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Introduction: Abnormalities in ubiquitination-related pathways or systems are
closely associated with various cancers, including cervical cancer (CC). However,
the biological function and clinical value of ubiquitination-related genes (UbLGs)
in CC remain unclear. This study aimed to explore key UbLGs associated with CC,
construct a prognostic model, and investigate their potential clinical and
immunological significance.

Methods: Differentially expressed genes (DEGs) between CC (tumor) and
standard samples in self-sequencing and TCGA-GTEx-CESC datasets were
identified using differential analysis. We identified overlaps between DEGs in
both datasets andUbLGs, revealing key crossover genes. Subsequently, biological
markers were identified via univariate Cox regression analysis and least absolute
shrinkage and selection operator algorithms. After conducting independent
prognostic analysis, immune infiltration analysis was performed to investigate
the immune cells that differed between the two risk subgroups. Differences in
immune checkpoint expression between the subgroups were analyzed. Real-
Time Quantitative Polymerase Chain Reaction (RT-qPCR) was performed to
confirm the expression trends of the biomarkers.

Results: Differentially expressed genes related to ubiquitination were screened
from the Self-seq and TCGAGTEx-CESC datasets, and five key biomarkers (MMP1,
RNF2, TFRC, SPP1, and CXCL8) were identified. The risk score model constructed
based on these biomarkers could effectively predict the survival rate of cervical
cancer patients (AUC >0.6 for 1/3/5 years). Immune microenvironment analysis
showed that 12 types of immune cells, including memory B cells and M0
macrophages, as well as four immune checkpoints, exhibited significant
differences between the high-risk and low-risk groups. RT-qPCR confirmed
that MMP1, TFRC, and CXCL8 were upregulated in tumor tissues.

Discussion: Our study identified five ubiquitination-related biomarkers, namely,
MMP1, RNF2, TFRC, SPP1, and CXCL8, which were significantly associated with
CC. The validated risk model demonstrates strong predictive value for patient
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survival. These findings provide crucial insights into the role of ubiquitination in CC
pathogenesis and offer valuable targets for advancing future research and
therapeutic strategies.
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1 Introduction

Cervical cancer (CC) is the most common cancer of the female
reproductive system. The Global Cancer Statistics 2018 report
indicated that approximately 577,000 newly diagnosed CC cases
and 311,000 fatalities were attributed to the disease in 2018,
accounting for 7.5% of all cancer-related deaths among women
(Bray et al., 2018). Surgery is the primary treatment for early-stage
CC, whereas concurrent chemoradiotherapy is recommended for
advanced-stage CC. According to the 2018 CONCORD-3 Project
report, the 5-year survival rate for CC in China (67.6%) surpassed
that in the United States (62.6%) (Allemani et al., 2018).
Nonetheless, approximately 30% of patients experience
recurrence or metastasis following standard treatment, lacking
definitive treatment, with a median survival time of 8 13 months
(van Meir et al., 2014; Barter et al., 1990). Currently, the
management of CC patients is transitioning toward personalized
therapy, making accurate prognosis prediction crucial for
individualized clinical treatment decisions.

Ubiquitin and ubiquitin-like (UB/UBL) conjugations are post-
translational modifications that are crucial for nearly all biological
processes, such as DNA damage repair, cell-cycle regulation, signal
transduction, and protein degradation (Deshaies and Pierce, 2020).
Ubiquitin is a highly conserved, heat-stable protein comprising
76 amino acids (Scott and Kleiger, 2020). Ubiquitin conjugation
occurs through a three-step cascade catalyzed by three enzymes:
ubiquitin-activating enzymes (E1s), ubiquitin-conjugating enzymes
(E2s), and ubiquitin protein ligases (E3s) (Liu and Tan, 2020).
Notably, the ubiquitin–proteasome system (UPS) degrades 80%
of the intracellular proteins, thereby maintaining genomic
stability and modulating signaling pathways to regulate cell
proliferation and apoptosis. Abnormal expression or mutations in
E3 ligases have been identified in CC, underscoring their critical role
in disease onset and progression (Liu et al., 2022; Lin et al., 2019).
Moreover, previous studies have explored the role of ubiquitination-
related genes in other cancers. For instance, a signature comprising
six ubiquitin-related genes–ARIH2, FBXO6, GNB4, HECW2,
LZTR1, and RNF185–was developed to predict the biochemical
recurrence of prostate cancer (Song et al., 2021). However,in the
context of cervical cancer, the collective impact of multiple
ubiquitination-related genes remains underexplored. This study
aims to fill this gap by identifying and validating key
ubiquitination-related genes that are significantly associated with
cervical cancer outcomes.

The aim of the present study was to identify ubiquitination-
related biomarkers in CC using self-collected transcriptomic data
and public databases through differential analysis (Love et al., 2014),
univariate Cox analysis, least absolute shrinkage and selection
operator (LASSO) analysis, and other bioinformatics methods.
Additionally, we conducted enrichment and immune-infiltration

analyses within high- and low-risk groups to shed light on CC
pathogenesis, diagnosis, and treatment (Heagerty et al., 2000; Yu
et al., 2012; Wu et al., 2021; Ito and Murphy, 2013).

2 Manuscript formatting

2.1 Data sources

In the present study, we performed RNA sequencing (Seq) of
eight human cervical cancer (CC) tissue samples and their adjacent
non-cancerous tissue samples to form a self-seq dataset. The Ethics
Committee of the Fourth Hospital of Hebei Medical University,
China, approved this retrospective research (approval number:
2023KS014). Written informed consent was obtained from the
participants.

To enhance the accuracy of our research, we obtained additional
CC expression profile data from the UCSC Xena database, which
integrates data from The Cancer Genome Atlas-Cervical Squamous
Cell Carcinoma (TCGA-CESC) project, including 304 CC samples
and three normal samples, as well as 10 normal samples from the
GTEx project. These data constituted the TCGA-GTEx-CESC
dataset, which comprised 304 tumor samples and 13 normal
samples. To validate our research findings, we used the
GSE52903 dataset from the Gene Expression Omnibus (GEO)
database, which included 55 tumor samples and 17 normal
samples. Based on a search of the GeneCards database using the
keyword “Ubiquitin-like modifiers”, genes with a score ≥3 were
filtered, ultimately identifying 465 ubiquitination-related genes
(UbLGs) (Supplementary Table S1), laying the foundation for an
in-depth study of the molecular mechanisms of CC and exploration
of potential therapeutic targets.

