
Radiomic features and tumor
immune microenvironment
associated with anaplastic
lymphoma kinase-rearranged
lung adenocarcinoma and their
prognostic value

Ying Han1†, Wenya Feng2,3†, Huaxin Li2, Hua Wang2,3* and
Zhaoxiang Ye2

1Departments of Biotherapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical
Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, State Key Laboratory of
Druggability Evaluation and Systematic Translational Medicine, Key Laboratory of Cancer Immunology
and Biotherapy, Tianjin, China, 2Departments of Radiology, Tianjin Medical University Cancer Institute
and Hospital, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer,
State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Key Laboratory of
Cancer Prevention and Therapy, Tianjin, China, 3Department of Diagnostic Radiology, Tianjin Cancer
Hospital Airport Hospital, Tianjin, China

Purpose: To identify radiomic features from preoperative computed tomography
(CT) images and characteristics of the tumor immune microenvironment (TIME)
associated with anaplastic lymphoma kinase (ALK) rearrangement in patients with
lung adenocarcinomas and their prognostic value in predicting recurrence or
metastases after surgery.

Materials and methods: This retrospective study included 66 ALK-positive and
66 ALK-negative patients who underwent surgical resected lung
adenocarcinoma. The number of CD8+ T cells and Human leukocyte antigen
class I (HLA-I)/programmed death ligand 1 (PD-L1) expression were determined
using immunohistochemistry. Radiomic features were extracted from the
preoperative CT images. Combined radiomic, clinicopathological, and
clinicopathological-radiomic models were built to predict ALK
rearrangements. The models’ prediction performance was analyzed using
receiver operating characteristic (ROC) curves with five-fold cross-validation.
Prediction models for determining disease-free survival (DFS) of ALK-rearranged
patients were developed, and the C-index after internal cross-validation was
calculated to evaluate the performance of the models.

Results: HLA-I and PD-L1 expression were negatively associated with ALK
rearrangement (both P < 0.001). The ROC curve indicated areas under the
curve of 0.763, 0.817, and 0.878 for the radiomics, clinicopathology, and
combined models in predicting ALK rearrangement, respectively. The
combined model showed significant improvement compared to the
clinicopathological (P = 0.02) and radiomics (P < 0.001) models alone. The
validation C-indices were 0.752, 0.712, and 0.808 for the radiomic,
clinicopathological, and combined models in predicting the DFS of ALK-
rearranged patients, respectively. The combined model showed a significant
improvement (P < 0.001) compared to the clinicopathological model alone.
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Conclusion: This study demonstrated the potential role of radiomics and TIME
characteristics in identifying ALK rearrangements in lung adenocarcinomas and the
prognostic value of radiomics in predicting DFS in patients with ALK
rearrangements.

KEYWORDS
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1 Introduction

Anaplastic lymphoma kinase (ALK) rearrangements are driver
mutations that occur in approximately 3%–7% of non-small cell
lung cancer (NSCLC) cases, primarily in the lung adenocarcinoma
subtype (Qin and Gadgeel, 2017; Smolarz et al., 2025). Compared
with other tumor genotypes, ALK-rearranged tumors exhibit more
invasive histomorphological features and aggressive behaviors (Kim
et al., 2013). ALK rearrangements are an important target for
NSCLC treatment, and patients harboring ALK rearrangements
receive significant clinical benefits from ALK tyrosine kinase
inhibitors (TKIs) (Shaw et al., 2013).

Although targeted therapies are effective in patients with ALK
rearrangements, drug resistance and tumor recurrence inevitably
occur (Rothenstein and Chooback, 2018). Immune checkpoint
inhibitors (ICIs) that block the programmed death-1 (PD-1)–
programmed death ligand 1 (PD-L1) axis have demonstrated
remarkable therapeutic effects against NSCLC (Borghaei et al.,
2015; Brahmer et al., 2015; Reck et al., 2016). However, studies
have shown that patients harboring ALK rearrangements do not
benefit from ICIs (Gainor et al., 2016; Mazieres et al., 2019; Jahanzeb
et al., 2021). This may be associated with the unique tumor immune
microenvironment (TIME).

