and Q30 (sequencing error rate <
0.001) were 99.8% and 98.7%, respectively. The downloaded skin
transcriptome data of the five Brangus cattle (Supplementary Table
S1) were included in the analysis. Then, quality control, reads
mapping, transcript assembly, and gene quantification were
performed on the transcriptome data. After removing genes without
symbol names, and genes with extremely low expression (average
FPKM <0.1), we obtained an FPKM matrix with 14,118 genes across
19 samples (Supplementary Table S3). All the following analyses were
performed on the FPKM matrix with high-quality data.
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3.3 Differentially expressed genes between
black and brown cattle

The PCA plot (Figure 3A) and heatmap (Figure 3B) of the top
5000 highly variable genes displayed the overall differences between
cattle breeds, with higher repeatability within the intra-group
samples than among the inter-group samples. By comparing any
two breeds with different coat colors, we identified DEGs related to
this trait. For example, 2805 upregulated and 3548 downregulated
DEGs were identified between Brangus and Simmental (Figure 3C),
while 3240 up- and 2566 downregulated DEGs were identified
between Brangus and Guanling (Figure 3D). There were 197 up-
and 1147 downregulated DEGs identified between Angus and
Simmental (Figure 3E), and 1117 up- and 908 downregulated
DEGs were identified between Angus and Guanling (Figure 3F).
The significantly down- and upregulated genes of these four
comparisons can be found in Supplementary Table S4. Through
a Venn analysis, 289 downregulated genes (Figure 3G) were found to
overlap in four comparisons. Of those, genes including CDH1,
FZD10, FZD3, GPR143, WNT3, WNT5A, and WNT7B were
associated with coat color in animals. Meanwhile, 54 upregulated
genes (Figure 3H) overlapped these four comparisons, with the ASIP
gene being the unique gene related to melanogenesis. In DEGs
analysis, we did not correct the P-values because we found very few
DEGs were obtained in comparisons of “Angus vs. Simmental” and
“Angus vs. Guanling” after Benjamini-Hochberg or Bonferroni
corrections (Supplementary Tables S5–S7). Interestingly, even
after strict P-value correction, the ASIP gene still showed robust
differential expression between black and brown breeds
(Supplementary Figure S1).

3.4 The significant pathways and core genes
related to coat color

We performed the enrichment analysis to identify significant GO
terms and biological pathways on the overlapping genes dataset,
including 289 down- and 54 upregulated genes. As shown in
Figure 4A, many terms significantly related to skin biology, such
as “skin development,” “epidermis development,” “epidermal cell
differentiation”, and “keratinocyte differentiation” were identified.
These GO terms were significantly down-regulated (p < 0.001)
from the black to the brown cattle group (Figure 4B). Within the
top 20 KEGG pathways, three pathways including the “Hippo
signaling pathway,” “Wnt signaling pathway,” and “Melanogenesis”
that related to hair and skin biology were significantly enriched (p <
0.01, Figure 4C; Supplementary Table S8). The GSEA results showed
that the “Hippo signaling pathway,” “Wnt signaling pathway,” and
“Melanogenesis” pathways were significantly downregulated (p <
0.001) from the black to the brown cattle group (Figure 4D;
Supplementary Table S9).

“Melanogenesis” is a well-known biological pathway that
determines the pigment and coat color in animals. As shown in
Figure 5A, most genes in the “Melanogenesis” pathway decreased in
expression levels, such as FZD2, FZD10A, andWNT6; while few genes
increased in expression, such as ASIP and EDN1. According to
Figure 5B, results showed that genes on this pathway were
expressed differentially in Brangus and Angus cattle. However, the
ASIP gene presented the highest consistency in cattle with the same
coat color, while the expression level of the ASIP gene in brown cattle
was several dozen-fold higher than that in black cattle. As shown in
Figure 5C, the transcript was detected to have a high abundance in

TABLE 1 The transcriptome dataset of 14 cattle skin samples sequenced by this study.

