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Introduction: The aim of the study was to develop a predictive model based on
STR profiles of mothers and children for the detection of incestuous conception.

Methods: Based on allele frequency data from the USA and Saudi Arabia, STR
profiles were generated and used to simulate offspring profiles corresponding to
father-child and brother-sister incest scenarios. Model training and evaluation
were performed using the STR profiles of the mother and child. In addition to the
baselinemodel, we examined its performance under a one-stepmutationmodel,
as well as its ability to detect incestuous relationships based solely on the child’s
STR profile. Several machine learning algorithms and neural networks were tested
for classification accuracy.

Results: The CatBoost algorithm performed best in the binary classification of
Normal Paternity vs. Incest Kinship. For the USA, we achieved the following
results: 96.94% for 29 markers and 95% for 21 markers. The same accuracy was
obtained with a single-step mutation, while prediction based on child profiles
exclusively yielded an accuracy of 90.37% in the U.S. population. When analysing
profiles from Saudi Arabia and modified Saudi frequencies, an accuracy of 94%
was achieved.

Discussion: It was established that population structure does not affect the
model’s accuracy and that it can be applied even in isolated populations.
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1 Introduction

Incest is an extreme form of inbreeding that can lead to serious genetic consequences.
While inbreeding is a broader genetic concept that refers to reproduction between
biologically related individuals, incest specifically denotes close kin matings that are also
socially or legally prohibited (Alvarez et al., 2009; Habicht et al., 2015; Rudan and Campbell,
2004). One of the best-known historical examples is the Spanish Habsburg dynasty, which
became extinct due to long-term consanguineous marriages that resulted in increased
homozygosity and pronounced inbreeding depression (Alvarez et al., 2009). Such marriages
are not new, as documented in the example of ancient Egypt, where such unions were
encouraged within royal families. Physical-anthropological analysis of the mummified
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pharaohs indicated a lower degree of phenotypic variation
compared to that observed in the general population. As body
height is inherited polygenetically, it can be used as one of the
indicators of inbreeding, especially in cases where DNA analysis is
not feasible (Habicht et al., 2015). In addition to early developmental
outcomes, inbreeding may also exert substantial effects on human
health later in life. Inbred individuals may carry a greater burden of
rare, recessive variants that can contribute to late-onset diseases such
as cardiovascular disorders, cancer, and psychiatric conditions,
thereby potentially reducing life expectancy (Rudan and
Campbell, 2004).

To better understand and detect incest, the field of hereditary
analysis has evolved significantly since the time of Gregor Mendel.
Historically, one of the first methods of hereditary analysis was
based on the identification of blood groups or allelic products.
Although advanced for its time, these methods had extremely
limited specificity and sensitivity. The development of highly
heterozygous loci and the determination of probabilities obtained
by comparing maternal and offspring phenotypes have significantly
improved the accuracy of testing in cases of incest. The importance
of these results is further emphasized by the fact that increased
homozygosity due to incest may occur, but is not always
pronounced, especially after a single generation of inbreeding
(Wenk et al., 1994).

Research based on the analysis of VNTRs (Variable Number
Tandem Repeats) found that offspring from incestuous relationships
have higher homozygosity compared to offspring resulting from
random mating (Corach et al., 2003). For a time, this method of
analysis was even mandatory in the United States of America before
adoption, especially in cases in which the mother was not available
for testing or was not known (Wenk et al., 1994) Higher
homozygosity rates were also confirmed by human leukocyte
antigen (HLA) testing, which showed higher exclusion rates in
cases of suspected incest (Houtz et al., 1982).

Congenital malformation rates worldwide range between 3%
and 5%, while in Arab populations, they are above 7%. Some of the
diseases that occur as a result of autosomal recessive disorders are
Bardet-Biedl syndrome, Meckel-Gruber syndrome, osteopetrosis,
and congenital chloride diarrhea (Tadmouri et al., 2009) The
increased homozygosity observed in incestuous offspring
emphasizes the importance of genetic screening and analysis in
cases where an incest is suspected. Another testing method that has
proven to be effective in complex consanguinity and incest cases is X
chromosome analysis, as it provides additional information about
inheritance that complements classical autosomal STR markers.
This method is particularly useful for distinguishing between
incestuous relationships involving the father and those involving
the brother, since a father and son never share the same X
chromosome (Garcia et al., 2022) By introducing single
nucleotide polymorphisms into the procedure (SNPs), this
method was able to further improve the accuracy of kinship
analysis, including in cases of suspected incest (Fan et al., 2013;
Dario et al., 2011).

The use of machine learning (ML) in genetics has the ever
augmenting potential to facilitate the analysis of genetic data, which,
with the introduction of new methods and technologies, has become
more complex and demanding to analyse. Machine learning
methods have already demonstrated significant advantages over

classical statistical approaches. For instance, a study by
Skowronski and associates used supervised machine learning
algorithms in the context of classification within highly similar
genetic populations of plants (96.88% similarity), and
demonstrating the superiority of ML models over classic
statistical models (Skowronski et al., 2021).

