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Introduction: In recent years, lots of computational models have been proposed
to infer potential lncRNA-disease associations.

Methods: In this manuscript, we introduced a novel end-to-end learning
framework named CNMCLDA, in which, we first adopted two convolutional
neural networks to extract hidden features of diseases and lncRNAs
separately. And then, by combining these hidden features of diseases and
lncRNAs with known lncRNA-disease associations, we designed five different
loss functions. Next, based on errors obtained by these loss functions, we would
perform back propagation to fit parameters in CNMCLDA, and complete those
missing values in lncRNA-disease relational matrix according to these fitted
parameters. In order to demonstrate the prediction performance of
CNMCLDA, intensive experiments have been carried out and experimental
results show that CNMCLDA can achieve better performances than state-of-
the-art competitive predictive models in frameworks of five-fold cross validation,
ten-fold cross validation and leave-one-disease-out cross validation
respectively.

Results and Discussion: Moreover, in case studies of gastric cancer, glioma and
breast cancer, there are 19, 17 and 16 out of top 20 candidate lncRNAs inferred by
CNMCLDA having been confirmed by recent relevant literatures separately,
which demonstrated the outstanding performance of CNMCLDA as well.
Hence, it is obvious that CNMCLDA may be an effective tool for prediction of
potential lncRNA-disease associations in the future.
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1 Introduction

In the last few years, more and more researches have pointed out
that lncRNAs play a significant role in some biological processes
(Statello et al., 2021) and are associated with many human diseases
including HIV (Zhou et al., 2023), cardiovascular diseases
(Congrains et al., 2012), leukemia (Calin et al., 2007), various
cancers (Yang et al., 2023; Gupta et al., 2010; Ci et al., 2024), etc.
Hence, prediction of possible associations between lncRNAs and
diseases can not only contribute to understand the pathogenesis of
human diseases at the molecular level, but also provide a novel
perspective for new drug development and personalized medication
(Wu et al., 2021). Up to now, researchers have established a series of
publicly available databases including lncRNAdb (Amaral et al.,
2011; Cheng et al., 2015), NONCODE (Bu et al., 2012),
LncRNADisease (Bao et al., 2019), and NRED (Dinger et al.,
2009) etc., and based on these databases, lots of computational
methods have been proposed successively, which can be roughly
classified into three major categories according to their
implementation strategies (Chen et al., 2017; Fan et al., 2022).
The first type of approach is mainly based on different machine
learning models, for instance, Zhou and Peng et al. established a
prediction model by using a boosting-based ensemble learning
model (Zhou et al., 2024). Yu and Wang et al. adopted the Naïve
Bayes classifier to predict potential associations between lncRNAs
and diseases (Jingwen et al., 2018; Yu et al., 2019). Xuan and Wang
et al. utilized probability matrix decomposition to infer latent
lncRNA-disease associations (Xuan et al., 2019). Wang et al.
developed a novel model named gGATLDA for lncRNA-disease
association prediction based on graph-level graph attention network
(Wang and Zhong, 2022). Zhang et al. designed a lncRNA-disease
association prediction tool development based on bridge
heterogeneous information network via graph representation
learning for family medicine and primary care (Zhang et al.,
2023). The second type of approach is mainly based on the
network topologies, for example, Sun et al. predicted potential
lncRNA-disease association by applying random walk with restart
on the lncRNA functional similarity network (Sun et al., 2014).
Zhang et al. proposed a computational model by implementing flow
propagation algorithm on multiple heterogeneous networks (Zhang
et al., 2017). Chen et al. constructed an effective prediction model
named KATZLDA by integrating the lncRNA functional similarity
and the disease semantic similarity with known lncRNA-disease
associations (Chen, 2015a). Different from the above two types of
methods, which mainly rely on known lncrNa-disease associations
verified by biological experiments to infer potential lncrNa-disease
associations, the third type of approach mainly focuses on adopting
indirect biological information to infer potential lncRNA-disease
associations, which can achieve satisfactory predictive performance
while lack of known lncRNA-disease associations. For example, Liu
et al. established a novel computational model by combining disease
genes and expression profiles of lncRNA (Liu et al., 2014). Through
above descriptions, it is easy to know that those existing
computational models exist the following limitations: (1) Lots of
existing methods are strongly dependent on known lncRNA-disease
associations. (2) Machine learning based methods randomly select
unlabeled samples as negative samples, or directly take all unlabeled
samples as negatives. (3) Most existing methods cannot predict

potential associations between lncRNAs and diseases having no
known associations with lncRNAs.