2.2 RNA extraction, library construction, and
data processing

Total RNA was extracted and purified from the samples using
TRIzol reagent, in accordance with the manufacturer’s instructions.
A NanoDrop ND-1000 spectrophotometer (NanoDrop,
Wilmington, DE, USA) was used to evaluate the quantity and
purity of RNA. Agarose gel electrophoresis was used to confirm
RNA integrity. The RNA was then fragmented and reverse-
transcribed into cDNA. The double-stranded synthesis process
was carried out utilizing RNase H (NEB, cat.m0297, USA) and
E. coli DNA polymerase I (NEB, cat.m0209, USA). The final cDNA
library contained inserts with an average size of 300 ±
50 bp. Following standard protocols, an Illumina NovaSeq 6000
(LC-Biotechnology CO., Ltd., Hangzhou, China) was used for
sequencing. Sequencing data were aligned to the human
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reference genome (GRCh38.105) to ensure expression
quantification and quality control, resulting in a gene count
expression matrix for each transcriptome group.

2.3 Acquisition and enrichment analysis of
crossover genes

The DESeq2 (v 1.36.0) package was used to identify differentially
expressed genes (DEGs) between standard samples and tumor
samples in the Self-seq and TCGA-GTEx-CESC datasets
(p-value <0.05 & |log2Fold Change| > 0.5). The pheatmap (v
1.0.12) and ggplot2 (v 3.4.1) packages were used to create heat
maps and volcano plots of these DEGs, respectively. Upregulated
DEGs in both datasets and UbLGs were overlaid to identify the
upregulated crossover genes. Similarly, the downregulated DEGs
and UbLGs were analyzed to identify the downregulated crossover
genes. These crossover genes were used for the subsequent analyses.
The clusterProfiler (v 4.6.2) package (p.adjust <0.05 & count >2) was
used to conduct Gene Ontology (GO) and Kyoto Encyclopedia of
Genes and Genomes (KEGG) enrichment analyses to further probe
the biological functions and signaling pathways linked to the
crossover genes.

2.4 Development and validation of the
prognostic model

First, feature genes were identified using univariate Cox analysis
of the crossover genes (p < 0.05). Thereafter, LASSO and Cox
regression models based on these feature genes (family = Cox) were
used to identify the biomarkers. Thirteen tumor samples with
incomplete information from the TCGA-CESC dataset were
excluded, leaving 291 samples. A 7:3 ratio was used to divide the
samples into testing and training sets (203:88). A risk model was
generated based on biomarker expression. The training, testing, and
GSE52903 validation sets were categorized into high- and low-risk
groups as per the optimal threshold value of the risk score (risk
score =∑_1̂n coef (genei)*expression (genei)). Kaplan-Meier (K-M)
survival curves and receiver operating characteristic (ROC) curves
(1-, 3-, and 5-year) were generated. Subsequently, the concordance
function in the “survival” package (v 3.5-3) (Lei et al., 2023) was
utilized to calculate the C-index, which was used to measure the
consistency of the model in ranking the survival of samples. Further
risk model validation was conducted on the testing set and
GSE52903 validation set to assess its suitability.

2.5 Independent prognostic analysis

The risk score and clinicopathological factors (stage, race, grade,
age, and pathology (N, T, M)) of the 203 tumor samples in the
training set were subjected to univariate Cox analysis. This was
followed by proportional hazard assumption and multivariate Cox
analysis of the identified clinical features to determine independent
prognostic indicators. These parameters were employed to generate
a nomogram that predicted CC patient survival rates over 1,3, and
5 years, and the accuracy of the nomogram was validated using

calibration curves. Meanwhile, the ROC curve was plotted using the
“survminer” package (version 0.4.9) (Li and Lyu, 2025) to evaluate
the diagnostic value of the nomogram.

2.6 The enrichment analyses and immune
microenvironment analysis

Differential analysis was conducted between the high- and low-
risk subgroups, sorting expression profile genes by fold change. The
GO and KEGG background gene sets were utilized to execute gene
set enrichment analysis (GSEA) (p.val <0.05, |NES| > 1, q.val <0.2).
Using the psych (v 2.1.6) package (Robles-Jimenez et al., 2021),
Spearman’s correlation coefficients between key genes and other
genes in the training set samples were calculated, and genes were
ranked in descending order based on these coefficients. GSEA was
performed using the clusterProfiler (v 4.6.2) package (Suo et al.,
2022) with the same threshold, and the top 10 significant pathways
with p.values less than 0.05 were identified. The infiltration levels of
immune cells between the two risk groups were verified using the
CIBERSORT method, and the Wilcoxon test was used to compare
differential immune cells. Spearman’s method was used to compare
the associations between biomarkers and risk scores for differentially
expressed immune cells.

2.7 Immune checkpoints and immune-
response analyses

The Wilcoxon test was used to compare differences in routine
immune checkpoints (galectin 9 (GAL9), LGALS9, CTLA-4
(CTLA4), and TIGHT), TIM-3(HAVCR2), PD-L1(CD274), LAG-
3 (LAG3), PD-L2 (PDCD1LG2), and PD-1 (PDCD1) between the
two subgroups. The Spearman’s method was used to determine the
association between immune checkpoints and risk scores. The cycle
STEP 1-7 immune activity scores were obtained using Tracking
Tumor Immunophenotype (TIP) online tools to compare the anti-
cancer immune response scores between the two risk groups.

2.8 Drug sensitivity analysis

To further investigate the differences in chemotherapy
responses between different risk groups, the pRRophetic package
(v0.5) (Lu et al., 2019) was used to calculate the half-maximal
inhibitory concentration (IC50) values of 138 commonly used
chemotherapeutic and targeted drugs in patient samples from
both groups. The Wilcoxon rank-sum test was employed to
compare the IC50 values of the screened drugs between the two
groups, and the top 20 differential compounds were visualized using
box plots. The chemical structures of all compounds were retrieved
from the PubChem database (https://pubchem.ncbi.nlm.nih.gov/).