Human leukocyte antigen class I (HLA-I) plays a pivotal role in
tumor neoantigen presentation and CD8+ T cell activation. Some
studies have suggested that activation of oncogenes inhibits HLA-I
expression, thus promoting immune escape and thereby
contributing to the poor efficacy of immunotherapy (Brea et al.,
2016; Watanabe et al., 2019).

Although previous studies have reported increased tumor PD-
L1 expression to be an unfavorable prognostic factor for NSCLC, the
characteristics of the TIME and their prognostic values in ALK-
rearranged NSCLC remain unclear (Zhang et al., 2017; Zhang et al.,
2022; Tian et al., 2023; Zhou et al., 2023).

Through the extraction of high-throughput quantitative
characteristics from medical images acquired during clinical
practice, radiomics can offer insights into unique phenotypes

resulting from the underlying biological processes of a tumor
(Tomaszewski and Gillies, 2021). These radiomic features can
noninvasively provide comprehensive information about the
microenvironmental heterogeneity of tumors, and radiomics-
based biomarkers have been widely used to predict clinical
outcomes and potential genomic patterns (Chen et al., 2017).
However, few studies have been conducted on the radiomic
features of NSCLC with ALK rearrangement, and none have
examined the association between radiomic features and disease-
free survival (DFS) after surgery in this specific population (Ninatti
et al., 2020; Ma and Li, 2021; Chen et al., 2024).

Patients with ALK-rearranged lung adenocarcinoma exhibit low
response rates to ICIs, potentially due to distinct TIME
characteristics. Radiomics, by noninvasively quantifying tumor
heterogeneity, may improve early detection and risk stratification,
thus complementing conventional pathology. Thus, in this study, we
aimed to (I) identify the preoperative computed tomography (CT)
radiomic features and TIME characteristics associated with ALK
rearrangement in lung adenocarcinomas, (II) determine their
potential value in predicting recurrence or metastasis after
surgery in patients with ALK rearrangement, and (III) examine
whether a combination of radiomic features and TIME
characteristics could improve the performance of the predictive
model. This multimodal analysis may aid in the early identification
of ALK rearrangement and risk stratification for ALK-positive
patients and provide a rationale and guidance for tailored
therapy in the early stages.

2 Materials and methods

2.1 Study population

The institutional review board of Tianjin Medical University
Cancer Institute and Hospital approved this retrospective study
(Ethical approval No. EK20240091). Patients provided written
informed consent prior to undergoing tests related to pathology,
immune microenvironment, and ALK rearrangement status. This
analysis included patients who underwent surgical resection for lung
cancer in Tianjin Medical University Cancer Institute and Hospital
between July 2016 and December 2019. Patients were consecutively
included based on the following criteria: (I) Histologically confirmed
lung adenocarcinoma withALK rearrangement detected by Ventana
D5F3 immunohistochemistry (IHC) in radical resection specimen,
and (II) preoperative thin-slice CT images available on the Picture
Archiving and Communication System conducted <1 month before
surgery. Patients who had received chemotherapy or radiotherapy
before surgery or those with other primary malignant tumors were

Abbreviations: ALK, anaplastic lymphoma kinase; AUC, area under the curve;
CI, confidence interval; CV, coefficient of variation; DFS, disease-free survival;
GLCM, gray-level cooccurrence matrix; GLDM, gray-level dependence
matrix; GLRLM, gray-level run-length matrix; GLSZM, gray-level size-zone
matrix; HLA-I, human leukocyte antigen class I; HR, hazard ratio; ICI, immune
checkpoint inhibitor; IHC, immunohistochemistry; LASSO, least absolute
shrinkage and selection operator; NGTDM, neighborhood gray-tone
difference matrix; NSCLC, non–small cell lung cancer; OR, odds ratio; OS,
overall survival; PD-L1, programmed death ligand 1; PFS, progression-free
survivall; OC, receiver operator characteristic; TIME, tumor immune
microenvironment; TKI, tyrosine kinase inhibitor.
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excluded. Finally, 66 ALK-positive patients were included and
66 ALK-negative patients were randomly selected as controls
(Supplementary Figure S1). Clinicopathological features,
including sex, age, smoking history, and pathological TNM stage,
were extracted from patients’ medical records. The tumors were
histologically staged according to the eighth edition of the TNM
classification system of the International Union Against Cancer and
American Joint Committee on Cancer (Detterbeck et al., 2017).
Patients were followed-up after surgery until December 2023. DFS
was defined as the time from surgery to tumor recurrence or
metastasis, which was confirmed by an investigator blinded to
the predictor variables. Follow-up data were obtained from the
medical records and telephone interviews. Among the ALK-
positive patients, four received TKI treatment before tumor
recurrence. Three patients without follow-up data were excluded
from the prognostic analyses.