Therefore, in order to overcome above limitations of
traditional forecasting models, in this paper, the prediction of
potential diseases related lncRNAs will first be regarded as
completion of missing values in a lncRNA-disease relational
matrix, which has been demonstrated to be practical and
effective in many bioinformatics fields. For example, in 2022,
Yan et al. proposed a matrix completion model for drug
repositioning (Yan et al., 2022), which can achieve satisfactory
prediction performance. In 2024, Shi et al. designed a novel
prediction model, which can effectively infer potential
associations between microbes and diseases based on graph
autoencoder and inductive matrix completion (Shi et al., 2024).
Certainly, there are also some computational models designed to
predict potential lncRNA-disease associations based on the idea of
matrix completion. For instances, Lu et al. constructed a lncRNA-
disease association prediction model based on the inductive matrix
completion (Lu et al., 2018). Different from these existing matrix
completion based models, in this paper, we developed a novel end-
to-end learning framework called CNMCLDA to complete the
lncRNA-disease relational matrix, in which, we combined known
lncRNA-disease associations with known lncRNA-miRNA
associations and known miRNA-disease associations, which
ensured that CNMCLDA could achieve better performance than
those existing prediction models based only on known lncRNA-
disease associations. And at the same time, we further integrated
five different loss functions to update parameters in CNMCLDA,
and considered the balance between positive and passive samples
in CNMCLDA, thus ensuring that CNMCLDA would be more
powerful and effective. Finally, in order to demonstrate the
effectiveness and superiority of CNMCLDA, we first compared
it with nine state-of-the-art models under frameworks of 5-fold
CV (cross-validation) and 10-fold CV respectively, and
experimental results showed that CNMCLDA achieved reliable
AUC values of 0.9235 and 0.9446 in 5-fold CV and 10-fold CV
separately, which were higher than all those competitive models.
Secondly, in view of limitation that some existing models cannot be
applied to infer potential associations between lncRNAs and
diseases without known associated lncRNAs, we further adopted
a novel evaluation index named LODOCV (leave-one-disease-out
cross validation) to assess the predictive performance between
CNMCLDA and four of above nine state-of-the-art models that
can be applied to infer potential associations between lncRNAs and
diseases without known associated lncRNAs, and experimental
results illustrated that CNMCLDA achieved better performance
than all these competitive models simultaneously. Furthermore, in
order to verify the adaptability of CNMCLDA, we downloaded and
applied another different dataset to evaluate the prediction
performance of CNMCLDA, and experimental results showed
that CNMCLDA achieved satisfactory performance as well.
Finally, in case studies of gastric cancer, glioma and breast
cancer, experimental results illustrated that there were
19,17 and 16 of top 20 candidate lncRNAs predicted by
CNMCLDA having been confirmed by recent literatures, which
also demonstrated that CNMCLDA may become a vital tool to
explore potential relationships between lncRNAs and diseases in
the future.
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2 Materials

