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Introduction: The double-coated fleece is crucial for the adaptability and
economic value of Hetian sheep, yet its underlying molecular mechanisms
remain largely unexplored.

Methods: We integrated genome and transcriptome data from double-coated
Hetian sheep and single-coated Chinese Merino sheep. Candidate genes
associated with coat fleece type and environmental adaptation were identified
using combined selective sweep and differential expression analyses. Subsequent
analyses included Gene Ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway enrichment, protein-protein interaction (PPI) network
construction, and machine learning-based screening.

Results: Selective sweep and differential expression analyses identified 101 and
106 candidate genes in Hetian sheep and Chinese Merino sheep, respectively.
Enrichment analyses revealed these genes were primarily involved in pathways
related to wool growth and energy metabolism. PPI network analysis and
machine learning identified IRF2BP2 and EGFR as key functional genes
associated with coat fleece type.

Discussion: This study enhances understanding of the genetic mechanisms
governing double-coated fleece formation in Hetian sheep. The identification
of key genes (IRF2BP2, EGFR) and themethodological approach provide valuable
insights for developing machine learning-driven multi-omics selection models in
sheep breeding.
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1 Introduction

Hetian sheep is a unique local breed from Hetian, Xinjiang,
China, known for its high-quality carpet wool. Hetian carpets, made
fromHetian sheep wool, are famous worldwide. The breed was listed
in the National List for the Protection of Livestock and Poultry
Genetic Resources in 2006. Hetian sheep are adapted to the
temperate continental desert climate, characterized by drought
resistance, heat tolerance, ability to thrive on coarse feed, strong
disease resistance, and exceptional adaptability to harsh
environments (Han et al., 2023). One of the most distinctive
features of Hetian sheep is their double-coated fleece, which
includes coarse wool, fine wool, and heterotypical hair. These
fibers differ in structure, with heterotypical hair being
particularly notable for its interrupted medullary layers, a
characteristic that contributes to the plush and durable texture of
Hetian carpets (Chen et al., 2024; Shi et al., 2022a). This complex
fleece structure raises important questions about the genetic
mechanisms behind its formation.

Despite the recognized significance of Hetian sheep’s unique
fleece, research on its double-coated fleece and heterotypical hair
remains limited, primarily due to the complexity of the underlying
genetic mechanisms (Wang et al., 2025; Shi et al., 2022b; Wang et al.,
2021). Multiple genes interact in the development of double-coated
fleece, and environmental factors, such as temperature variations
and drought conditions, further complicate the genetic analysis.
These challenges highlight the need for more focused research into
the genetic basis of Hetian wool.

In recent years,multi-omic analysismethods have been increasingly
applied in sheep breeding (Wang et al., 2023; Li et al., 2024; Xu et al.,
2023). By integrating data across various omics levels, researchers can
gain a more comprehensive understanding of the genetic and biological
mechanisms underlying target traits, enhancing the precision and
efficiency of breeding programs. For example, Banos et al. (2017)
integrated genomic and transcriptomic data to identify 14 candidate
genes related to innate immunity in Chios sheep. Zhao et al. (2021)
combined transcriptomic and methylation datasets fromMerino sheep
skin to reveal differential expression profiles across four genotypes at six
hair follicle developmental stages. They identified key transcripts
involved in hair follicle development through regulatory network
and gene co-expression analyses, and predicted that transcription
factors (e.g., KLF4, LEF1, HOXC13, RBPJ, VDR, RARA, and STAT3)
play stage-specific roles in hair follicle morphogenesis. In another study,
Wang et al. (2020) demonstrated that the expression of certain hair
follicle differentiation genes and transcription factors (TFs) in sheepwas
negatively correlated with DNA methylation levels, using integrated
RNA-seq and WGBS analysis. These findings suggest that these genes
and TFsmay regulate hairmorphogenesis by influencing the expression
of related genes.

Machine learning has also gained traction in genetic breeding,
particularly in genome-wide selection, gene network analysis, and
multi-omics data interpretation (Tırınk et al., 2023; Hamadani et al.,
2022; Shahinfar et al., 2019). For instance, Kirchner et al. (2004)
employed the decision tree (DT) algorithm to classify and predict
highly reproductive sows based on characteristics such as total litter size,
live litter size, and healthy litter size, achieving promising prediction
results. Piles et al. (2019) applied machine learning methods to
molecular-level transcriptomic data to deeply explore candidate

genes influencing pig feeding efficiency. Guo et al. (2024) utilized
interpretable machine learning models alongside comparative
transcriptomics to identify unique factors in sheep strongly
associated with muscle growth. Additionally, Farhadi et al. (2023)
investigated differences in fat deposition between fat-tailed and fine-
tailed sheep breeds, using meta-analysis and machine learning
techniques to identify three specific genes (POSTN, K35, and SETD4).