2.2 IHC

IHC staining was performed on paraffin-embedded sections of
surgical samples using methods described previously (Mu et al.,
2022). Primary antibodies included those against HLA-I (1:1,000;
clone no. EMR8-5; cat. no. ab70328; Abcam, Cambridge,
United Kingdom), PD-L1 (1:10,000; clone 2B11D11; cat. no.
66 248-1-Ig; Proteintech, Rosemont, IL, United States), and
CD8 (1:10,000; clone no. 1G2B10; cat. no. 66 868-1-Ig;
Proteintech).

Two pathologists who were blinded to the ALK status or clinical
outcome independently evaluated all IHC images, and the final
result was obtained by averaging the values from both pathologists.
In this study, the H-score was used to evaluate the expression of
HLA-I or PD-L1 on the cell membranes of tumor cells (Mu et al.,
2022; Greeshma et al., 2023). The H-score was calculated as follows
(Equation 1):

H − score � 0 × %of nonstained tumor epithelial cells

+ 1 × %of weakly stained tumor epithelial cells

+ 2 × %of moderately stained tumor epithelial cells

+ 3 × %of strongly stained tumor epithelial cells

(1)
The number of CD8+ tumor-infiltrating lymphocytes (TILs),

defined as CD8-positive cells regardless of the staining intensity, was
recorded, and the density of TILs was determined by dividing the
number of TILs by the total area of the observed fields (mm2)
(Haratani et al., 2017). Five fields per section were randomly selected
at ×200 magnification, avoiding necrotic and non-tumor regions, to
calculate H-scores and CD8+ T cell density. The average values were
then calculated.

2.3 CT imaging and radiomics feature
extraction

Preoperative chest CT was performed using one of three
multidetector CT systems: SOMOATOM Definition AS+
(Siemens Healthineers, Erlangen, Germany), LightSpeed 16 (GE

Healthcare, Chicago, IL, United States), or Discovery CT750 HD
(GE Healthcare). The scanning parameters were as follows: tube
voltage, 120 kVp; tube current, 150–200 mA with automatic
exposure control; reconstruction thickness and interval, 1.5 or
1.25 mm; mediastinal window reconstruction kernel, B30f/
Standard; and lung window reconstruction kernel, B70f/lung.

Tumor segmentation was performed by a radiologist with
5 years of experience in thoracic CT diagnosis using a
semiautomatic method, and reviewed by another radiologist with
16 years of experience. In addition to lung cancer diagnosis, the
radiologists were unaware of clinical data and pathological
information. 3D Slicer V5.1.0 (Fedorov et al., 2012) was used to
segment tumors on unenhanced images using the B70f/lung
reconstruction kernel. The B70f/lung kernel was selected because
of its high resolution in capturing tumor edges and internal
structures in the lung window, which is ideal for radiomic
analysis. Three-dimensional (3D) radiomic features were extracted.

Finally, 851 features were extracted from the tumor CT images,
as described in a previous study (Wang et al., 2022), including
14 shape features, 18 first-order features, 75 texture features [24 Gy-
level co-occurrence matrix (GLCM), 14 Gy-level dependence matrix
(GLDM), 16 Gy-level run-length matrix (GLRLM), 16 Gy-level size-
zone matrix (GLSZM), and 5 neighboring gray-tone difference
matrix (NGTDM)], and 744 wavelet-based features.

2.4 Feature selection and model
development

2.4.1 Models for predicting ALK rearrangement
Three models (radiomics, clinicopathological, and

clinicopathological-radiomics combined) were developed
separately to predict ALK rearrangement.