2.1 Data collection and preprocessing

In this section, we firstly collected known miRNA-disease
associations, miRNA-lncRNA associations and lncRNA-disease
associations from public databases of HMDD (Cui et al., 2023),
starBasev2.0 (Li et al., 2014) and MNDRv2.0 (Cui et al., 2018)
respectively. After removing duplicated associations, we finally
obtained 246 different miRNAs, 1,089 different lncRNAs,
373 different diseases, a dataset SMD consisting of
4,704 known miRNA-disease associations between all these
246 miRNAs and 373 diseases, a dataset SML consisting of
9,086 known miRNA-lncRNA associations between all these
246 miRNAs and 1,089 lncRNAs, and a dataset SLD consisting
of 407 known lncRNA-disease associations between 77 of all
these 1,089 lncRNAs and 95 of all these 373 diseases. For
convenience, let nm, nd, nl, nl_ld and nd_ld denote the
numbers of all these 246 miRNAs, 373 diseases,
1,089 lncRNAs, 77 lncRNAs and 95 diseases separately, and
NM, ND, NL, NL_LD and ND_LD represent the sets consisting of
all these 246 miRNAs, 373 diseases, 1,089 lncRNAs, 77 lncRNAs
and 95 diseases respectively, then a nm × nd dimensional matrix
MD, a nm × nl dimensional matrix ML, and a nl_ld × nd_ld
dimensional matrix LD could be constructed based on above
three kinds of datasets SMD, SML and SLD respectively. Here, as
for the matrix MD, there is MD(i, j) = 1, if and only if there is a
known association between the given miRNA mi and the given
disease dj in SMD, otherwise, there is MD(i, j) = 0. As for the
matrix ML, There is ML(i, j) = 1, if and only if there is a known
association between the given miRNA mi and the given lncRNA
lj in SML, otherwise, there is ML(i, j) = 0. And as for the matrix
LD, there is LD(i, j) = 1, if and only if there is a known association
between the given lncRNA li and the given disease dj in SLD,
otherwise, there is LD(i, j) = 0. The detailed information about
the data downloaded from these three public databases HMDD,
starBasev2.0 and MNDRv2.0 is illustrated in Table 1.

2.2 Calculation of disease semantic similarity
and lncRNA function similarity

In recent years, the semantic similarity of disease has been
widely utilized in the field of bioinformatics, and especially in
prediction of associations between diseases and lncRNAs (Wang
et al., 2019; Xiao et al., 2020). In this section, we would adopt the
semantic similarity of disease in CNMCLDA in the following way:
Firstly, for each disease downloaded above, we would obtain its

corresponding MESH (Medical Subject Headings) descriptors from
the U.S. National Library of Medicine (http://www.nlm.nih.gov/),
which was denoted as a Directed Acyclic Graph (DAG). And then,
base on these DAGs, we would obtain the semantic similarity scores
across all diseases, and a corresponding semantic similarity score
matrix SD∈Rnd×nd. Next, by combining the matrix SD with the matrix
LD obtained previously, we would further adopt the method
proposed in reference (Xiao et al., 2020) to calculate the
functional similarity of lncRNA, and obtain a corresponding
functional similarity score matrix SL∈Rnl x nl as well.

3 Construction of the CNMCLDA

The goal of CNMCLDA is to fill those missing values in the
original lncRNA-disease relational matrix LD. The traditional
solution is to find two matrix W and H that satisfy the following
Formula 1:

min LD − SDWHTSTL
���� ����2F + λ1 W‖ ‖2F + λ1 H‖ ‖2F s.t.W≥ 0, H≥ 0

(1)
Different from above traditional method, CNMCLDA

introduced a novel learning framework to fill in the matrix LD.
As shown in Figure 1, CNMCLDA consists of three major parts
including the disease sub-model part, the lncRNA sub-model part
and the part of matrix completion. Among them, the disease sub-
model part and the lncRNA sub-model part are utilized to extract
hidden features of diseases and lncRNAs by adopting CNNs
separately, while the part of matrix completion is designed to
obtain the predicted scores of possible lncRNA-disease associations.

Specifically, the main processes of CNMCLDA can be described
as follows:

Step 1: Designing a CNN for the disease sub-model part to extract
hidden features of diseases by inputting MD.

Step 2: Designing a CNN for the lncRNA sub-model part to extract
hidden features of lncRNAs by inputting ML.

Step 3: Calculating the predicted score matrix of lncRNA-disease
associations based on the newly obtained hidden features
of diseases and lncRNAs.

Step 3.1: Balancing positive and negative samples in LD.
Step 3.2: Constructing loss functions for CNNs.
Step 3.3: Calculating error values based on loss functions and

updating parameters in CNMCLDA by back
propagation.