2.9 RT-qPCR validation

To verify the expression of the biomarkers, the Wilcoxon test
was used to validate the expression differences of prognostic genes in
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the TCGA-GTEx-CESC dataset, and the external validation set
GSE52903. After approval from the Ethics Committee of the
Fourth Hospital of Hebei Medical University, we obtained patient
consent and collected frozen tissue samples, including five tumor
and five standard samples. Total RNA was isolated using TRIzol
(Ambion), and reverse transcription was performed with the
SureScript-First-strand-cDNA-synthesis-kit (Servicebio). The
cDNA was diluted 5–20 times with ddH2O (RNase/DNase-free).
PCR amplification was conducted on the CFX96 RT-qPCR
instrument under the following conditions: 95°C for 1 min (pre-
denaturation), followed by 40 cycles of 95°C for 20 s (denaturation),
55°C for 20 s (annealing), and 72°C for 30 s (elongation). The
expression levels of the biomarkers were normalized to the
housekeeping gene glyceraldehyde-3-phosphate dehydrogenase
(GAPDH). The Wilcoxon signed-rank test was used to compare
the expression levels of the biomarkers between the tumor and
normal groups. The primer sequences used in the present study are
listed in Table 1.

3 Results

3.1 Sequencing outcomes

The base quality Q30 of each sample exceeded 90%, indicating
favorable sequencing results (Table 2). Additionally, the comparison
rate for each sample was above 90%, demonstrating satisfactory
sequencing quality, suitable for further analysis (Table 3).

3.2 Identification of cervical cancer-
related DEGs

A total of 465 ubiquitination-related genes (UbLGs) were
identified from the GEO dataset and used as a reference to
explore their potential involvement in cervical cancer. Our study
identified 2545 and 14,538 DEGs between tumor samples and

standard samples in the Self-seq and TCGA-GTEx-CESC
datasets, respectively (Figures 1A,B; Supplementary Tables S2, 3).
The expression levels of these DEGs are depicted in heat maps
(Figures 1C,D). Intersection analysis revealed 18 genes that were
significantly differentially expressed, including the five selected
biomarkers (MMP1, RNF2, TFRC, SPP1, and CXCL8), which are
significantly associated with cervical cancer progression
(Figure 1E,F). Among these, MMP1 and RNF2 are particularly
noteworthy because of their close association with cervical cancer
tumorigenesis, particularly in terms of invasiveness and metastasis.
The role of MMP1 in modulating the tumor microenvironment
(TME) has been well documented, and RNF2, which functions as an
E3 ubiquitin ligase, plays a crucial role in regulating cell-cycle
progression and the DNA damage response. The discovery of
these genes offers crucial insights into the molecular
underpinnings of cervical cancer and potential identification of
novel therapeutic targets. Enrichment analysis linked these genes
to GO items such as ‘response to radiation’ and KEGG pathways,
including the ‘IL-17 signaling pathway’ (Figures 1G,H;
Supplementary Tables S4, S5).

3.3 Identification of five biomarkers

Univariate Cox regression analysis identified five feature genes
(MMP1, RNF2, TFRC, SPP1, and CXCL8) as biomarkers
(Figure 2A). These were further validated using the LASSO and
Cox regression models (lambda. min, 0.0067) (Figure 2B). The CC
samples in the training set were categorized into high-(68 samples)
and low-risk (135 samples) groups using a threshold value of 12.61.
The high-risk group exhibited higher expression levels of the
biomarkers (Figure 2C). Notably, significant differences in
survival were noted between these groups (p < 0.05) (Figure 2D).
The C-index of the risk model was 0.691, and the area under the
ROC curve (AUC) for the 1-, 3-, and 5-year predictions exceeded
0.6, confirming the prognostic value of the model (Figure 2E). The
efficacy of the model was consistent across both the testing and
GSE52903 validation sets. We selected genes with a p-value less than
0.05 as candidate genes significantly associated with survival
outcomes. This threshold is a standard choice in the field and
aids in controlling the false-positive rate. We employed cross
validation to determine the optimal lambda value, with a final
lambda. min of 0.0067, to balance the bias and variance of the
model. To construct the prognostic model, we generated ROC
curves for 1-year, 3-year, and 5-year survival predictions, which
included the corresponding confidence intervals, to assess the
predictive performance of the model (Figures 3A–F).

3.4 Creation of nomogram

The Risk score, Stage, and Pathological T and N stages were
identified as significant using univariate Cox analysis (Figure 4A).
These clinical factors conformed to the proportional risk hypothesis
(Figure 4B), with risk scores emerging as independent prognostic
factors (Figure 4C). A nomogram based on the risk score was
developed to forecast the survival rates of CC patients (1-, 3-,
and 5-year), with a C-index of 0.692, and the calibration curve

TABLE 1 | Correlated primer sequence.

Primer Sequence

MMP1 F AGAAAGAAGACAAAGGCAAGTTGA

MMP1 R AAACTGAGCCACATCAGGCA

RNF2 F GCAGCTGATACCAGAGTCTTGC

RNF2 R GCCTCCTGAGGTGTTCGTTG

TFRC F GGCTACTTGGGCTATTGTAAAGG

TFRC R CAGTTTCTCCGACAACTTTCTCT

SPP1 F CGGGGGTTCCGTTATCATGT

SPP1 R TTTCTCATCCTCCCTCCGGT

CXCL8 F ACCCCAAGGAAAACTGGGTG

CXCL8 R GGTCATGAGTACAACAAACTCACT

internal reference-GAPDH F CGAAGGTGGAGTCAACGGATTT

internal reference-GAPDH R ATGGGTGGAATCATATTGGAAC
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demonstrating the predictive accuracy of the model (Figure 4D,E).
Additionally, the ROC curve showed AUC values of 0.77, 0.78, and
0.75 for 1/3/5 years, further demonstrating that the nomogram
model had high discriminative ability and good predictive
performance (Figure 4F).

3.5 The GSEA in two risk subgroups

To gain deeper insights into the roles of the five selected
biomarkers in cervical cancer, we conducted GSEA. Our analysis
unveiled that these biomarkers are significantly enriched in
pathways tied to protein ubiquitination and degradation,
underscoring their strong association with ubiquitination
processes (Supplementary Figure S1). In the context of our study,
GSEA was employed to investigate the functional enrichment of
differentially expressed genes (DEGs) associated with high- and low-
risk subgroups of CC patients, as identified using our prognostic

model. Our analysis revealed significant enrichment of specific GO
terms and KEGG pathways that were differentially represented
between the two risk groups. Notably, the ‘Cornified Envelope’
GO term was significantly enriched in the high-risk group,
suggesting an overrepresentation of genes related to the
formation of a protective layer in epithelial tissues, which is often
associated with keratinization. This finding implied a role for these
genes in the development and progression of cervical cancer,
potentially influencing the interaction of the tumor with the host
immune system and its response to therapeutic interventions.