In this study, we employed a combination of multi-omics and
machine learning techniques to investigate the genetic mechanisms
underlying the formation of double-coated fleece. Our goal was to
provide a scientific basis for precision breeding. Specifically, we
selected Chinese Merino sheep (characterized by single-coated and
homogeneous fleece) as a control and conducted selective sweep and
differential expression analyses by integrating genomic and
transcriptomic data. Additionally, we applied machine learning
models, such as Neural Networks (NN), to analyze these
multidimensional datasets. The aim of this approach was to
uncover the regulatory networks associated with double-coated
fleece traits in Hetian sheep, identify key functional genes, and
explore the complex relationships between these traits and
environmental adaptability.

2 Materials and methods

2.1 Ethics statement

All experimental protocols in this study (including the sample
collection protocol), were approved by the Ethics Committee of
Institute of Animal Husbandry, Xinjiang Academy of Animal
Husbandry Sciences (China) under permission no. 2025001.

2.2 Animals and whole genome sequencing
of pools

A total of 49 healthy two-year-old ewes of different coat fleece
types were included in the study. Of these, 24 Hetian sheep (double-
coated fleece, HT group) were from Tumuya village, Oytograk
township, Yutian county, Xinjiang, and 25 Chinese Merino sheep
(single-coated fleece, CM group) were from the Gongnaisi breeding
sheep farm, Xinjiang (Figure 1).

Genomic DNA was extracted from the ear tissue of each sheep
using the QIAamp DNA Mini Kit (QIAGEN, 51304, Hilden,
Germany). DNA from each group member was pooled in
equimolar amounts (2 μg/sample) to construct the two pair-end
sequencing libraries (insert sizes approximately ~0.5 kb, with
effective insert sequencing concentration >2 nM). Library
construction and sequencing were performed on an Illumina
HiSeq 2000TM platform supplied by Beijing Novogene
Bioinformatics Technology Co.

2.3 Genome sequence processing, mapping
and SNP analysis

Raw paired reads were preprocessed to remove adapters and
low-quality sequences based on the following criteria: (a) reads with
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more than 50% of bases having a Qphred score ≤ 5; (b) reads
containing ≥10% unidentified nucleotides (N); and (c) reads
with >10 nucleotides aligning to adapter sequences. High-quality
reads were then mapped to the sheep reference genome (ARS-UI_
Ramb_v2.0) using BWA, and the resulting SAM files were cleaned
with SAMtools (v1.21) (Danecek et al., 2021) to remove duplicates.
Variants were further identified using GATK (v4.1.9.0) (McKenna
et al., 2010) with HaplotypeCaller, CombineGVFs, and
GenotypeGVFs. To annotate SNPs and classify mutations
(nonsense, nonsynonymous, and synonymous), ANNOVAR
(Wang et al., 2010) was employed. Additionally, loci were refined
using VCFtools (Danecek et al., 2011) to exclude those with a minor
allele frequency (MAF) < 5% or a genotype deletion rate >5%

2.4 Selective sweep analysis

Selective sweep analysis was conducted using CM as the
reference and HT as the target population to identify genes
associated with wool traits. To screen genomic regions, total SNP
counts were calculated for different window sizes (10, 20, 30, 40, and
50 KB). When the window size exceeded 40 KB, the SNP count
dropped below 20 (Supplementary Figure S1), indicating that a
40 KB window was optimal for the analysis.

The differentiation index (Fst) and nucleotide diversity (θπ) were
calculated using VCFtools (v0.1.16) with parameters--fst-window-
size 40,000 and--fst-window-step 20,000. These calculations divided
the genome into intervals of 40 KB with a 20 KB step. Candidate
genomic regions were identified based on the following criteria:
regions with extreme θπ ratios (5% left-tailed or 95% right-tailed)
and significantly high Fst values (top 5%). Overlapping areas of low
θπ ratios and high Fst values were identified as selective regions for
HT, while overlaps of high θπ ratios and high Fst values were
identified for CM. Genes within these candidate regions were
designated as candidate genes (CGs).