No. Sample Breed Coat
color

Reads Base
(Gb)

Q20
(%)

Q30
(%)

GC
(%)

Mapping
rate (%)

Skin
melanin
content (%)

Hair
melanin
content (%)

1 Ag1 Angus Black 24918250 7.46 99.88 99.12 47.63 90.62 13.06 0.90

2 Ag2 Angus Black 23886023 7.14 99.6 98.28 51.39 94.09 13.26 1.47

3 Ag3 Angus Black 28268735 8.46 99.55 98.06 49.33 94.12 13.56 0.72

4 Ag4 Angus Black 22562245 6.74 99.91 99.17 48.71 95.35 12.02 0.63

5 Ag5 Angus Black 27700948 8.29 99.58 98.17 50.41 91.64 14.26 0.95

6 Ag6 Angus Black 28418872 8.51 99.59 98.26 50.17 88.73 11.95 0.61

7 Gl1 Guanling Brown 23675752 7.08 99.91 99.1 45.15 79.41 2.05 0.45

8 Gl2 Guanling Brown 20648245 6.17 99.55 98.17 49.36 90.03 2.89 0.27

9 Gl3 Guanling Brown 26203738 7.84 99.83 98.7 48.69 96.93 4.36 0.45

10 St1 Simmental Brown 23671715 7.08 99.9 99.13 48.84 96.45 10.07 0.35

11 St2 Simmental Brown 21585320 6.45 99.88 99.13 48.76 94.26 10.56 0.36

12 St3 Simmental Brown 28652627 8.56 99.87 99.08 48.19 86.51 10.19 0.64

13 St4 Simmental Brown 21533108 6.44 99.61 98.34 50.84 96.39 4.52 0.57

14 St5 Simmental Brown 23940084 7.16 99.89 99.05 49.68 96.98 7.48 0.19
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brown cattle (both Simmental and Guanling) while almost no
abundance was detected in black cattle (both Brangus and Angus).

3.5 Selection signal and variants of the
ASIP gene

Based on the genomic data of Angus (n = 149) and Simmental
(n = 113) cattle, we performed the selection signal analysis. Of these
11 DEGs, only the windows where the ASIP genes were located were
under strong selection (Figure 6A). This signal of selection was also
supported by the and Tajima’s D statistics (Figure 6B). Besides,
several dozen SNPs in the ASIP gene had strong linkage
disequilibrium). The gene length of ASIP was 28.3 Kb, and it had

four exons. Figures 6C,D shows the reference allele and mutation in
the ASIP gene. Most of the Simmental cattle had the mutation type
of the SNPs and for the 17 SNPs (Supplementary Table S10) in the
ASIP gene, the reference allele was prominent in Angus cattle, while
the mutation type was prominent in Simmental cattle. These
genotypes may result in the differential expression of ASIP,
thereby affecting the coat color of cattle.

4 Discussion

This study conducted a comprehensive investigation into coat
color from phenotypic, transcriptomic, and genomic perspectives,
emphasizing the pivotal role of the ASIP gene in determining coat

FIGURE 3
Core genes identified based on transcriptome data of cattle with different coat colors. (A) The PCA score plot of 19 cattle based on transcriptome
data showing that overall difference among animal groups was significant; (B) Hierarchical clustering heatmap of the top 5000 genes with the largest
variance across the 19 samples. Serial volcano plots displaying DEGs between black and brown cattle, including (C) Brangus vs. Simmental, (D)Brangus vs.
Simmental, (E) Angus vs. Simmental, and (F) Angus vs. Guanling. The Venn diagram for screening for stable significant down- (G) and upregulated (H)
genes is based on these four comparisons.
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color in cattle. Among coat color genes, ASIP exhibited the highest
within-group consistency and the greatest between-group
differences at the transcriptome level, and it was under the
strongest selective pressure between different coat color breeds at
the genome level. Our study highlights the significant role of the
ASIP gene in determining cattle coat color.

Coat color is a complex trait, although easily visible to the naked
eye. It presents on the outside as coat color, but as melanin
deposition internally and plays an important role in the
intersection of evolution, genetics, and developmental biology
(Hoekstra, 2006). Few studies have determined the hair and skin
melanin content of vertebrates, although they are good quantitative
indicators of the degree of melanin deposition. The NaOH method
for measuring hair and skin melanin content has proven effective in
distinguishing between black and brown coat cattle. However, the
precision of this method may be limited because it relies on
cumbersome experimental procedures and absorbance
measurements that are prone to interference.