Additionally, the IL-17 signaling pathway emerged as a
significantly enriched KEGG pathway. The IL-17 pathway plays a
crucial role in the inflammatory response and has been implicated in
the pathogenesis of various cancers, including cervical cancer. The
IL-17 family of cytokines promotes tumor growth, survival,
angiogenesis, and immune evasion, thereby contributing to a
more aggressive tumor phenotype. The enrichment of this
pathway in our high-risk group suggests that IL-17-mediated

TABLE 2 | Quality analysis of sequencing data.

Sample Raw
Reads

Clean
Reads

Raw
Base(G)

Clean
Base(G)

Effective
Rate(%)

Q20 Q30 GC
Content(%)

SJZ8C1 42293682 40891570 6.34 6.07 96.6848 5.97
(98.40%)

5.74
(94.58%)

51.38

SJZ8C2 46897424 44355056 7.03 6.57 94.5789 6.44
(98.02%)

6.14
(93.57%)

50.07

SJZ8C3 39590408 38101116 5.94 5.66 96.2383 5.58
(98.59%)

5.38
(95.08%)

50.41

SJZ8C4 43195342 41893498 6.48 6.21 96.9861 6.11
(98.31%)

5.86
(94.29%)

50.17

SJZ8C5 53821444 51971168 8.07 7.7 96.5622 7.57
(98.28%)

7.25
(94.19%)

48.49

SJZ8C6 43878988 42098858 6.58 6.23 95.9431 6.12
(98.22%)

5.86
(94.11%)

50.6

SJZ8C7 49271854 47856430 7.39 7.11 97.1273 7.00
(98.51%)

6.74
(94.89%)

51.93

SJZ8C8 45959454 44394656 6.89 6.59 96.5953 6.50
(98.60%)

6.27
(95.13%)

51.16

SJZ8N1 39302096 36848794 5.9 5.44 93.7578 5.32
(97.85%)

5.06
(93.10%)

49.96

SJZ8N2 36962998 34697374 5.54 5.11 93.8706 4.99
(97.66%)

4.73
(92.63%)

49.11

SJZ8N3 39889356 37657738 5.98 5.58 94.4055 5.47
(98.11%)

5.23
(93.81%)

50.36

SJZ8N4 38900418 36614314 5.84 5.41 94.1232 5.31
(98.10%)

5.08
(93.85%)

54.18

SJZ8N5 55256312 52506492 8.29 7.77 95.0235 7.61
(97.85%)

7.24
(93.14%)

51.08

SJZ8N6 39385488 37983072 5.91 5.61 96.4393 5.48
(97.70%)

5.21
(92.78%)

50.34

SJZ8N7 51499052 49305362 7.72 7.32 95.7403 7.22
(98.58%)

6.96
(95.07%)

51.47

SJZ8N8 44799836 43234238 6.72 6.41 96.5053 6.31
(98.37%)

6.06
(94.50%)

51.25
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signaling may be associated with poor prognosis in patients with
cervical cancer, possibly through the recruitment of
immunosuppressive cells and the promotion of an
immunosuppressive TME (Figures 5A,B).

In conclusion, our GSEA findings provided valuable insights
into themolecular mechanisms underlying the differential prognosis
of CC patients. The identification of specific biological processes and
pathways enriched in high- and low-risk patient groups offers a
foundation for future research aimed at developing targeted
therapies and improving patient outcomes
(Supplementary Tables S6,7).

3.6 Immune-infiltration analysis between
two risk subgroups

A comparative analysis of the two groups in terms of immune
cell abundance was performed (Figure 6A). Twelve differentially
expressed immune cell types were identified, including memory
B cells and Macrophages M0 (Figure 6B). RNF2 is negatively
associated with CD8 + T cells, whereas MMP1 is positively
associated with activated mast cells. The highest correlation with
activated mast cells was observed for the risk score (Figure 6C). We
observed significant differences in immune cell subsets that were
closely associated with prognosis. Notably, higher levels of
neutrophils, macrophages, CD4 + T cells, NK cells, and B cells in
the low-risk group may correlate with a better prognosis. These
findings are consistent with those of previous studies, indicating that
the infiltration and functional status of immune cells are important
predictive factors for cervical cancer prognosis.

3.7 Analyses of immune-checkpoint
expression and anti-cancer
immune response

Significant differences in the expression of the immune
checkpoints T-Cell Immunoreceptors with Ig and ITIM domains
(TIGIT), Lymphocyte Activation Gene-3 (LAG-3), Galectin-9
(GAL9), and Programmed Death-1 (PD-1) were observed
between the subgroups (p < 0.05) (Figure 7A). Contrary to
classical associations with T-cell exhaustion and poor prognosis,
these markers were significantly elevated in the “low-risk”
subgroup. PD-1 expressio correlated strongly with the risk score
(|Cor| > 0.3) (Figure 7B). The TIP analysis further identified ten
differential immune activity scores, including Step 4 CD4 T cells and
Step 4 neutrophils (Figure 7C). This paradoxical elevation of
immune checkpoints in low-risk patients coincided with higher
infiltration of memory B cells and CD4+ T cells (Figure 6B),
suggesting a context where checkpoint expression may reflect
active immune engagement rather than exhaustion.

3.8 Drug sensitivity

Drug sensitivity testing achieved personalized cancer treatment
regimens by matching pharmacological responses with tumor-
specific gene profiles, thereby improving therapeutic efficacy and
safety while reducing adverse reactions. A comparative analysis of
the IC50 values of 138 compounds found that a total of 71 drugs
showed statistically significant differences (p < 0.05)
(Supplementary Table S8). Among them, in the top 20 drugs, the
IC50 values of 14 compounds (such as Dactolisib, Oxaliplatin,
Sorafenib, etc.) in the high-risk group increased, while the
IC50 values of six compounds (such as Gefitinib, Selumetinib,
etc.) decreased (Figure 7D).