The aim of our research is to extend the application of machine
learning algorithms to the prediction of incest. The model selected
and used for that purpose is CatBoost (Category Boost), which is
based on gradient-boosted decision trees (GBDT) for categorical
data, developed by Yandex. The model features Ordered Target
Statistics, which prevents target leakage by ensuring that the data
category encoding does not use its own target value during training,
and Ordered Boosting, which reduces overfitting by using random
permutations of the data to build trees (Hancock and
Khoshgoftaar, 2020).

The effectiveness of CatBoost has been confirmed by several
previous studies in the field of genetics. Regarding the specificities of
its use, in one study CatBoost was used to predict genotype matching
between patient-derived xenografts (PDX) and original lung
tumours (He et al., 2022). CatBoost has proven itself to be
extremely successful in classifying genes associated with
Alzheimer’s disease, achieving an accuracy rate of 96%. (Shukla
and Singh, 2023) Finally, CatBoost was also highly effective in
classifying brain tumours based on gene expression, with an
accuracy rate of 91% (Almars et al., 2021).

We aim to expand this body of work by presenting a novel
predictive model based on the CatBoost algorithm for detecting
incestuous relationships. To achieve this, we first generated DNA
profiles corresponding to different relationship categories: normal
parent-child profiles, sibling profiles, father-child cross-mating
profiles, and sibling cross-mating profiles. The performance of
the model was examined for different populations, using
corresponding allele frequencies as input variables, including the
single-step mutation scenarios. In order to better understand and
improve the model, we monitored homozygosity, as well as the
appearance of identical heterozygous loci in different categories of
cross-mating. The results proved to be consistent for different
scenarios, even in situations in which incest prediction was made
utilizing solely the profiles of children.

2 Methodology

2.1 Data collection

To investigate whether population structure affects model
performance, we decided to focus on two genetically and socially
distinct populations. For the general population, we used allele
frequencies from the United States, which is characterized by
high genetic diversity, while Saudi Arabia was selected as a
contrast, due to its lower genetic diversity resulting from frequent
endogamous marriages.

For the general population, the frequencies were obtained from a
previously published sample of 1,036 unrelated subjects from the
USA, representing four different ethnic groups (African Americans,
Caucasians, Asians, Hispanics) (Steffen et al., 2017). The loci
included in the database are: CSF1PO, D10S1248, D12S391,
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D13S317, D16S539, D18S51, D19S433, D1S1656, D21S11,
D22S1045, D2S1338, D2S441, D3S1358, D5S818, D6S1043,
D7S820, D8S1179, F13A01, F13B, FESFPS, FGA, LPL, Penta C,
Penta D, Penta E, SE33, TH01, TPOX, and vWA. (See
Supplementary Table S1, General Population Data).

Allele frequencies of subjects from Saudi Arabia were obtained
from a separate study. The authors of the study in question obtained
allele frequencies for the population and observed an increased rate
of homozygosity, which was argued to be a consequence of higher
consanguinity rates in Saudi Arabia (Khubrani et al., 2019). The
initial database contained the following loci: D3S1358, vWA,
D16S539, CSF1PO, TPOX, D8S1179, D21S11, D18S51, D2S441,
D19S433, TH01, FGA, D22S1045, D5S818, D13S317, D7S820, SE33,
D10S1248, D1S1656, D12S391, and D2S1338. This database was
further modified and all alleles with frequencies of 0.001 and
0.002 were deleted. As a result, the final database contained
values for 215 alleles, a reduction from the original 263 alleles
present in the initial database. After that, normalisation was
performed for the remaining alleles in order to obtain a uniform
distribution of the remaining alleles. (See Supplementary Table S2,
Saudi Arabia Population Data; Supplementary Table S3, Saudi
Arabia Modified Data).

2.2 Profile generation and crossings

The initial script was created in Python and was used to generate
50,000 STR profiles. Each individual genetic profile was composed of
markers, represented by two columns, each containing data for a
single allele. Columns with the suffix “1” contain values for the
smaller alleles and columns with the suffix “2” contain values for the
larger alleles.

The next step of our procedure randomly matched two
individual profiles, yielding a single unified combination of
parental profiles. After that, four children’s profiles were
generated using the parent profiles as a basis, yielding
100,000 child profiles in total. After reorganising these profiles,
we obtained 200,000 parent-child profile combinations belonging to
the category of Normal Paternity.

The same procedure was applied to obtain profiles that belong to
the category of Incestuous Paternity. This was done by pairing
parent profiles with their respective child profiles to generate
offspring profiles. The procedure yielded 200,000 parent-child
profiles belonging to the Incestuous Paternity category.