Step 4: Repeating steps 1 through 3 until CNMCLDA reaches a
steady state.

TABLE 1 Data downloaded from public databases HMDD, starBasev2.0 and MNDRv2.0.

Database miRNA Disease lncRNA miRNA-disease
associations

miRNA-lncRNA
associations

lncRNA-disease
associations

HMDD 246 373 4,704

starBase v2.0 246 1,089 9,086

MNDR v2.0 95 77 407
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3.1 Design of CNN for the disease sub-model
to extract hidden features of diseases

CNN is a common deep learning architecture that excels in
image recognition, natural language processing, etc (Gu et al., 2018).
In this section, we would design a CNN consisting of a convolutional
layer and three fully-connected layers for the disease-sub model part
to extract hidden features of diseases firstly. For convenience, we
would set the number of convolutional kernels to nd, and letWi

d and
Bi
d denote the weight matrix and biases in the ith layers of the CNN

separately, then for each input MD(i), which represents the ith
column of the matrix MD, its jth feature map can be calculated as
the Formula 2:

fdj � f MD i( ) ⊗ W1
d j( ) + B1

d j( )( ) (2)

where ⊗ denotes convolution operations,W1
d(j) represents the weight

matrix corresponding to the jth convolutional kernel, and f(x) stands for
the activation function. There are some common activation functions,
including Sigmoid, Tanh, ReLU, etc. Considering the efficiency and
some possible problems (gradient disappearance and gradient
explosion, etc.), we chose the ReLU as the activation function for
CNMCLDA, which is defined as the Formula 3:

ReLU x( ) � max 0, x( ) (3)
Thereafter, we can integrate all these feature maps as outputs of

the convolutional layer.
Additionally, in these three fully-connected layers, the inputs of

each layer can be derived by combining outputs of the previous layer
with the weight matrix Wi

d and biases Bi
d, and then, the output of

this layer can be obtained through the activation function. The
dimension of the weight matrix Wi

d can be set as the Formula 4:

size ofWi
d �

nd × nd if i � 2
nd × nm if i � 3
nm × 1 if i � 4

⎧⎪⎨
⎪⎩ (4)

3.2 Design of CNN for the lncRNA sub-
model to extract hidden features of lncRNAs

In this section, we would further design a CNN consisting of a
convolutional layer and three fully-connected layers for the lncRNA
sub-model part to extract hidden features of lncRNAs. In a similar way,
For convenience, we would the number of convolutional kernels to nl,
and letWi

l and B
i
l denote the weight matrix and biases in the ith layers

FIGURE 1
Flowchart of CNMCLDA.
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of CNN respectively, then for each inputML(i), which represents the ith
column of the matrix of ML, its jth feature map can be calculated as
the Formula 5:

flj � f ML i( ) ⊗ W1
l j( ) + B1

l j( )( ) (5)

Thereafter, by combining all these feature maps, we can obtain the
output of the convolutional layer as well. And moreover, the dimension
of the weight matrix Wi

l can be set as the Formula 6:

size ofWi
l �

nl × nl if i � 2
nl × nm if i � 3
nm × 1 if i � 4

⎧⎪⎨
⎪⎩ (6)

3.3 Calculating the predicted score matrix of
lncRNA-disease associations

Firstly, as the number of known lncrNa-disease associations is very
limited, the number of elements equal to 0 in the original lncrNa-disease
association matrix LD is far greater than the number equal to 1. For
convenience, we call these elements equal to 0 or 1 as negative samples
and positive samples, respectively, it is obvious that the proportion of
positive samples and negative samples in the original lncrNa-disease
relationshipmatrix LD is quite unbalanced, whichmakes it unreasonable
to directly implement CNMCLDA on the original lncrNa-disease
relationship matrix LD. Therefore, before implementing CNMCLDA,
we will implement a division on the positive and negative samples of LD
to ensure the approximate balance of positive and negative samples.
Inspired by themethod of KATZ (Sun et al., 2014), wewill first construct
a matrix FLD as the Formula 7:

FLD � LD p LDT p LD + LD p SD p SD + SL p SL p LD

+ SL pLD p SD (7)

And then, we will randomly select negative samples with
amount equaling to the number of positive samples from the
part of the matrix FLD with element of 0. Obviously, in this way,
the positive and negative samples will be approximately balanced.