As the largest livestock worldwide, the coat color of cattle has
attracted a lot of interest. Beyond the ASIP gene, other famous color-
related genes such asMC1R (Silva et al., 2021; Mohanty et al., 2008),
KIT (Jakaria et al., 2023; Fontanesi et al., 2010), TYR (Kholijah et al.,
2021; Schmutz et al., 2004), and MITF (Philipp et al., 2011), have
also been associated with coat color in cattle. However, these genes
did not show significant differential expression in the present study.
The expression of these genes was unstable in different varieties, and
the combined analysis of multiple breeds did not show a low
statistical probability value. The regulatory mechanisms of coat
color may be different in cattle breeds, so the Venn analysis of
these four comparisons (any two of black and brown cattle) did not
always identify these other color-related genes except the ASIP gene.

Evidence supporting the effect of ASIP on the color of cattle hair
was obtained not only from transcriptional expression (Albrecht
et al., 2012; Girardot et al., 2006) but also from the genome. Trigo
et al. found that the structure variant of the ASIP sequence causes
darker coat pigmentation in white-coated Nellore (Trigo et al., 2021)

FIGURE 4
Function enrichment analysis of differentially expressed genes in cattle with different coat colors. (A) GO term enrichment analysis based on
343 overlapped genes. (B) GSEA analysis showed that genes from five GO terms decreased significantly overall. (C) KEGG enrichment analysis based on
343 overlapping genes. (D) GSEA analysis showed that genes from three pathways decreased significantly overall.
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and Zebu cattle (Trigo et al., 2023). Additionally, the following
reports showed that the genomic region of the ASIP gene has been
subjected to strong selective pressures across various cattle
breeds: (1) Xu et al. analyzed Holstein, Angus, Charolais, and
Brahman cattle (Xu et al., 2015); (2) Bertolini et al. focused on
Reggiana and Modenese cattle (Bertolini et al., 2022); (3) Rajawat
et al. examined several Indian cattle breeds (Rajawat et al., 2023);

(4) Mustafa et al. studied Pakistani cattle breeds (Mustafa et al.,
2018); and (5) Guan et al. studied Chinese native cattle breeds
(Guan et al., 2022). In the present study, a comparative analysis of
genome resequencing data from 149 Angus and 113 Simmental
cattle revealed significant differences in mutation sites within the
ASIP gene region between the two breeds. Black Angus cattle
predominantly carried the reference genotypes, whereas brown

FIGURE 5
Gene set enrichment analysis and gene profile of the “Melanogenesis” pathway in cattle with different coat colors. (A) GSEA identified the
“Melanogenesis” signaling pathway as significant (P < 0.05). (B) Expression profile of genes that belong to the “Melanogenesis” pathway. The expression of
the ASIP gene is several dozen-fold higher in brown cattle than in black cattle, showing the highest consistency within cattle of the same coat color. (C)
Abundance of ASIP transcripts across four cattle breeds. Expression is notably higher in Simmental and Guanling cattle compared to Brangus
and Angus.
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Simmental cattle mainly had mutant genotypes. However, neither
breed showed complete fixation of these genotypes. This
discrepancy could be attributed to two factors: (1) potential
errors in sample records or (2) the global distribution of

Simmental and Angus cattle, which may have resulted in
populations that are not entirely purebred.