Further, the previously generated child profiles (of normal
parentage) were reorganised in a way to obtain 150,000 unique
combinations of two profiles containing a single brother and a sister,
belonging to the Normal Siblings category.

Finally, the normal sibling combined profiles were used to
generate incestuous offspring profiles. These offspring profiles
were joined with the sibling parent profiles and the procedure in
question yielded 150,000 unique profiles, belonging to the
Incestuous Siblings category.

All three databases described in 2.1 were formed in this way. As
the profiles that belong to the general population were generated
with 29 markers in total, the superfluous markers were excluded to
match themarkers in the general population database to themarkers
in the Saudi Arabian database.

2.3 One-Step Mutation Implementation

To account for genetic variations, we incorporated a one-step
mutation rate into our model. A value of 10–3 was taken as the
mutation rate (Butler et al., 2007), indicating that a mutation should
occur at a rate of one mutation per 1,000 loci. As the markers were
represented by two columns (one for each allele), the procedure
changed the original allele value by 1, once every 2,000 alleles per
column in the child profile database. (See Supplementary Table S4,
Data with One Step Mutation).

2.4 Training and testing

Prediction models for the general population utilising 29 and
21 markers as input variables, as well as the basic and modified
models for the Saudi Arabian population, were trained and tested
using the initial database. The Normal Paternity category was
composed of 200,000 parent-child profiles, while the Incest
Kinship category (also containing 200,000 profiles) was
assembled by randomly selecting 100,000 profiles from the Incest
Sibs and Incest Paternity categories, combining them to form the
aforementioned category.

The prediction model utilising solely children profiles, resulting
from both normal and incestuous relationships, was trained and
tested on a modified version of the initial dataset. The modified
version was created by first extracting 21 loci (a reduction from the
initial number of 29 loci). Next, all parental profiles were deleted
(profiles with the prefix “1”) and the offspring profiles (profiles with
the prefix “2”) were grouped into the following categories: Normal
Paternity and Normal Sibs profiles were combined into the Normal
Kinship category, while profiles from the Incest Sibs and Incest
Paternity categories were grouped into the Incest Kinship category.
In total, each category was composed of 350,000 profiles, resulting in
a grand total of 700,000 profiles.

To prevent overfitting, regularisation and early stopping were
implemented. The initial dataset was divided in the following way:
90% of the dataset was reserved for training, 5% was reserved for
validation, and an additional 5% was reserved for testing. By
following the described procedure, we obtained results that are
not a consequence of the model’s excessive adaptation to
the dataset.

To provide a visual summary of the procedure, an ideogram
presented in Figure 1 was created to illustrate each step involved in
the training and testing process.

3 Results

3.1 Machine learning models

Different machine learning algorithms and neural network
assemblages were used in order to test initial suitability, of which
the gradient boosting algorithms proved to be the most effective of
the tested cohort. Among them, CatBoost performed best. Table 1
presents the tested algorithms and their performance in the binary
classification of Normal Paternity and Incest Kinship. The model
was trained and tested on a sample of 20,000 Normal Paternity
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profiles, 10,000 incestuous parent-child profiles and an additional
10,000 incestuous brother-sister profiles.

3.2 Model adaptation

After the initial run of the CatBoost model was completed, further
refinement was performed to improve performance. The model’s loss
was measured using the log loss function and the chosen evaluation
metric was AUC (Area under the ROC curve). Subsequently, grid
search was performed by iterating different parameters. For example,
the number of iterations was varied [500, 1000], frequency was varied
[0.01, 0.1] and tree depth was varied [6, 10].

The best parameters, identified through a comprehensive search,
were the following: iterations = 1000, frequency = 0.1 and depth =
10, which were subsequently used in all presented models.

3.3 Model for the general population
(29 Marker variant)

The binary classification model utilising 29 markers as input
variables and the general population dataset for training and testing,
resulted in an accuracy rate of 96.94%. The confusion matrix is

presented in Figure 2a. The performance of the model across classes
is as follows: 9,694 profiles from the normal kinship category and
9,695 profiles from the incest kinship category were correctly
classified. On the other hand, 306 profiles that the model
identified as cases of incest kinship and 305 profiles that the
model classified as normal kinship were misclassified.

The ROC AUC score of the model is presented in Figure 3a, and
it quantifies the ability of the model to distinguish 99.62% between
the two target classes. The balanced accuracy score, which takes into
account model performance for both classes, was 96.94%. The
Positive Predictive Value (PPV) was 96.94%, while the Negative
Predictive Value (NPV) was 96.95%. The detection rate of the
model, representing the percentage of true positive cases that
were correctly identified, was 96.95%. Figure 3b illustrates the
Precision-Recall Curve. The accuracy of the model based on the
correct classification of positive cases as real positive was 96.94%,
and the proportion of actual positive cases that are correctly
identified by the model (recall) was 96.95%, also shown in
Figure 3. The F1 score indicates the efficiency of the model
with 96.95%.