For radiomic model development, preliminary screening was
performed using univariate logistic regression, and statistically
significant features were further screened using the least absolute
shrinkage and selection operator (LASSO) regression methods. Ten-
fold cross-validation was applied to select the penalty parameter (λ) of
LASSO via minimum criteria to retain features with nonzero
coefficients. Finally, multivariate logistic regression was performed
using a forward stepwise strategy to select the most informative
variables in a single parsimonious model. The radiomics score (Rad-
score) for each patient was calculated as a linear combination of the
selected features weighted by their regression coefficients (beta values).

To build the clinicopathological model, univariate logistic
regression analysis was performed, and statistically significant
variables were included in a multivariate logistic regression model.
A combined model was eventually developed by incorporating the
independent predictive variables in the clinicopathological model and
Rad-score into the multivariate logistic regression analysis.

The prediction performance of the models was analyzed using
receiver operating characteristic (ROC) curves, and each model was
cross-validated with five-fold cross-validation to ensure a robust
area under the curve (AUC) estimate, given the limited sample size.
Differences in the AUC between the models were compared using
the DeLong test. Model stability was evaluated via the coefficient of
variation (CV) of the AUCs derived from 500 bootstrap iterations
(CV = standard deviation/mean).
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2.4.2Models for predicting the DFS of patients with
ALK rearrangement

Three models (radiomics, clinicopathological, and
clinicopathological-radiomics combined) were developed
separately to predict the DFS of patients with ALK rearrangements.

For the radiomics model, univariate Cox proportional hazards
regression analysis was performed, and statistically significant
features were subjected to LASSO Cox regression. Features with
nonzero coefficients selected by 10-fold cross-validation were
included in the backward stepwise Cox regression analysis to
identify independent prognostic variables and to build the final
model. A radiomics risk score (RAD-risk score) was calculated for
each patient via a linear combination of selected features weighted
by their regression coefficients (beta values). Patients with ALK
rearrangements were divided into two risk groups based on the
median RAD-risk score, which served as the cutoff point.

Clinicopathological variables that were significantly associated
with DFS were identified using univariate and multivariate Cox
regression analyses to construct a clinicopathological model. The
combined model was finally developed by adding the RAD-risk
score to the clinicopathological model in the multivariate analysis.

The Harrel concordance index (C-index) was used to assess the
model performance. Owing to the limited sample size, five-fold
cross-validation was used to ensure a robust C-index estimate. The
95% confidence intervals (CIs) for the C-index were calculated by
bootstrap resampling (500 replicates). Differences in the C-index
between models were assessed using a likelihood ratio test. Model
stability was assessed through the CV of the C-indices from
500 bootstrap iterations.

2.5 Statistical analyses

Differences between ALK-positive and ALK-negative patients in
terms of HLA-I/PD-L1 H-score, CD8+ T-cell density, and other
clinicopathological features were evaluated using the Chi-squared
test for categorical variables and the Mann–Whitney U test for
continuous variables.

To further elucidate the biological relevance of the radiomic
signature, the association of the calculated Rad-score and RAD-risk
score with clinicopathological features was analyzed using the
Spearman correlation test for continuous variables and the
Mann–Whitney U test for categorical variables.

Statistical analyses were performed using R version 4.3.2
(The R Foundation for Statistical Computing), Python
version 3.12 (Python Software Foundation, Wilmington, DE,
United States), and SPSS version 27.0 (IBM Corp., Armonk, NY,
United States). Differences were considered statistically
significant at P < 0.05.

3 Results

3.1 Clinicopathological features stratified by
ALK rearrangement status

The distribution of clinicopathological features according to
ALK rearrangement status is presented in Table 1. The HLA-I

and PD-L1 H-scores were significantly lower (both P values <
0.001) in patients with ALK rearrangements than in those
without ALK rearrangements. There were no significant
differences in sex, age, smoking history, T stage, N stage,
pathological stage, or CD8+ T cell density between the
two groups.