Next, considering that our main objective is to fill in the missing
values in LD, therefore, based on features extracted from two CNNs,
we will define the main loss function as the Formulas 8, 9:

loss1 � LD − Sigmoid W2
l pW

3
l pW

3T
d pW2T

d( )���� ����2F (8)
Sigmoid x( ) � 1

1 + e−x
(9)

where ‖A‖2F denotes the Frobenius norm of the matrix A.
Obviously, the above Formula 8 can only be used to calculate the

error values of heterogeneous nodes (i.e., the positive and negative
samples in LD) in the sample set.

However, in CNNs of the disease-sub model and lncRNA sub-
model, since we hope that the output of each CNNwill be equivalent to
the associations between the current node and all miRNA nodes, hence,
we will define another loss function for this purpose as Formula 10:

loss2 � ∑
setd

i

outputd i( ) −MD i( )‖���� 2

F
+∑

setl

i

outputl i( ) −ML i( )‖���� 2

F

(10)

where outputd(i) and outputl(i) represent the output of layer i of
CNN in the disease-sub model and lncRNA sub-model, respectively.

Moreover, by combining the semantic similarity of disease with
the functional similarity of lncRNA, we can define a novel loss
function as Formula 11:

loss3 � W2
l − Sl

���� ����2F + W2
d − Sd

���� ����2F (11)

Additionally, based on the framework of general matrix
completion model, we can define a novel loss function
as Formula 12:

loss4 � W2
l

���� ����2F + W3
l

���� ����2F + W2
d

���� ����2F + W3
d

���� ����2F (12)

Finally, based on the weights and bias in the CNN, we can
further define a novel loss function as Formula 13:

loss5 � ∑
l,d{ }

i

∑
1,2,3,4{ }

j

Wj
i

���� ����2F + Bj
i

���� ����2F (13)

Thereafter, by integrating above five loss functions, we can
obtain a total loss function as Formula 14:

losstotal � loss1 + λ1 p loss2 + λ2 p loss3 + λ3 p loss4 + λ4 p loss5 (14)

Finally, based on the total loss function, we can further adopt the
Adam optimization method (Shi et al., 2024) to iteratively optimize
the hyper-parameters in CNMCLDA. And In the actual deployment
CNMCLDA, considering the time cost and precision requirements,
the iteration process will stop when the value of losstotal is less than
10−3. Hence, we can finally obtain the predicted scores of possible
lncRNA-disease associations as Formula 15:

LD′ � Sigmoid W2
l pW

3
l pW

3T
d pW2T

d( ) (15)

4 Performance evaluation

In this section, we compared CNMCLDA with seven state-of-
the-art models including NBCLDA (Jingwen et al., 2018), CFNBC
(Yu et al., 2019), PMFILDA (Xuan et al., 2019), gGATLDA (Wang
and Zhong, 2022), LDAGRL (Zhang et al., 2023), IIRWR (Wang
et al., 2019), FVTLDA (Xiao et al., 2020), BIWALK (Hu et al., 2019),
and LRWHLDA (Li et al., 2021). Among these competitive models,
IIRWR, BIWALK and LRWHLDA adopt network propagation-
based methods to infer potential lncRNA-disease associations,
while NBCLDA, CFNBC, PMFILDA, gGATLDA, LDAGRL and
FVTLDA adopt machine learning-based methods to predict
potential associations between lncRNAs and diseases.

During experiments, frameworks of K-fold CV including 5-fold
CV and 10-fold CV would be employed first to compare the
prediction performances between CNMCLDA and all these
competing models. While implementing K-fold CV, known
lncRNA-disease associations would be divided into K equal
subsets randomly, and each subset was left out as the test
sample, whereas the remaining K-1 subsets were retained as
training samples (Zhou et al., 2018). Moreover, all test samples
and unknown lncRNA-disease associations would be considered as
candidate samples. Hence, after ranking these candidate samples
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FIGURE 2
The AUCs achieved by CNMCLAD, IIRWR, PMFILDA, NBCLDA, CFNBC, BIWALK, LRWHLDA and FVTLDA in framework of five-fold CV.