3.9 Expression and RT-qPCR validation of
biomarkers

Gene expression analysis further showed that in the TCGA-
GTEx-CESC dataset, and GSE52903, the expression levels of MMP1,
RNF2, TFRC, SPP1, and CXCL8 were significantly upregulated in
the CC group compared with the control group (P < 0.05) (Figures
8A,B). In our study, RT-qPCR validation was performed on five
tumor samples and five normal samples. The expression levels of
MMP1, TFRC, and CXCL8 were significantly upregulated in the
tumor group compared to the normal group (p < 0.05). However, no
significant differences were observed in the expression levels of
RNF2 and SPP1 between the two groups (p > 0.05). The Wilcoxon
signed-rank test was used to compare the expression levels of the
biomarkers between the tumor and normal groups. The expression
levels were normalized to those of the housekeeping gene GAPDH,
which served as an internal control to account for variations in
sample quality and the amount of total RNA added to the reactions.

Our RT-qPCR results confirmed the upregulation of MMP1,
TFRC, and CXCL8 in the tumor group, which was consistent with
the findings of our previous analyses (Figures 9A,C,E).

TABLE 3 | Reference sequence alignment analysis.

Sample Input reads Mapped reads Mapping ratio

SJZ8C1 43056530 42003995 97.56%

SJZ8C2 46877727 45572206 97.22%

SJZ8C3 40397445 39308050 97.30%

SJZ8C4 44373936 43077516 97.08%

SJZ8C5 55042903 53777564 97.70%

SJZ8C6 45672499 44136941 96.64%

SJZ8C7 51281178 49937064 97.38%

SJZ8C8 46714568 45653136 97.73%

SJZ8N1 39388091 37895543 96.21%

SJZ8N2 36670056 35593222 97.06%

SJZ8N3 39788616 38941292 97.87%

SJZ8N4 41732983 39909617 95.63%

SJZ8N5 56693500 55319863 97.58%

SJZ8N6 40382882 39172352 97.00%

SJZ8N7 52875606 51247061 96.92%

SJZ8N8 46786270 44748307 95.64%
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In contrast, the expression of SPP1 did not show a
significant difference between tumor tissues and normal
tissues in our RT-qPCR analysis (p-value not significant, ns),

which may indicate that its role in cervical cancer is less
pronounced or that its expression is regulated at the post-
transcriptional level.

FIGURE 1
Analysis of Differentially ExpressedGenes (DEGs) in Cervical Cancer. (A)Volcano plot of DEGs derived fromRNA sequencing data. (B)Volcano plot of
DEGs from the combined TCGA andGTEx datasets. (C, D)Heatmaps showing the expression profiles of identifiedDEGs. (E, F) Venn diagram representing
the overlap of DEGs, highlighting 18 key crossover genes. (G, H) GO and KEGG pathway analysis of the crossover genes, providing insights into their
biological functions and associated pathways.
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FIGURE 2
Prognostic Biomarker Identification and Survival Analysis (A) Univariate Cox regression analysis identifying five significant biomarkers (MMP1, RNF2,
TFRC, SPP1, CXCL8). (B) LASSO and Cox regression model for biomarker selection. (C) Distribution of cervical cancer samples into high-risk and low-risk
groups based on biomarker expression levels. (D) Kaplan-Meier survival curves demonstrating survival differences between high-risk and low-risk groups.
(E) Receiver Operating Characteristic (ROC) curves for 1-, 3-, and 5-year survival predictions, assessing the model’s predictive accuracy.
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Quantitative real-time polymerase chain reaction (RT-qPCR), a
technique renowned for its sensitivity and specificity, was used to
quantify and validate the expression levels of key biomarkers in

cervical cancer tissues compared with those in normal
paracancerous tissues. By normalizing these levels to those of the
housekeeping gene GAPDH, we ensured the accuracy of our gene-

FIGURE 3
Model Validation Across Datasets (A–F) Consistency of the prognostic model’s performance in the testing set and the GSE52903 validation set,
confirming the model’s reliability and generalizability.
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expression measurements, accounting for variations in sample
quality and RNA quantity.

RT-qPCR analysis confirmed the significant upregulation of
MMP1, TFRC and CXCL8 in tumor tissues, consistent with our
previous differential gene-expression studies. These findings
underscore the potential of these biomarkers in cervical cancer,
suggesting their involvement in tumor progression and their value as
therapeutic targets or prognostic indicators.

Conversely, the expression of SPP1 was not significantly
different between tumor tissues and normal tissues, as indicated
by the non-significant p-value in the RT-qPCR analysis. This
implied that the role of SPP1 in cervical cancer may be less

direct or may be subject to post-transcriptional regulation,
warranting further investigation into its functional significance.

Furthermore, RT-qPCR analysis did not reveal a significant
upregulation of Ring Finger Protein 2 (RNF2) in the tumor
group, with a p-value of 0.1686, which was above the threshold
for statistical significance. This suggests that its involvement in
cervical cancer might not be primarily through mRNA-level
changes or that it could be regulated at the post-transcriptional
or post-translational levels. The lack of significant mRNA
upregulation does not preclude the potential role of RNF2 in
cervical cancer; it may be involved in mechanisms such as
protein stability and subcellular localization.

FIGURE 4
NomogramDevelopment for Prognostic Prediction (A) Univariate Cox analysis identifying significant clinical factors including Risk Score, Stage, and
Pathological T and N stages. (B) Figure of schoenfeld residual test (C) Risk Score confirmed as an independent prognostic factor. (D) Nomogram
constructed based on the risk score to predict 1-, 3-, and 5-year survival rates for cervical cancer patients. (E) Calibration curves of nomogram. (F) The
ROC curve of the nomogram.
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In conclusion, although RNF2 did not show significant mRNA
upregulation in our RT-qPCR analysis, its potential as a therapeutic
target or prognostic indicator for cervical cancer should not be
overlooked. Further research is necessary to explore the functional
significance of RNF2 in tumorigenesis, invasion, metastasis, and
interactions with other molecular pathways. Investigating
RNF2 protein levels and activity in cervical cancer could yield
valuable insights into its broad implications in the molecular
landscape of the disease (Figures 9B,D).

4 Discussion

CC is often linked to persistent hrHPV exposure and remains
challenging despite advancements in surgery, chemoradiation, anti-
angiogenic therapy, and immunotherapy (Morris, 2019; Hass et al.,
2017; Nishio et al., 2021; Tewari et al., 2014). The quest for precise
biomarkers is essential for early detection and monitoring of disease
progression.