3.2 Models for predicting ALK
rearrangement

A total of 122 radiomic features associated with ALK
rearrangements were initially identified using univariate
logistic regression (Supplementary Table S1) and screened
using LASSO. The optimal λ was calculated to be 0.013,
corresponding to 17 features with nonzero coefficients
(Supplementary Figure S2; Supplementary Table S2). Forward
stepwise regression analysis identified four robust radiomic
features as independent predictors of ALK rearrangement
(Table 2). A prediction model based on the four radiomic
features was constructed, and the Rad-score for each patient
was calculated. The Rad-score calculation formula is as follows
(Equation 2, Supplementary Material 1):

Rad − score � −0.015 – 0.777 × original.GLCM.Autocorrelation

+ 0.648 × Wavelet LLH.GLSZM.SmallAreaEmphasis

+ 0.742 × Wavelet HLL.GLCM.Correlation

– 1.185 × Wavelet LLL.Firstorder.Skewness

(2)

Among the clinicopathological features, univariate
logistic regression analysis revealed that HLA-I and PD-L1
were significantly associated with ALK rearrangements
(Supplementary Table S3). These two features were included
in a multivariate logistic regression analysis, which indicated
that the independent predictive features were HLA-I [odds
ratio (OR) = 0.99; 95% CI: 0.98–0.99; P < 0.001] and PD-L1
(OR = 0.99; 95% CI: 0.98–0.99; P < 0.001), and these were
incorporated into the establishment of a clinicopathological
model. After combination with the Rad-score, the multivariate
analysis showed that the significant factors in the combined
model were Rad-score (OR = 2.88; 95% CI: 1.82–4.88; P <
0.001), HLA-I (OR = 0.99; 95% CI: 0.98–0.99; P < 0.001), and
PD-L1 (OR = 0.99; 95% CI: 0.98–0.99; P < 0.001)
(Supplementary Table S4).

The ROC curves for the fivefold cross-validation of the models
are presented in Figure 1. ROC curve analysis yielded an AUC of
0.763 (95% CI: 0.695–0.836) for the radiomics model and indicated
no significant difference (P = 0.36) from the clinicopathological
model (AUC = 0.817; 95% CI: 0.781–0.851). The combined model
(AUC = 0.878; 95% CI: 0.825–0.973) showed significantly superior
performance compared to the clinicopathological (P = 0.02) and
radiomic (P < 0.001) models alone. Based on 500 bootstrap
iterations, the combined model achieved a mean AUC of 0.879
(SD = 0.030), corresponding to a CV of 0.034, indicating high
reproducibility.

As shown in Supplementary Figure S3, there was a weak negative
correlation of Rad-score with HLA-I expression (r = −0.31; P <
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0.001). No association was found between the Rad-score and other
clinicopathological features.

3.3 Models for predicting the DFS of patients
with ALK rearrangement

Among 63 patients with follow-up data, 26 experienced
recurrence. The median follow-up period was 53 months, as
determined using the reverse Kaplan-Meier method.

For the radiomic model, 400 features were selected by univariate
analysis (Supplementary Table S5), and five features with nonzero
coefficients remained after LASSO Cox regression (Supplementary
Figure S4; Supplementary Table S6). Finally, two independent
prognostic features were selected using Cox regression to build

the RAD-risk score (Table 3), which was calculated as follows
(Equation 3, Supplementary Material 1):

RAD − risk score � 0.973 × Wavelet LLH.NGTDM.Busyness

+ 0.566 × Wavelet LLL.GLCM.

MaximumProbability (3)
Kaplan–Meier curves for the dichotomized RAD-risk score are

illustrated in Figure 2, which shows that patients with ALK
rearrangements can be divided into two risk groups. With the
median RAD-risk score serving as the cut-off point, a higher
RAD-risk score was significantly associated with a lower DFS
probability (P = 0.03).

In the clinicopathological model, the univariate analysis showed
that sex, T stage, N stage, and pathological stage were significantly

TABLE 1 Clinicopathological features stratified by ALK rearrangement status.