FIGURE 3
The AUCs achieved by CNMCLAD, IIRWR, PMFILDA, NBCLDA, CFNBC, BIWALK, LRWHLDA and FVTLDA in framework of ten-fold CV.
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according to their predicted scores obtained by experiments, for a
given threshold, we could obtain the TPR (True Positive Rate) and
FPR (False Positive Rate) of each method according to the following
Formulas 16, 17 separately:

TPR � TP

TP + FN
(16)

FPR � FP

FP + TN
(17)

where TP (True Positive) and FP (False Positive) represent the
numbers of known and unknown lncRNA-disease associations

with scores above the given threshold respectively, while FN
(False Negative) and TN (True Negative) denote the numbers of
known and unknown lncRNA-disease associations with scores
below the given threshold respectively.

Obviously, through setting different thresholds, a unique
ROC (Receiver operating characteristic) curve could be
obtained by plotting TPRs against FPRs for each method.
Thereafter, the AUC (Area Under the ROC Curve) could be
used to evaluate the prediction performance of the given method
(Hand and Till, 2001). As shown in Figures 2, 3, while
implementing the 5-fold CV, CNMCLDA achieved reliable
AUC value of 0.92350, which was significantly higher than all
competitive models such as IIRWR (0.8653), CFNBC (0.85608),
PMFILDA (0.90849), NBCLDA (0.85236), BIWALK (0.91453),
LRWHLDA (0.82103), gGATLDA (0.92216), LDAGRL
(0.92158), and FVTLDA (0.89050). While implementing the
10-fold CV, CNMCLDA achieved reliable AUC value of
0.94464, which was much better than all competitive models
such as IIRWR (0.87302), CFNBC (0.85697), PMFILDA
(0.92369), NBCLDA (0.85219), BIWALK (0.91778),
LRWHLDA (0.82959), gGATLDA (0.94420), LDAGRL
(0.93162), and FVTLDA (0.89360) as well.

FIGURE 4
Performance comparison of CNMCLDA with the other four computational models in framework of LODOCV.

TABLE 2 Comparison of the means and variances of AUCs between
CNMCLDA and four competitive models in the framework of LODOCV.

Model Mean of AUC values Variance of AUC values

CNMCLDA 0.9041 0.0411

CFNBC 0.8427 0.0289

FVTLDA 0.8097 0.0182

NBCLDA 0.8289 0.0938

PMFILDA 0.6506 0.1118

TABLE 3 Comparison of the statistical significance of performance
differences between CNMCLDA and four competitive models in the
framework of LODOCV.

Model CFNBC FVTLDA NBCLDA PMFILDA

P-value 3.68E-08 7.30E-11 2.88E-08 1.66E-09

TABLE 4 Comparison of prediction performances between CNMCLDA and
HGLDA based on the dataset proposed by HGLDA.

Model AUC value

CNMCLDA 0.8546

HGLDA 0.7621
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Moreover, in order to further evaluate the predictive ability of
CNMCLDA, we introduced a novel evaluation metric called
LODOCV, which could be implemented as follows: for a given
disease d, all lncRNAs having known associations with d would be
left out as test samples, while the remaining lncRNAs were utilized
for prediction. Especially, considering that IIRWR, BIWALK and
LRWHLDA are RW (RandomWalk)-based methods, which cannot
be used to predict lncRNAs that have no known associations with
any disease, we compared CNMCLDA only with the remaining four
predictive models such as CFNBC, FVTLDA, NBCLDA and
PMFILDA. As shown in Figure 4, CNMCLDA achieved much
better predictive performance than all these four competitive
models. And meanwhile, in order to show the prediction
performance of CNMCLDA more intuitively, we illustrated the
means and variances of AUCs of CNMCLDA and all these four
competitive models in Table 2, and the statistical significance of the
predictive performance difference between CNMCLDA and all these
four competitive models in Table 3, respectively.