In this study, we identified five ubiquitination-related
biomarkers (MMP1, RNF2, TFRC, SPP1, and CXCL8) that are
significantly associated with cervical cancer. These biomarkers
enhance our understanding of the molecular mechanisms of
cervical cancer and provide potential targets for diagnosis,
prognosis, and therapy. However, our study has some limitations
that need to be considered when interpreting the results.

We used a local self-seq of eight pairs of cervical cancer and
adjacent non-cancerous tissues to explore potential biomarkers.
Although this dataset is small, it offers a pilot foundation for
identifying promising leads. Importantly, our key findings from
the self-seq dataset were validated against the larger TCGA-GTEx-
CESC dataset (304 tumor samples and 13 normal samples) and the
GSE52903 dataset (55 tumor samples and 17 normal samples). The
consistency across these datasets strengthens the reliability of our

results and reduces concerns about the smaller sample size of the
self-seq data. Moving forward, we plan to expand our sample
collection and combine our data with additional public resources
to further refine and validate our findings. We believe this work
provides a solid basis for future research aiming to improve the
understanding and treatment of cervical cancer.

One significant limitation of our study is the absence of the
concordance index (C-index) in our analysis. Due to data
limitations, particularly sample size and the availability of
follow-up data, we were unable to calculate and report the
C-index, which is a widely recognized measure for evaluating
the predictive accuracy of survival models. Future studies with
larger sample sizes and more detailed follow-up information are
needed to further validate our findings and to provide a more
comprehensive evaluation of the model’s performance, including
the calculation of the C-index.

The validation of the five gene signatures was based on a
relatively small number of tissue samples (n = 5) and was
conducted solely at the RNA level. Given the involvement of
these genes in post-translational regulation, further validation at
the protein level is necessary to comprehensively assess their
expression and functional impact in cervical cancer. Future
studies with larger sample sizes and multi-level validation are
needed to confirm our findings and enhance their
translational potential.

SPP1, located at position 4q13, with seven exons and six introns,
is a member of the small integrin-binding ligand N-linked
glycoprotein (SIBLING) family, activating matrix
metalloproteinases (MMPs) involved in cancer development
through extracellular matrix (ECM) degradation, angiogenesis,
apoptosis, and soft tissue production (Trojanek, 2012; Kurnia
et al., 2022). SPP1 is overexpressed in various types of cancer;
however, research on its relationship with CC is limited (Xu C.
et al., 2017; Choe et al., 2018; Zhang et al., 2020). Zhao et al.

FIGURE 5
Gene Set Enrichment Analysis (GSEA) in High- and Low-Risk Subgroups (A) GO term enrichment analysis revealing biological processes
overrepresented in high- and low-risk subgroups. (B) KEGGpathway enrichment analysis highlighting signaling pathways differentially active between the
two risk groups.
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discovered that SPP1 expression was higher in CC tissues than in
normal cervical epithelial tissues and significantly correlated with
poor prognosis and immune cell infiltration, suggesting that SPP1 is
a promising prognostic biomarker for CC patients (Zhao et al.,
2021). The expression levels of RNF2 and SPP1 did not show
significant differences between the tumor and normal groups in
the RT-qPCR validation. This discrepancy could be attributed to
several factors. First, RNF2 and SPP1 may undergo post-
transcriptional regulation, which could affect their mRNA
stability or translation efficiency, leading to discrepancies between
mRNA and protein levels. Second, the functional effects of these
genes might be more pronounced at the protein level. Post-
translational modifications or protein degradation rates could

influence their biological roles without corresponding changes in
mRNA expression. Third, the limited number of samples in the RT-
qPCR validation might have reduced the statistical power to detect
significant differences. Future studies should expand the sample size
to further validate these findings. Additionally, protein-level
analyses, such as Western blot or immunohistochemistry (IHC),
are recommended to confirm the expression levels of RNF2 and
SPP1 in cervical cancer tissues. These protein-level validations will
provide a more comprehensive understanding of the biological roles
of these genes in cervical cancer. MMP1, produced by tumor cells,
facilitates the hematogenous spread of squamous cell carcinoma
(SCC) by inducing vascular permeability through endothelial
protease-activated receptor (PAR)-1, aiding invasion and

FIGURE 6
Immune Infiltration Analysis in Cervical Cancer Subgroups (A) Overview of differential immune cell populations between high-risk and low-risk
subgroups. (B) Bar plot of twelve differentially abundant immune cells, showing fold change in abundance. (C) Visualization of Spearman’s correlation
coefficients between risk scores and expression levels of differential immune cells, indicating the strength and significance of correlations.
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FIGURE 7
Immune Checkpoint Expression and Anti-cancer Immune Response Analysis (A) Comparative analysis of immune checkpoint molecule expression
levels (TIGIT, LAG-3, GAL9, PD-1) between high-risk and low-risk subgroups. (B) Spearman’s correlation analysis between risk scores and PD-1
expression levels. (C) Differential immune activity scores from the TIP tool, comparing the anti-cancer immune response in high-risk versus low-risk
groups. (D) Box plot of drug sensitivity differences between high-risk and low-risk groups. ** represented P < 0.01, *** represented P < 0.001, ****
represented P < 0.0001.

Frontiers in Genetics frontiersin.org13

Jin et al. 10.3389/fgene.2025.1578075

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2025.1578075


metastasis. LN metastasis in CC indicates a poor prognosis and is
crucial for adjuvant therapy decision-making (Kurnia et al., 2022).

As a member of the MMP family, MMP1 directly facilitates
tumor cell invasion and distant metastasis by degrading ECM and
basement membrane components (Mao et al., 2022). Multiple
studies have demonstrated that MMP1 is overexpressed in
various malignancies and is associated with poor prognosis

(Kurnia et al., 2022; Mao et al., 2022; Zhang W. et al., 2022).
Notably, in cervical cancer, its elevated expression exhibits a
significant correlation with tumor invasion and metastasis
(Solovyeva et al., 2021). It is important to emphasize that the
expression and activity of MMP1 are precisely regulated by the
ubiquitination signaling network. Ubiquitin modification directly
participates in regulating MMP1 expression by influencing the

FIGURE 8
Box plot for expression validation of biomarkers (A) the TCGA-GTEx-CESC dataset. (B) GSE52903 dataset.

FIGURE 9
RT-qPCR Validation of Prognostic Biomarkers (A–E) Validation of biomarker expression (MMP1, TFRC, CXCL8) in cervical cancer tissues versus
normal paracancerous tissues by RT-qPCR. Each panel displays relative expression levels, with sample types indicated on the x-axis and fold change in
expression on the y-axis. Asterisks denote statistical significance levels, with ns indicating non-significance and *P < 0.05 indicating significant expression
differences.