Matthews’s correlation coefficient (MCC) was 93.89%,
indicating a strong correlation between observed and predicted
classifications. The specificity of the model was 96.94%, which
means that it correctly identified 96.94% of all negative cases.

FIGURE 1
Workflow of STR-based kinship simulation, dataset preparation, and model evaluation.
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The False Positive Rate (FPR) was 3.06%, while the False Negative
Rate (FNR) was 3.05%. Finally, Cohen’s Kappa score was 93.89%,
reflecting a significant degree of agreement between predicted and
actual classifications.

3.4 Genetic markers and indicators of
consanguinity

As the first indicator of consanguinity, the similarity between
two STR profiles was examined by analyzing 29 markers, depending
on the type of kinship. Table 2 presents the average values obtained
from the analysis of 150,000 profile pairs for each of the examined
categories.

Based on the obtained results, it is observed that, due to
consanguinity, profile similarity increases by almost 10%, which
is a consequence of a higher number of identical-by-descent (IBD)
alleles between parents, leading to a reduction in genetic
variability.

We further examined the percentage of homozygosity for
29 markers presented in Figure 4a, for three different categories:
Normal paternity, Incest cases of parent-child inbreeding, and
incest cases of brother-sister inbreeding. Within both groups of
incest, an elevated rate of homozygosity (35%–45%) was observed,
in line with the fact that higher rates of observed homozygosity
were caused by inbreeding. On the other hand, for the category of
normal paternity, the obtained values of homozygosity were
between 10%–25%, in accordance with the greater genetic
diversity within this category.

Examining the percentage share of identical heterozygous loci
for all three categories (Figure 4b), a similar pattern was observed.
More specifically, in cases of consanguinity, a higher number of
identical loci shared by two profiles can be expected (25%–27%). In
contrast, the category of normal paternity displays significantly
lower ratios of identical loci, ranging from 10% to 20%,
again proving that genetic diversity is greater within this
particular category.

3.5 Model for the general population
(21 Marker variant)

The model achieved an accuracy rating of 95%. The precision of
the model was 95.28%, with a recall score of 94.69%, resulting in an
F1 score of 94.98%. The ROC AUC was 99.01%, and the balanced
accuracy was 95%. The MCC was 90.00%, and Cohen’s Kappa
was 90.00%.

The confusion matrix for the general population is presented in
Figure 2b. The model performance across classes is as follows:
9,531 profiles belonging to the normal kinship category and
9,469 profiles belonging to the incest kinship category were
correctly classified. On the other hand, 469 profiles, that the
model classified as cases of incest kinship, together with
531 profiles that the model classified as cases of normal kinship,
were misclassified.

The importance of individual markers for the accurate
prediction is presented in Figure 5. This bar chart ranks the
20 most important genetic markers by order of significance for
the accurate prediction of kinship. Markers such as SE33,
D1S1656, and D18S51 hold the greatest importance for
accurate prediction. On the other hand, loci such as TH01,
D3S1358, D5S818, and CSF1PO, as well as the marker TPOX,
which is not shown on the graph, were found to be the least
informative for accurate prediction.

3.6 One-step mutation model for the
general population (21 markers)

The model trained and tested on the general population
database incorporating single-step mutation and utilising
21 markers as input variables, achieved an accuracy rating
of 95.02%.

The confusion matrix is presented in Figure 2c. This particular
variant of the model performed in the following way: 9,519 profiles
belonging to the normal kinship category and 9,485 profiles

TABLE 1 Performance of various machine learning models in the binary classification of Normal Paternity vs. Incest Kinship.

Tested Algorithms Accuracy (%) Precision (%) Recall F1 Score ROC AUC (%)

Random forest 78.1 76.97 80.2 78.55 85.85

Support vector machine 78.4 78.34 78.5 78.42 87.19

Naive Bayes 74.15 75.23 72 73.58 81.71

K-Nearest Neighbors 63.9 65.1 59.9 62.39 68

CatBoost 92.35 92.73 91.9 92.31 97.71

XGBoost 90.05 89.54 90.7 90.11 95.52

LightGBM 90.45 90.17 90.8 90.48 96.83

Adaboost 76.6 76.71 76.4 76.55 84.16

Gradient boosting 87.8 87.43 88.3 87.86 95.25

Extra trees 77.4 79.59 73.7 76.53 85.47

Multi-layer Perceptron 75.8 71.32 86.3 78.1 85.77
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belonging to the incest kinship category were correctly classified.
On the other hand, 481 profiles, recognized as belonging to the
category of incest kinship, together with 515 profiles, recognized as
belonging to the category of normal kinship, were misclassified.