Finally, under the framework of LOOCV (Leave-One-Out Cross
Validation), we further compared the AUCs achieved by
CNMCLDA and HGLDA (Chen, 2015b) based on the dataset
proposed by HGLDA, which consists of 183 known lncRNA-
disease associations that have been confirmed by experiments.
While implementing LOOCV, each known lncRNA-disease

association are selected out in turn as the test sample, and the
rest associations are regarded as the training samples (Bo et al.,
2006). As illustrated in Table 4, CNMCLDA can achieve an AUC of
0.8546, which is much higher that the AUC of 0.7621 achieved
by HGLDA.

Therefore, it can be seen from above descriptions that
CNMCLDA can achieve better prediction performance than
existing state-of-the-art models.

5 Parameter analysis

As described in the method section, there are four hyper-
parameters in CNMCLDA. In this section, we would evaluate the
impacts of these parameters on the predictive performance of
CNMCLDA under the framework of 5-fold CV. During
experiments, we estimated the performance of remaining
3 parameters by fixing one parameter, and the range of each
parameter would be set to {0.001,0.01,0.1,1,10} respectively.
Finally, we found that CNMCLDA could achieve the best
predictive results (see Supplementary Material S1) while these
parameters were set as follows:

λ1 � 10−3, λ2 � 10−1, λ3 � 10, λ4 � 1.

TABLE 5 Top 20 potential {gastric cancer, glioma, breast cancer}-related lncRNAs predicted by CNMCLDA and their PubMed unique identifiers.

(a). Gastric cancer (b). Glioma (c). Breast cancer

lncRNA Evidence (PMID) lncRNA Evidence (PMID) lncRNA Evidence (PMID)

XIST 27911852 CCAT1 28475287 TUG1 30098551

GAS5 31182630 XIST 28287613 CASC2 30106139

MALAT1 32104001 GAS5 31889362 HOTTIP 32307830

NEAT1 28401449 HOTAIR 28083786 TINCR 30621694

TUG1 29719612 MEG3 32271438 FENDRR 29559798

ZFAS1 Unknown MALAT1 32117213 TP53TG1 Unknown

CASC2 30372881 NEAT1 30515782 LINC00473 30848493

KCNQ1OT1 31915311 TUG1 29467911 HOXA11-AS 28791375

HOTTIP 31908497 ZFAS1 31535380 HOTAIRM1 32284737

PVT1 31966056 CASC2 28121023 CRNDE 28469804

TINCR 28744139 KCNQ1OT1 28381990 MIAT 29100300

FENDRR 25167886 HOTTIP 28886531 ZNRD1-AS1 Unknown

DANCR 31002130 PVT1 31957841 SNHG16 32122142

TP53TG1 27821766 TINCR Unknown SNHG5 31255976

LINC00511 32042282 FENDRR Unknown TDRG1 Unknown

LINC00473 30071345 H19 31173296 HOXA-AS2 28545023

HOXA11-AS 32009419 DANCR 29940760 SNHG15 32021307

HOTAIRM1 30302796 CDKN2B-AS1 Unknown SNHG7 31897328

CRNDE 28490034 TP53TG1 28569381 LINC00313 Unknown

TP73-AS1 30279010 LINC00511 30973678 LINC00152 30594392
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6 Case study

In this section, in order to demonstrate the effectiveness and
practicability of CNMCLDA, we implemented case studies of
gastric cancer, glioma, and breast cancer on known dataset
having confirmed by experiments. During experiments of case
studies, for a given disease d, we first regarded all lncRNAs having
no known associations with d as candidates. Thereafter, all
candidate lncRNAs would be ranked according to their
prediction scores calculated by CNMCLDA. Finally, we would
validate the relationships between top 20 candidate lncRNAs and
d by the recently published papers in NCBI database (https://
www.ncbi.nlm.nih.gov/).