Clinicopathological feature ALK+ ALK- p-value

Sex 0.38

Male 35 (53.0) 30 (45.5)

Female 31 (47.0) 36 (54.5)

Age (years) 58 (14) 58 (13) 0.93

Smoking history 0.08

Never 44 (66.7) 34 (51.5)

Ever 22 (33.3) 32 (48.5)

T stage >0.99
T1 48 (72.7) 48 (72.7)

T2-4 18 (27.3) 18 (27.3)

N stage 0.25

N0 44 (66.7) 50 (75.8)

N1-2 22 (33.3) 16 (24.2)

Pathological stage 0.46

Ⅰ 43 (65.2) 47 (71.2)

Ⅱ-ⅢA 23 (34.8) 19 (28.8)

HLA-I H-score 20 (64.50) 90 (167.75) <0.001

PD-L1 H-score 23 (75) 88 (114.25) <0.001

CD8+ T cell density 12 (10.25) 11 (9.25) 0.83

Data presented as N (%) or median (interquartile range).

Bolded values indicate a statistically significant result.

Continuous variables (age, HLA-I H-score, PD-L1 H-score, and CD8+ T cell density) were compared using the Mann-Whitney U test, whereas categorical variables (sex, smoking history, T

stage, N stage, and pathological stage) were analyzed using the Chi-square test.

Abbreviations: ALK, anaplastic lymphoma kinase; HLA-I: human leukocyte antigen class I; PD-L1: programmed death ligand 1.

TABLE 2 Multivariate logistic regression analyses of radiomic features to predict ALK rearrangement.

Radiomic feature Beta value Odds ratio (95% CI) p-value

Original.GLCM.Autocorrelation −0.777 0.46 (0.21–1.00) 0.050

Wavelet_LLH.GLSZM.SmallAreaEmphasis 0.648 1.91 (1.23–2.98) 0.004

Wavelet_HLL.GLCM.Correlation 0.742 2.10 (1.33–3.32) 0.001

Wavelet_LLL.Firstorder.Skewness −1.185 0.31 (0.14–0.68) 0.004

Abbreviations: ALK, anaplastic lymphoma kinase; CI, confidence interval; GLCM, gray-level cooccurrence matrix; GLSZM, gray-level size zone matrix.
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associated with DFS (Supplementary Table S7). When these features
were included in the multivariate analysis, N stage [hazard ratio
(HR) = 5.31; 95% CI: 2.34–12.02; P < 0.001] was an independent

predictor of DFS, resulting in a clinicopathological model. Finally, N
stage and RAD-risk scores were incorporated into multivariate
analysis to develop a combined model (Supplementary Table S8).

The C-indices for each model and 95% CIs are presented in
Table 4. There was no significant difference between the radiomic
model and the clinicopathological (P > 0.99) or combined models
(P = 0.09), while the combined model showed significant
improvement (P < 0.001) compared to the clinicopathological
model alone. Based on 500 bootstrap iterations, the combined
model achieved a mean C-index of 0.811 (SD = 0.042),
corresponding to a CV of 0.052, indicating high reproducibility.

The RAD-risk score was statistically associated with T stage, N
stage, and pathological stage (all P < 0.001) but not with other
clinicopathological features (Supplementary Figure S5).

4 Discussion

In this study, we developed radiomics, clinicopathological, and
combined models for predicting ALK rearrangements in lung

FIGURE 1
ROC curves for the five-fold cross-validation of the (A) radiomic model, (B) clinicopathological model, and (C) combined model. ROC, receiver
operator characteristic; AUC, area under the curve; FPR, false positive rate; TPR, true positive rate.

TABLE 3 Multivariate Cox regression analyses of radiomic features to predict disease-free survival.

Radiomic feature Beta value Hazard ratio (95% CI) p-value

Wavelet_LLH.NGTDM.Busyness 0.973 2.65 (1.78–3.93) <0.001

Wavelet_LLL.GLCM.MaximumProbability 0.566 1.76 (1.18–2.64) 0.006

Abbreviations: CI, confidence interval; GLCM, gray-level cooccurrence matrix; NGTDM: neighborhood gray tone difference matrix.

FIGURE 2
Kaplan-Meier survival curves for the RAD_risk score. With the
median RAD_risk score value served as cut-off point, ALK-rearranged
patients could be divided into two risk groups for disease-free survival
(p = 0.03). RAD_risk score, radiomics risk score; ALK, anaplastic
lymphoma kinase.