The model’s precision was 95.17%, with a recall of 94.85%,
resulting in an F1 score of 95.01%. The ROC AUC was 99.01%, and
the balanced accuracy rating was 95.02%. TheMCC stood at 90.04%,
and Cohen’s Kappa was 90.04%.

3.7 Performance metrics for the “offspring-
only” model (21 markers)

This particular variant of the model was trained using only
offspring profiles taken from the general population database, with
21 markers as input variables. The model achieved an overall
accuracy rating of 90.37%.

The confusion matrix is presented in Figure 2d. The model’s
performance is as follows: 16,316 profiles belonging to the normal
kinship category and 15,315 profiles belonging to the incest kinship
category were correctly classified. On the other hand, 1,184 profiles,
recognized as belonging to the incest kinship category, and
2,185 profiles, recognized as belonging to the normal kinship
category, were misclassified.

The model’s precision was 92.82%, with a recall of 87.51% and
an F1 score of 90.09%. The ROC AUC was 96.34%, and the balanced
accuracy was 90.37%. The MCC stood at 80.88%, and Cohen’s
Kappa was 80.75%.

3.8 PCA analysis

As our multiclass prediction model, targeting not only incest
detection, but also the potential sub-categories of incest, failed to
achieve satisfactory performance metrics, we decided to apply
Principal Component Analysis (PCA).

The individual instances in Figure 6a are plotted along two axes
corresponding to the two principal features of greatest importance for
the differences between normal and incest kinship. A distinct
structure can be observed on the scatter plot, with instances of
incest kinship forming a ring around the central portion of the
plot, occupied by instances of normal kinship. The first two
components explain 2.61% and 2.59% of the variance, respectively.
The clustering pattern suggests that genetic markers used in this study
can differentiate between the two categories in question. Note,
however, the existence of outliers from the normal paternity
category that cross into the areas mostly populated by instances of
incest kinship.

The scatter plot in Figure 6b shows the distribution of genetic
markers for Incest Sibs (red) and Incest Paternity (blue) along the
first two principal components. Similar to the previous plot, the first
principal component (explaining 2.66% of the variance) is plotted
on the x-axis, and the second principal component (explaining
2.65% of the variance) is on the y-axis. The plot indicates that
instances of Incest Sibs are dispersed more around the periphery,
whereas Incest Paternity profiles predominantly form a dense
central core. This pattern suggests a slight but discernible
differentiation between the two incest categories, with Incest Sibs

FIGURE 2
Confusion matrices for binary classification of normal and incest kinship profiles using CatBoost models. (a) General population − 29 markers; (b)
General population − 21 markers; (c) General population with one-step mutation − 21 markers; (d) Offspring-only dataset − 21 markers; (e) Saudi Arabia
dataset − 21 markers; (f) Modified Saudi Arabia dataset − 21 markers.
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exhibiting greater variation in their genetic markers compared to
Incest Paternity.

3.9 The Saudi Arabia dataset - the initial and
modified models

The initial model trained and tested on the dataset emulating the
genetic structure of the Saudi Arabian population, using 21 markers
as input variables, demonstrated an accuracy rating of 94.64%. The
confusion matrix is presented in Figure 2e. This model correctly
classified 9,533 profiles, as belonging to the normal paternity
category, and 9,394 profiles, as belonging to the incest kinship
category. The model misclassified 467 profiles, belonging to the
incest kinship category, and 606 profiles, belonging to the normal
paternity category.

The precision of the model was 95.26%, with a recall of 93.94%
and an F1 score of 94.60%. The ROC AUC score was 98.85%. The
balanced accuracy rating was 94.64%, with a PPV 95.26%, and a
NPV of 94.02%. The detection rate was 93.94%.

The second model trained and tested on the modified version of the
Saudi Arabia dataset with modified frequency values had the following
performance metrics. The accuracy rating of the model was 94.93%. The
confusionmatrix is presented in Figure 2f. This model correctly classified

9,566 profiles, as belonging to the normal paternity category, and
9,421 profiles, as belonging to the incest kinship category. The model
misclassified 434 profiles, belonging to the incest kinship category, and
579 profiles, belonging to the normal paternity category.

The precision of the model was 95.60%, with the recall 94.21%,
indicating that the model correctly identified 94.21% of all actual
positive cases of incest. The F1 score was 94.90%. The ROC AUC
score was 98.94%, highlighting the model’s ability to distinguish
between positive (incest) and negative (normal) classes. The
balanced accuracy, which is the average of sensitivity for each
class, was 94.93%, accounting for the imbalance between classes.
PPV was 95.60% and NPV was 94.29%. The detection rate was
94.21%, the same as recall, representing the percentage of correctly
identified actual positive cases.

4 Discussion

The main contribution of the study is the integration of machine
learning into the detection of incestuous conception based on STR
profiles. The study demonstrated that by using the described model,
reliable detection of incest is possible, even when based solely on
children’s profiles or in the presence of mutations. This represents
an improvement over previously described approaches that require
additional STR markers, trio analyses, as well as complex LR-based
biostatistical calculations.