Gastric cancer is the second most frequently leading cause
of death in cancer, and it is also the fourth most common
cancer in the word (Hartgrink et al., 2009; Guo et al., 2014).
Recently, a larger number of literatures have confirmed the
relationship between lncRNAs and gastric cancer, and
lncRNAs may be therapeutic targets in patients with gastric
cancer. For example, Chen et al. found that the upregulation of
lncRNA XIST was related to aggressive tumor phenotypes and
survive of gastric cancer (Chen et al., 2016). Yang et al. pointed
out that the level of H19 in gastric cancer cells and tissues was
significantly higher than that in normal control (Yang et al.,
2012). As shown in Table 5(a), we listed top 20 candidate
lncRNAs predicted by CNMCLDA, only one of these top
20 candidate lncRNAs has not been confirmed by recent
relevant literatures. Moreover, all remaining 19 lncRNAs
having been verified to be related to gastric cancer were
attached with corresponding PMID (PubMed unique
identifiers) in Table 5(a) as well.

As for glioma, it is a major type of adult intracranial tumors.
High grade gliomas tend to infiltrate into brain extracellular
matrix, which makes surgery and radiotherapy difficult (Gwak
et al., 2012). A lot of evidences show that lncRNAs plays an
important role in glioma. For instance, Wang et al.
demonstrated that lncRNA CASC2 can play an anti-tumor
role in glioma through negative regulation of MicroRNA-21
(Wang et al., 2015). Wang et al. pointed out that lncRNA
HOXA11-AS is a biomarker to identify glioma and can be
used as a therapeutic target for glioma patients (Wang et al.,
2016). As illustrated in Table 5(b), we found 17 lncRNAs out of
top 20 candidate lncRNAs predicted by CNMCLDA having been
confirmed to be related to gastric cancer in recent relevant
literatures.

Moreover, breast cancer is the most common cancer, and it
is also the main cause of cancer death in women all over the
world (DeSantis et al., 2015). Up to now, there are many
relevant literatures demonstrating the relationship between
lncRNA and breast cancer, such as lncRNA H19 (Sun et al.,
2015), lncRNA UCA1 (Xiao et al., 2016), lncRNA HOTAIR (Xue
et al., 2015) and so on. As illustrated in Table 5(c), there are
16 out of top 20 candidate lncRNAs predicted by CNMCLDA
having been reported in recent literatures. Hence, based on
experimental results of above case studies, we can conclude
that CNMCLDA has excellent prediction ability.

7 Discussion

In this study, different from existing methods, we regarded
the prediction of potential diseases-related lncRNAs as
completion of missing values of the lncRNA-disease relational
matrix, and defined a novel end-to-end learning framework
CNMCLDA to infer potential lncRNA-disease associations.
The main contribution of CNMCLDA includes: (1) lots of
existing methods are strongly dependent on known lncRNA-
disease associations, however, CNMCLDA combines a variety of
biological information to ensure that it does not rely only on
known lncRNA-disease associations, which makes it suitable for
inferring potential associations between lncRNAs and isolated
diseases. (2) traditional machine learning based methods
randomly select unlabeled samples as negative samples, or
directly take all unlabeled samples as negatives, while
CNMCLDA takes into account the balance of positive and
negative samples, enabling it to achieve better predictive
performance. (3) five different loss functions are designed to
optimize the parameters of CNMCLDA synchronously, which
makes it more effective. Certainly, CNMCLDA still has rooms for
improvement. For instance, the neural network can be designed
more complicated by combining the symptoms and pathological
stages of diseases, and multi-view learning can be carried out as
well. Meanwhile, known lncRNA-disease associations can be
divided into upregulation and downregulation parts for multi-
label learning. Finally, how to balance the four trade-off
parameters in loss functions to achieve global optimal
solutions is still a challenging task. Moreover, One of the
major characteristics of lncRNA is that it has good tissue
specificity and cell type specificity (Grassi et al., 2021), so it is
very suitable for the study of specific related mechanisms. In
terms of tumors, inflammation, immune diseases, neurological
diseases, lncRNA provides a good tool for the study of
heterogeneity, and is particularly suitable for future studies in
marker mining or target discovery.
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