TABLE 4 Accuracy results of themodels for disease-free survival prediction.

Model C-index 95% CI

Radiomic model 0.752 0.644–0.858

Clinicopathological model 0.712 0.624–0.806

Combined model 0.808 0.723–0.887

Abbreviation: CI, confidence interval.
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adenocarcinomas and the DFS of patients with ALK
rearrangements. The combined models outperformed the
clinicopathological models in predicting ALK rearrangement
status and DFS in patients with ALK rearrangement.

Immunosuppressive status is a characteristic of the TIME in
patients with ALK-rearranged NSCLC (Zhang et al., 2022; Tian
et al., 2023). CD8+ TILs are reduced in abundance (Zhang et al.,
2022; Tian et al., 2023) or functionally impaired despite no decrease in
their numbers (Zeng et al., 2020). Several studies have reported an
association between PD-L1 expression and ALK rearrangements, but
with inconsistent results. While Ota et al. found that ALK
rearrangements can upregulate PD-L1 expression in NSCLC (Ota
et al., 2015), Zeng et al. observed that PD-L1 was seldom expressed in
ALK-positive tumor cells (Zeng et al., 2020). A meta-analysis
concluded that PD-L1 expression did not correlate with ALK
rearrangement (Zhang et al., 2017). The observed discrepancy in
findings may be attributed to the limited sample size of ALK
rearrangement cases in the studies and differences in ethnicity. We
found that PD-L1 and HLA-I expression were adverse predictors of
ALK rearrangement in lung adenocarcinomas, and that the
abundance of CD8+ TILs in ALK-positive tumors was not different
from that in ALK-negative tumors. PD-L1 downregulation indicates
reduced reliance on the PD-1/PD-L1 axis for immune escape, whereas
HLA-I downregulation impairs antigen presentation, rendering CD8+

T cells unable to recognize tumor cells. Preserved CD8+ T cell density
may reflect functional impairment due to T cell exhaustion or antigen
recognition impairment. These findings highlight the complexity of
immune evasion in ALK-rearranged NSCLC and imply the potential
involvement of other immune escapemechanisms that require further
exploration.

With regard to the radiomic model, we identified four radiomic
features as independent predictors ofALK rearrangement: one texture
feature (Original.GLCM.Autocorrelation), two wavelet-transformed
texture features (Wavelet_LLH.GLSZM.SmallAreaEmphasis and
Wavelet_HLL.GLCM.Correlation), and one wavelet-transformed
texture feature (Wavelet_LLL.Firstorder.Skewness). Skewness,
which measures the asymmetry of the histogram from the mean,
reflects intratumoral heterogeneity. Texture features are closely
associated with tumor heterogeneity and prognosis, whereas
wavelet-based features represent filtered transformations of
intensity or texture features, capturing multiscale patterns within
the tumor (Chen et al., 2017). Due to the low incidence of ALK-
positive tumors and methodological bias, studies on the association
between radiomic features and ALK rearrangements in NSCLC
remain preliminary (Ninatti et al., 2020; Ma and Li, 2021; Chen
et al., 2024). Correlation and skewness (original or filtered) are also
found to be predictors of ALK rearrangements in previous studies
(Agazzi et al., 2021; Choe et al., 2021; Aguloglu et al., 2022; Chen et al.,
2025). Interestingly, Wavelet_LLH.GLSZM.SmallAreaEmphasis and
Wavelet_LLL.Firstorder.Skewness have been observed to be
predictors of brain metastases in patients with ALK-rearranged
NSCLC (Wang et al., 2022), which may explain the high incidence
of brain metastases in patients with ALK-rearranged NSCLC.
Moreover, Wavelet_LLL.Firstorder.Skewness was also a predictor
of DFS in the LASSO Cox regression model (Supplementary Table
S5), demonstrating its prognostic value in ALK-positive patients.