Across all tested variants, the model consistently demonstrated
high classification accuracy: 96.94% for 29 markers, 95.00% using
21 markers, 95.02% under a one-step mutation model, and 90.37%
in the offspring-only scenario. When applied to a dataset reflecting
the Saudi Arabian population structure, the model achieved 94.64%
accuracy, increasing to 94.93% when allele frequencies were
modified. This confirms the advantages of using machine
learning for detecting subtle patterns caused by inbreeding. It can
be assumed that the observed errors in classification are the result of
various factors, including: overlap of allele combinations between
different classes, subtle or unexpressed homozygosity, a reduced

TABLE 2 Average STR profile similarity measures across kinship categories
based on 150,000 simulated comparisons.

Kinship category Average profile
similarity (%)

Parent-child (Normal Paternity) 59.42

Mother-child (Offspring from Father-
Daughter Incest)

69.57

Sibling pair (Normal Sibling) 61.96

Mother-child (Offspring from Brother-Sister
Incest)

69.53

FIGURE 3
ROC and Precision-Recall curves for the general population model using 29 STR markers. (a) ROC curve showing the true positive rate against the
false positive rate for the classification of normal versus incest kinship. (b) Precision-Recall curve indicating the trade-off between precision and recall for
the same model.
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number of markers, as well as the presence of profiles that manifest
characteristics of both classes and were therefore incorrectly
recognized by the model.

4.1 Comparison with previous studies

One of the first approaches in incest detection was based on the
use of the Avuncular Index (AI) and the Incest Index (II). AI tests
whether the uncle is the biological father, while II estimates the

probability that the child’s father is a close relative of the mother,
such as her father or brother. This approach enabled the detection
of 3 cases of incest out of 1,500 analyzed cases, which indicates the
limited sensitivity of the methodology itself. The AI values for the
uncle were found to be significantly higher than those obtained for
a random male. For the uncle, this value was 7.7, while for a
random man it was only 0.26. The significance of the research is
also reflected in the fact that the authors found that identical or
homozygous HLA haplotypes between the mother and child can
indicate incest (Morris et al., 1988).

FIGURE 5
Top 20 STR markers ranked by their importance in the kinship prediction model. This bar chart shows the relative importance of the 20 most
informative STRmarkers used by the CatBoost model trained on the general population dataset with 21 loci. Markers such as SE33, D1S1656, and D18S51
had the greatest influence on model predictions, while D3S1358, D5S818, and CSF1PO contributed the least.

FIGURE 4
Distribution of homozygosity and identical heterozygous loci across 29 STR markers by kinship category. (a) Percentage of homozygosity per STR
marker in three kinship categories: Incest Paternity, Incest Siblings, andNormal Paternity. Higher homozygosity is observed in incest categories, reflecting
reduced genetic variability due to consanguinity. (b) Percentage of identical heterozygous loci shared between individuals in each category. Incest
Paternity and Incest Siblings exhibit a greater proportion of identical heterozygous loci compared to Normal Paternity, indicating higher
allelic sharing.
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A study that calculated the combined incest index (CII) from
mother-child profiles using 18 STR loci was able to produce
diagnostic CII values in only 2 of 5 suspected incest cases. The
authors note that 18 STR markers are not sufficient to accurately
distinguish these relationships. According to their estimate, the
analysis of 33 independent STR loci is necessary to achieve an
accuracy of 97.5% (Wenk, 2008).

The probability of paternity in incest cases is lower compared
to paternity in cases of random mating. The reason for this lies in
the fact that the allele that is present in the mother can be found in
both the alleged father and the child. When the child shares an
allele with the father at a heterozygous locus that is not present in
the mother, the probability of paternity increases (Minakata
et al., 1996).

The methodology based on different combinations of
genotypes of parents and offspring allows estimation of the
probability based on the distribution of alleles between the
mother, the supposed father (who may be a brother), and
the offspring. With this approach, incest can be reliably
detected if a sufficient number of markers are used, but
additional data and analyses are required for a reliable result
(Tamura et al., 2000).

4.2 Influence of inbreeding on
genetic markers

Based on the STR profile similarity observed in this study, it was
found that the average similarity between parent and child is 59.42%,
while for siblings it is slightly higher at 61.96%, indicating that in
both categories, corresponding to normal relations, the profile
similarity is about 60%. Due to inbreeding between a father and
his biological child, the similarity between the child’s profile in incest
paternity and the mother’s profile is on average 69.57%, which is

close to 69.53%, representing the similarity between the mother’s
profile and a sibling’s incest child. The same percentage of
approximately 69% was also observed between the mother and
child from a brother-sister relationship based on multilocus
probing (Tamura et al., 2000). It can be concluded that the
similarity between parent and child profiles is almost 10% higher
due to inbreeding compared to random mating profiles.