Frontiers in Genetics frontiersin.org14

Jin et al. 10.3389/fgene.2025.1578075

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2025.1578075


activation status of the NF-κB signaling pathway (Wu et al., 2014),
which aligns closely with the ubiquitination-related regulatory
network central to this study. Furthermore, IL-8 (CXCL8) can
further upregulate MMP1 expression by activating the
STAT3 signaling pathway, thereby enhancing tumor cell
invasiveness (Chen et al., 2024). This suggests that MMP1 may
act synergistically with CXCL8 to collectively drive the malignant
progression of cervical cancer. In summary, MMP1 plays a pivotal
role in the initiation and progression of cervical cancer, with its
expression and activity modulated by multiple mechanisms,
including the ubiquitination pathway. Therefore, in-depth
investigation into the regulatory mechanisms of MMP1 provides
a crucial theoretical foundation for developing therapeutic strategies
targeting MMP1 and its upstream regulatory
pathways.CXCL8 upregulation is associated with increased cancer
risk and unfavorable prognosis in both lung cancer and CC (Pine
et al., 2011). Its expression and function are cooperatively regulated
by the ubiquitination pathway and multiple signaling pathways. On
the one hand, E3 ubiquitin ligases can target the mRNA-binding
proteins of CXCL8, promoting their ubiquitination-mediated
degradation and thereby directly suppressing CXCL8 expression
levels (Hu et al., 2025). On the other hand, ubiquitin modification
indirectly influences the expression of CXCL8 and its pro-
tumorigenic functions through the activation status of the
MAPK/ERK signaling pathway (Jia et al., 2018). Additionally,
E3 ubiquitin ligases can also impact the activation of the PI3K/
AKT pathway. This effect synergizes with the pathway’s activation
by CXCL8 itself, collectively promoting the survival and
proliferation of cervical cancer cells by inhibiting apoptosis (Li
et al., 2012). Simultaneously, CXCL8 may participate in
inflammatory responses and immune regulation through
activation of the NF-κB pathway, further driving tumor
progression by promoting the production of pro-inflammatory
cytokines (Zhang JY. et al., 2022).CXCL8 overexpression in
tumor tissues correlates with bone metastasis in breast cancer
patients. However, the role of CXCL8 in CC has not been
ascertained (Bălăşoiu et al., 2014). Using a microarray dataset,
Yan et al. discovered a significant upregulation of CXCL8 in CC
tissues relative to normal tissues (Yan et al., 2017). They
demonstrated a robust correlation between CXCL8 protein
expression and the clinical stage, histological type, distant
metastasis, and grade. Our study also observed higher
CXCL8 expression in high-risk patients, with considerable
variation in survival rates between the high- and low-risk groups.

Transferrin receptor 1 (TFRC), a pivotal regulator of iron
metabolism, plays a significant role in the initiation and
development of cervical cancer. Its elevated expression is not
only significantly associated with advanced cancer stage, tumor
stage, and lymph node metastasis but also serves as an indicator of
poor prognosis for overall survival (OS) (Huang et al., 2022).
Research indicates that TFRC directly promotes cervical
carcinogenesis by participating in the regulation of the HIF-1
signaling pathway (Xu et al., 2019). Simultaneously, it promotes
the activation of the PI3K/AKT/mTOR signaling pathway, thereby
driving tumor cell proliferation and growth (Yang et al., 2025).
Notably, the ubiquitination pathway, acting as a crucial regulatory
hub, may modulate TFRC-involved iron homeostasis balance and
associated cancer pathways through mechanisms such as targeted

protein degradation, consequently influencing the cellular
biological behaviors of cervical cancer (Yuan et al., 2023; Wang
et al., 2022). In conclusion, the initiation and progression of
cervical cancer constitute a complex process. TFRC, as a key
molecule in iron metabolism, participates through the
ubiquitination pathway in regulating multiple signaling
pathways and cellular processes (Shang et al., 2024; Wang et al.,
2025). In-depth investigation into the ubiquitination-mediated
regulatory mechanisms of TFRC will contribute to the
development of more effective therapeutic strategies for
cervical cancer.

RNF2, a key E3 ubiquitin ligase within the RING finger protein
family (An et al., 2018), exhibits upregulated expression in various
cancers including breast cancer, colorectal cancer, and gastric
cancer, and is closely associated with tumor initiation and
progression (Zhang et al., 2017; We et al., 2020). In cervical
cancer, RNF2 may affect cell cycle progression and promote
cancer cell proliferation by facilitating the ubiquitin-mediated
degradation of key regulatory proteins involved in the cell cycle
(Yan et al., 2021). Simultaneously, as a core component of PRC1,
RNF2 can suppress the expression of tumor suppressor genes
through histone modifications, thereby further driving tumor
development (Wang et al., 2015). Furthermore, RNF2 can
stabilize ERα protein, regulating the progression of breast
cancer; this mechanism may also function similarly in cervical
cancer (Yuan et al., 2023). Notably, knocking down
RNF2 enhances radiosensitivity and induces apoptosis in lung
squamous cell carcinoma cells (Yang et al., 2019), suggesting that
RNF2 may reduce the sensitivity of cervical cancer cells to
radiotherapy and chemotherapy by participating in the DNA
damage repair pathway. On the other hand, RNF2 may
promote the recruitment of immunosuppressive cells, such as
MDSCs, and inhibit T cell activation (Liang et al., 2025),
thereby regulating the immune escape capability of cervical
cancer cells. In summary, RNF2 likely plays a significant role in
the proliferation, resistance to radiotherapy and chemotherapy,
and immune evasion of cervical cancer, positioning it as a potential
therapeutic target. In-depth investigation into the mechanisms of
RNF2 in cervical cancer will provide novel insights and approaches
for its treatment.

The findings of the present study on TFRC and CC align with
those of previous studies that introduced the relationship between
RNF2 expression and CC. Given the significance of radiotherapy in
CC treatment, future studies should explore the association between
these genes and radiotherapy sensitivity in CC (Franc et al., 2022).
Survival and ROC curve analyses of the testing and validation set
GSE52903 demonstrated that the identified biomarkers have strong
diagnostic capabilities for identifying CC patients with a poor
prognosis (Xu et al., 2023).While our model demonstrates
promising predictive potential, it is important to acknowledge
that the AUC values of the ROC curves are moderate, ranging
from 0.6 to 0.7. This indicates that the model’s predictive power is
not yet sufficient for clinical application without further refinement
and validation. Future research should focus on improving the
model’s accuracy by incorporating additional biomarkers and
clinical variables.