Regarding prognostic value, PD-L1/HLA-I expression and the
density of CD8+ TILs were not associated with DFS in patients with

ALK rearrangement, while the radiomics signature was an
independent prognostic factor in our study. Previous studies on
the association between PD-L1 expression and progression-free
survival (PFS) or overall survival (OS) in patients with ALK-
rearranged advanced NSCLC treated with ALK TKIs found that
high PD-L1 expression was associated with shorter PFS or OS
(Zhang et al., 2022; Zhou et al., 2022; Tian et al., 2023). Similarly,
studies regarding the association between radiomic features and the
PFS of patients with ALK-rearranged NSCLC were limited to
advanced-stage tumors treated with ALK-TKIs (Li et al., 2020;
Hou et al., 2023; Sun et al., 2023), and also showed the significant
prognostic performance of the radiomics signature.

To overcome the limitations of biopsy-related sampling artifacts
and ensure robust pathological and molecular data, we focused on
surgically resected lung adenocarcinomas. This approach allowed us
to investigate the TIME and radiomic features of early stage tumors,
offering new insights into their biological characteristics. Our findings
may help identify and risk-stratify ALK-positive patients at an early
stage, inform clinical decision-making, and guide adjuvant therapy or
follow-up strategies for high-risk ALK-positive patients.

Our study showed that ALK-rearranged lung adenocarcinomas
exhibit downregulation of PD-L1 and HLA-I, which may contribute
to the limited efficacy of PD-1/PD-L1 inhibitors in this population.
This observation aligns with emerging clinical evidence showing
modest responses to ICIs in ALK-positive NSCLC (Mazieres et al.,
2019; Jahanzeb et al., 2021). The lack of an association between
TIME characteristics and DFS further underscores the need to
explore alternative or combination immunotherapeutic strategies,
such as targeting innate immune pathways or combining ICIs with
ALK TKIs. Future studies should investigate these approaches to
improve the outcomes for ALK-rearranged NSCLC patients.

The radiomics model, when combined with a
clinicopathological model incorporating PD-L1 and HLA-I
expression to predict ALK rearrangement and lymph node
metastasis status to predict DFS in ALK-rearranged lung
adenocarcinomas, demonstrated superior performance compared
to the clinicopathological model alone. These findings suggest that
radiomic features provide added value for the noninvasive
identification of ALK rearrangement and prognostic prediction in
patients with ALK-rearranged lung adenocarcinomas. Notably, we
observed a significant correlation between the Rad-score and HLA-I
expression as well as between the RAD-risk score and pathological
TNM stage. These findings suggest that radiomic features may
reflect underlying biological processes, such as immune
microenvironment characteristics and tumor progression, thereby
enhancing the interpretability of our data-driven models.

This study has several limitations. First, the sample size was
relatively small owing to the rarity of ALK alterations, which may
restrict feature diversity, and the random selection of controls may
have introduced a selection bias. Future studies should employ
matched designs to reduce the potential confounding factors.
Second, as our study focused exclusively on surgically resected
lung adenocarcinomas, further studies are needed to validate the
applicability of our findings to non-resectable or advanced-stage
tumors, which are the primary target population for TKIs or ICIs.
Third, the inter-scanner and inter-vendor variability of features may
have confounded the results. However, the fact that radiomic
features were extracted from multiple scanners in our study may
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support the generalizability of our models. Moreover, we did not
analyze the influence of treatment because only four patients in this
early-stage disease cohort received TKI therapy. In future studies, we
aim to include a broader patient population, including those
receiving TKI therapy, to further evaluate the interplay between
treatment, TIME, and outcomes. Finally, although we performed
internal cross-validation, multicenter prospective studies with
independent external validation are required to confirm
our findings.

In conclusion, our results support the potential role of radiomics
and TIME in identifying ALK rearrangements in lung
adenocarcinomas and the prognostic value of radiomics in
predicting the DFS of patients with ALK rearrangements. We
believe that radiomics may improve the risk stratification of
patients with ALK rearrangements, thereby facilitating
personalized treatment. Future studies should validate these
models in large multicenter cohorts and integrate multi-omics
data (e.g., genomic, transcriptomic, and proteomic) and
additional TIME markers to elucidate the biological mechanisms
of radiomic features, improve prognostic accuracy, and guide
personalized therapy for ALK-positive patients.
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