Increased homozygosity in the child’s profile can be an indicator
of incest, as presented in a study that cited a case of a 21-year-old
woman with severe mental and physical disabilities, where the
child’s profile showed homozygosity on 8 out of 15 analyzed loci.
This suspicion resulted in further profiling of the male relatives,
confirming that the case involved a brother-sister incestuous
relationship (Robino et al., 2006). However, homozygosity is not
always a definitive indicator of incest, as seen in the analysis of
presented STR profiles, where homozygosity in the child was
observed at 5 of the 22 analyzed loci, one locus more than the
number of homozygous loci in the mother (Canturk et al., 2016).

It has also been confirmed that due to consanguinity, the rate of
identical heterozygous loci between the mother and child is elevated,
which further indicates reduced genetic diversity and inherited
patterns resulting from incest. These patterns are reflected in a
higher degree of identical allele combinations at heterozygous loci.

The examined genetic indicators of incest are a consequence of
an increased presence of identical-by-descent (IBD) alleles, and
consequently, a reduction in genetic variability that may manifest
in offspring (Stoffel et al., 2021). Importantly, all factors (profile
similarity, homozygosity, and identical heterozygous loci) should be
considered together rather than separately, as one of these factors
may be “masked.”

On the other hand, these findings represent universal principles
of allele distribution patterns, as well as their dependence on the
tested population. For example, if these markers were analyzed in an
isolated population, the similarity between mother and child profiles

FIGURE 6
PCA plots of genetic marker distributions for kinship classification. (a) Principal Component Analysis (PCA) plot of Normal Kinship (blue) and Incest
Kinship (red) instances using the first two principal components (PC1: 2.61%, PC2: 2.59%). A ring-like pattern is observed, with incest profiles forming a
peripheral cluster around centrally positioned normal profiles. (b) PCA plot comparing Incest Sibs (red) and Incest Paternity (blue) profiles along PC1
(2.66%) and PC2 (2.65%). Incest Sibs show greater dispersion, while Incest Paternity instances form a denser core, indicating subtle genetic
differences between the two incest subcategories.

Frontiers in Genetics frontiersin.org09

Šorgić et al. 10.3389/fgene.2025.1578581

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2025.1578581


would certainly be higher compared to the values observed in the
general population, but still lower than those observed as a result of
incest in such populations. This emphasizes that analysts must be
familiar with the ancestry of the examined individuals in order to
assess whether their genetic heritage could influence prediction.

Although the PCA analysis detected sufficient levels of variations
within both categories of profiles, high similarity rates between
incestuous profiles and the overlap of data points belonging to the
previously mentioned categories of incest were major barriers that
prevented the successful deployment of an effective multiclass
classification model (See Supplementary Figure S1 Multiclass
prediction). As a result, we opted to create a binary model, which
was trained using profiles belonging to both categories of incest which
were collapsed into a single, overarching category. The resulting basic
model, which was based on the display of two STR profiles parent-
child, without additional features such as profile similarity, child
homozygosity and identical markers between mother and child,
always yielded better performance metrics. However, it should be
noted that the performed PCA analysis revealed clustering patterns
that might be handled more effectively by more sophisticated
algorithms, which will, in turn, allow us to overcome the multiclass
prediction problem described above.

4.3 Preliminary study and STRIDER
frequencies

In the preliminary study profile generation was done based on
STRIDER frequencies for all loci and detected alleles (STRIDER,
2024). The model trained and tested using this data achieved a
classification accuracy of almost 98% for all four categories, allowing
the model not only to correctly predict cases of incest but also to
correctly classify the category of incest. Subsequent testing of this
variant of the model on a database using frequencies obtained from
other populations used in this study failed to yield equivalent results.
The subsequent analysis revealed that the initial similarity of the
parental profiles based on STRIDER frequencies was significantly
lower (8–15 percent) compared to frequencies present in other
populations. Due to the large number of allele combinations at
each locus, the model trained on STRIDER frequencies had no
difficulty in distinguishing between incestuous and normal kinship
and was even able to correctly categorise incestuous kinship into the
subcategories mentioned previously. Of course, after the
irregularities were discovered, these results were excluded from
the study as the profiles based on STRIDER frequencies are not
realistic in the context of actual parental profiles. Nonetheless, the
findings obtained by the preliminary study still warrant discussion.

4.4 Potential benefits of machine learning in
forensic genetics

We consider this study to be indicative of the potential benefits that
machine learning can bring to the field of forensic genetics by offering a
reliable method of detecting not only incest, but possibly also other
complex models of kinship. This approach has much to recommend it
- the creation of synthetic profiles and their further pairing to create
composite profiles belonging to different categories of kinship allows

researchers to sidestep a major hurdle in forensic science that usually
manifests itself as an inability to examine all possible inheritance
patterns that occur within different kinship categories. As the
current trend in forensic genetics is to increase the number of
analysed loci, it can be expected that by implementing additional
loci, we would be able to improve the efficiency of the model itself.