The skin transcriptome data of five Brangus cattle used in the
study were downloaded from the PRJNA1023902 project (Álvarez

FIGURE 6
Selection signals of genomic regions around 11 DEGs in cattle. (A) Among these DEGs, only the genomic regoin that ASIP was located shows a
significant peak in Fst analysis (top 5%), indicating strong genetic differentiation. (B) The Tajima’s D analysis suggested possible selective pressure affecting
the region that ASIP was located. Linkage disequilibrium (LD) plot showed that SNPs around the ASIP locus were tightly linkaged. (C) Genetic variant
distribution for the ASIP gene demonstrates contrasting SNP profiles between Angus and Simmental cattle. (D) A comparison of SNP allele
frequencies shows that, for 17 SNPs within the ASIP gene, Simmental cattle predominantly have the mutation type, whereas Angus cattle mostly have the
reference allele.
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Cecco et al., 2024), which also included a heat-stressed group of
Brangus cattle. However, we retained the normal group while the
heat-stressed group was excluded because we found that ASIP might
be affected by heat-stress treatment. Specifically, the expression levels
of ASIP in the heat-stress group exhibited differential expression
compared to the normal group (P = 0.06, t-test based on two-tailed
and equal variance; data not shown). In the original project from
which we downloaded the skin transcriptome data, some animals
were recorded as “red”. In fact, although black is the classic coat color
of Brangus cattle, red individuals also exist. Since the original authors
did not provide individual images, it is difficult to quantify the
differences in color intensity among black and red individuals.
Therefore, individuals belonging to Brangus were treated as a
single experimental group. In this study, based on multi-breed skin
transcriptome comparisons and genomic evidence, the significant role
of ASIP in determining cattle coat color was emphasized. We should
recognize that the study conclusions are limited by the experimental
materials used and the analytical strategies employed.

As the above-mentioned, coat color genes may exhibit dynamic
expression in response to heat stress conditions to regulate body
temperature. By comparing hair cortisol and serotonin levels in
lactating Holstein cows with different coat colors under heat stress
conditions, Ghassemi et al. pointed out that white coats are
preferable for dairy cows to cope with thermal stress (Ghassemi
et al., 2017). Melanin synthesis and deposition in hair and skin
primarily serve to absorb heat energy for maintaining body heat
balance (Leite et al., 2020; Al-Ramamneh and Gerken, 2024). Under
heat stress, the demand for melanin synthesis decreases, leading to a
reduction in the activity of the melanogenesis pathway at tissue and
cellular levels. Therefore, the changes in the expression levels of
ASIP reflect the organism’s adaptive response to thermal stress.

Importantly,ASIP is not only expressed in the skin but also widely in
other tissues, including adipose, heart, liver, kidney, and ovary (Albrecht
et al., 2012; Girardot et al., 2006). Besides its role in melanogenesis, ASIP
has been linked to fat deposition traits, oocyte maturation in the ovary,
and lipid composition in the mammary gland. Specifically,ASIP plays an
important functional role in promoting oocyte maturation and
subsequent embryonic development in cattle (Chaney et al., 2024).
Xie et al. performed an ASIP gene knockout study in bovine
mammary epithelial cells using CRISPR/Cas9 technology and
determined its significant role in regulating lipid metabolism and fatty
acid composition (Xie et al., 2022). Liu et al. found that genomic variants
(one indel and three SNPs) in introns of the ASIP gene were significantly
correlated with backfat thickness in cattle (Liu et al., 2019) and Fernandes
et al. also found that ASIP was associated with backfat thickness in cattle
(Fernandes et al., 2016).Withinmuscle tissue, theASIP protein is released
by adipocytes and potentially functions as a signalingmolecule facilitating
communication between intramuscular fat and muscle fibers (Liu et al.,
2018). Thus, in addition to its primary role in coat color, ASIP also plays
significant biological roles in various tissues in cattle.

5 Conclusion

This study investigated the coat color in cattle from
phenotypical, transcriptomic, and genomic levels to determine
the core genes responsible for coat color variation in Brangus,
Angus, Simmental, and Guanling cattle. The hair and skin

melanin content were significantly difference between black-
coated (Brangus and Angus) and brown-coated (Simmental and
Guanling) cattle. Based on the skin transcriptome data of 19 cattle,
we identified the ASIP gene that was significantly differentially
expressed between black and brown cattle groups. Based on the
selection signal and integrated genomic viewer analyses, we found
that ASIP was under strong positive selection between Angus and
Simmental cattle. These findings provide further evidence to deepen
our understanding of coat color in cattle from phenotypical,
transcriptomic, and genomic levels.
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