KEGG analysis highlighted significant enrichment of the IL-17
and TNF signaling pathways in both the high- and low-risk
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subgroups, corroborating the recognized importance of the IL-17
pathway in CC (Li et al., 2019). Upregulation of the IL-17 signaling
pathway facilitates the recruitment of suppressor cells derived from
myeloid tissue, promoting angiogenesis, and inhibiting anti-tumor
immunity (Holdbrooks et al., 2018). Tumor necrosis factor (TNF),
known for its anti-tumor activity in cancer cells, plays a role in
inflammation, differentiation, proliferation, and apoptosis as a
member of the TNF cytokine superfamily. Specifically, TNF has
been linked to CC, with activated TNF signaling pathways observed
in tissues and cells (Xu L. et al., 2017). Li et al. confirmed the
involvement of the TNF pathway in CC cells via a targeted
relationship between miR195-5p and matrix metalloproteinase 14
(MMP14) (Li et al., 2018), suggesting that these pathways play a
pivotal role in CC development and progression, warranting further
investigation.

The TME is fertile ground for cancer cell development, with
immune cell infiltration affecting tumor progression and
therapeutic efficacy (Casey et al., 2015). These immune cells
display dual characteristics; while some inhibit tumor
development, others may encourage tumor growth. Our study
identified three differentially expressed immune cell types
(memory B cells, Macrophages M0, and neutrophils) in the
high-risk group (Terlizzi et al., 2014)]. In contrast, Su et al. (Su
et al., 2022)found that specific immune cells were correlated with
prolonged OS in CC. In contrast, Yu et al. (Yu et al., 2021) observed
a positive association between a high score and tumor-infiltrating
immune cells. The absence of a similar relationship in our study
may stem from differing analytical approaches and specimen
types. Our results underscore the crucial roles of immune cell
infiltration and immune-checkpoint gene expression in cervical
cancer prognosis. These findings not only offer new insights into
the immunological microenvironment of cervical cancer but may
also aid in the development of novel therapeutic strategies,
particularly for patients with elevated expression of immune-
checkpoint genes.

Additionally, the blockade of immune checkpoints, such as
PD-1/PD-L1 and CTLA-4, has emerged as a popular approach
for treating malignant tumors. As the immune components of
the TME often weaken anti-tumor responses, leading to limited
success of immunotherapy as a monotherapy, identifying
superior biomarkers and investigating combination therapies
are essential for enhancing immunotherapy efficacy. Our
study revealed elevated expression of TIGIT, LAG-3, GAL9,
and PD-1 in low-risk subgroup—a finding seemingly
contradictory to canonical views linking checkpoint markers
to T-cell dysfunction and adverse outcomes (Ma et al., 2019;
Josefsson et al., 2019). However, emerging evidence suggests
immune checkpoints exhibit dual context-dependent roles: while
chronic expression drives exhaustion, transient upregulation can
signify active anti-tumor immunity (Kagabu et al., 2020). For
instance, PD-1/LAG-3 are often co-expressed on tumor-
infiltrating lymphocytes (TILs) in “inflamed” tumors, where
pre-existing immunity is physiologically regulated rather than
suppressed (Mollavelioglu et al., 2022). This aligns with our
observations of concurrent CD4+ T-cell and memory B-cell
infiltration in low-risk patients, implying a functional immune
microenvironment poised for response. In summary, immune
checkpoint molecules such as TIGIT, LAG-3, and PD-1 hold

significant promise for application in tumor immunotherapy. By
detecting the expression levels of these molecules, combined
with other biomarkers and patient clinical information,
personalized immunotherapy strategies can be guided,
enhancing treatment efficacy and safety. Future research
should further explore the predictive value of these markers
across different tumor types and develop more effective
combination treatment regimens.

In the present study, we performed a detailed examination of
ubiquitin ligase genes in CC to enrich our understanding of their
clinical relevance and uncover the molecular mechanisms that
they influence. These ubiquitin ligase genes have the potential to
serve as clinical biomarkers or therapeutic targets. We
formulated a prognostic model to evaluate the clinical
outcomes for CC patients. This model, which exhibits a strong
predictive accuracy, identifies patients who are at a greater risk of
recurrence, thereby assisting in the development of treatment
strategies.

Firstly, the small sample size of this study may compromise
statistical power and limit the robustness and generalizability of
the results. Secondly, the lack of comprehensive clinical data for
patients in the TCGA cohort poses challenges for in - depth
analysis of clinical and pathological features in cervical cancer
patients. In addition, the model development and validation of this
study rely on retrospective analysis, so the clinical translation value
of its conclusions needs further confirmation through prospective
clinical trials. Finally, the precise molecular regulatory
mechanisms and specific biological functions of ubiquitin -
ligase genes in cervical cancer remain to be fully elucidated. In
the future, we plan to expand the sample size through multi -
center collaboration to enhance statistical power and verify the
universality of the results. We will supplement experiments such as
Western blotting and immunohistochemistry to validate the
expression pattern of target genes at the protein level. Flow
cytometry will be added to clarify the functional status of
T cells (e.g., activation markers and cytokine secretion),
providing direct functional evidence for the immune
microenvironment conclusions. We will also conduct
ubiquitination - related functional experiments (e.g., co -
immunoprecipitation) to explore the role of these genes in the
ubiquitination regulatory network and their specific mechanisms
in cervical cancer progression, thereby offering a more solid
theoretical basis and experimental support for prognosis
prediction and targeted therapy in cervical cancer.

5 Conclusion

The five ubiquitination-related biomarkers (MMP1, RNF2,
among others) identified herein have potential clinical
applications in the diagnosis, prognosis, and therapeutic targeting
of cervical cancer. These biomarkers not only contribute to a better
understanding of the molecular mechanisms underlying cervical
cancer but also inform the development of personalized treatment
strategies, particularly in the analysis of sensitivity to
immunotherapy and chemotherapeutic drugs. Future research
should explore the application of these biomarkers in clinical
practice to improve treatment outcomes in CC patients.
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