4.5 Performance of CatBoost algorithm

Of all the gradient boosting algorithms that were tested within
the scope of this paper, CatBoost exhibited the best performance
metrics using both out-of-the-box and optimised parameters. It is
interesting to note that even the implementation of one-step
mutations, which are encountered in practice and which in the
current analyses of real scenarios result in lower accuracy metrics,
did not impact the performance metrics of the CatBoost model. One
possible explanation for this behaviour can be found in the fact that
the introduction of one-step mutations into the database introduced
additional variation that was informative for the model, allowing the
model to preserve its performance by leveraging the newly added
information to better differentiate between categories.

Previous studies investigating effective methods for incest
detection commonly included a caveat noting that it was
unknown how the proposed solutions would behave in cases in
which the individuals under investigation hailed from isolated
populations. This was the main impetus behind our drive to
implement our model on realistic datasets with actual frequencies
obtained from the Saudi Arabian population (as well the modified
version of the same dataset). It is interesting to note that the model
trained on the modified dataset containing fewer alleles, exhibited a
slight accuracy increase compared to the model trained and tested
on the unmodified Saudi Arabia dataset. One possible explanation
for this behaviour is that the exclusion of low frequency alleles from
the dataset also reduced the noise that was otherwise present when
these alleles were included in the dataset.

One surprising outcome was the model’s exceptional ability to
accurately determine whether an offspring profile originated from a
normal or incestuous union based solely on the child’s STR markers.
The model trained and tested using solely unique offspring profiles
had an accuracy rating of almost 90%. The addition of a mother
profile to the offspring profile raised accuracy by only 5%. This
constitutes clear proof that offspring profiles are informative by
themselves.

It is likely that the analysis of a larger number of polymorphisms
would enable the model to achieve equal if not better performance.
The obtained results would certainly be useful in the field of clinical
medicine, allowing future researchers to probe further into recessive
diseases that can occur as a result of inbreeding.

4.6 Advantages of the model

In the context of a step-by-step analysis for detecting incestuous
relationships, the model developed in this study would be most
effective as a preliminary screening tool. The following workflow is
envisaged: (1) STR profiling of underage pregnant individuals and
their offspring, or fetal material in cases of abortion; (2); application
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of the classification model to detect potential incestuous conception;
(3) identification of potential incest cases based on genetic
deviations from expected patterns; (4) conducting additional
confirmatory analyses, which may include profiling of the alleged
father or brother, extended genetic testing, or medical examinations,
depending on the context of the case.

One significant advantage of this model is that its prediction does
not require the profiling of the father or the siblings, especially in cases
in which the subjects are not available. Given the high accuracy of the
model and the low percentage of false positives and false negatives, it
can be used to initially signal potential incest, especially in cases
involving minors, where suspicious pregnancies can be investigated
using solely the STR profiles of the mother and the child.

This approach allows the model to independently learn incest
patterns based on the presented databases. As a result, the model is
not “rigidly” defined by assumptions about the distribution of alleles
between parents and offspring, which is the basis of traditional
probability calculations for the confirmation of incest.

4.7 Limitations of the study

It is important to note that a positive prediction generated by the
model does not confirm incest, but indicates the need for further action.
Additional analyses would be necessary to confirm incest and identify
the perpetrator. Even though the model performed well, the possibility
of error still exists. It is important to be aware of the nature of the
population from which an established profile is sourced so that an
adequate model can be applied. To illustrate, it is highly likely that the
profile of a child hailing from a normal crossbreeding scenario
occurring with an isolated population would be recognized as a false
positive by amodel trained on general population data due to decreased
allele variety and higher homozygosity levels. On the other hand, it is
also highly likely that the profile of a child born from an incestuous
union occurringwithin the framework of a general populationwould be
recognized as belonging to the category of normal paternity by a model
trained on isolated population data, producing a false negative. Our
model was trained to detect incest resulting from father-child and
brother-sister relationships, however we do not know how the model
would perform in incestuous cases with other male relatives. Future
work could explore testing the model with other relatives or developing
a more complex model for broader incest detection.

5 Conclusion

The study demonstrates the potential uses of machine learning in
the field of forensic genetics when analysing complex types of kinship,
such as incest. With the in silico study, we managed to overcome the
problem of insufficient profile quantity for the training and the testing
of the model. We successfully made predictions based on unique STR
profiles and validated the model on allele frequencies from different
populations. It can be concluded that the structure of the population
itself does not play a key role in the model’s performance, allowing its
implementation to different populations. Additionally, the model

presented here does not require the initial profiling of the father
and can be used as a tool to signal potential cases of incest.
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