2.5 RNA extraction and library construction

Using a circular skin sampler with a radius of 0.44 mm, collect
skin sample from the posterior edge of the left foreleg scapula and
store it in a cryovial containing RNA protective solution. Total RNA
was extracted from 20 skin samples (10 from HT and 10 from CM
groups) using TRIzol reagent (Invitrogen, CA, United States). The
quality of the RNA samples was assessed, with results showing
OD260/280 ratios between 1.8 and 2.0, OD260/230 ratios above 2.0,
and RIN values ranging from 7.0 to 8.5 for all samples, indicating
they were suitable for further experiments.

Strand-specific libraries were constructed, with ribosomal RNA
removed to enhance circRNA library preparation by eliminating
linear RNA. The library was initially quantified using Qubit and
diluted to 1 ng/μL. The insert size was checked using the Agilent
2100 Bioanalyzer, showing a size range of 250–300 bp, as expected.
Once the insert size was confirmed, the effective concentration of the
library was accurately measured by qPCR. The concentration
exceeded 2 nM, ensuring the library met quality standards. The
twenty libraries were pooled and sequenced on the Illumina
platform at Novogene Bioinformatics Technology Co., Ltd.

2.6 RNA sequencing quality control
and analysis

FastQC was used to assess the quality of the raw RNA
sequencing reads. The data were then processed to remove
impurities and obtain clean reads for further analysis. Clean data
were aligned to the sheep reference genome (ARS-UI_Ramb_v2.0)
using HISAT2 (Kim et al., 2019). The transcripts were assembled
and quantified with StringTie (Pertea et al., 2015), and the
expression level of genes or transcripts was measured by
fragments per kilobase million (FPKM). Differentially expressed
genes (DEGs) were identified using edgeR (Robinson et al., 2010).
Genes were considered differentially expressed if they met the
criteria of |log2(fold change)| > 0 and p < 0.05.

2.7 Identification of key functional genes and
pathway enrichment

The intersections of candidate genes (CGs) and differentially
expressed genes (DEGs) were taken to identify key functional genes
(KFGs). These genes were then analyzed for pathway enrichment
using KEGG analysis on Kobas 3.0 (Bu et al., 2021), with Ovis_aries
selected as the background organism. The hypergeometric test/
Fisher’s exact test was used for statistical analysis, and pathways
with a p-value < 0.05 were considered significantly enriched. Plots
were generated using the R package ggplot2 (Villanueva and
Chen, 2019).

Additionally, DEGs were submitted to the STRING database
(Szklarczyk et al., 2023) to construct a protein-protein interaction
network. The interaction network was visually edited using
Cytoscape software (Smoot et al., 2011).

2.8 Machine-learning screening for
signature genes

Neural Network (NNET) algorithm is a computational model
inspired by biological neural systems and is widely used in tasks such
as pattern recognition, classification, and regression. This study
employed a Multilayer Perceptron (MLP) neural network for
biomarker discovery and classification modeling, utilizing gene
expression level as predictors to identify characteristic genes
distinguishing different populations (HT vs. CM). The analytical
framework comprised four key phases: data preprocessing, feature
selection, model training, and validation. All implementations were
conducted in R (v4.2.2) using the caret (v6.0-94) Kuhn, 2008 and
nnet (v7.3-19) packages.

2.8.1 Data preprocessing
The raw gene expression matrix was transposed to a sample ×

feature (gene) structure. An automated quantile-based criterion
determined logarithmic transformation requirements: log2(x+1)
transformation was applied to stabilize variance when either the
99th percentile exceeded 100 or the interquartile range surpassed
50 with a 25th percentile >0. In this study, the dynamic range of
expression values spanned [QX1, QX6] (QX denotes specific
quantile values), necessitating log2 transformation.

Frontiers in Genetics frontiersin.org03

Zhang et al. 10.3389/fgene.2025.1582244

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2025.1582244


2.8.2 Dataset partitioning
Stratified sampling allocated 70% of samples to the training set

and 30% to the independent test set, preserving class proportions
(Case/Control = 1:1) through the createDataPartition function from
the caret package. A fixed random seed (74,521) ensured
reproducibility.

2.8.3 Feature selection
A two-stage feature screening strategy was implemented:

(1) Initial Screening: Boruta algorithm (100 iterations) evaluated
global feature importance through statistical significance
testing (p < 0.01) using shadow features.

(2) Refined Selection: A 10 × 10 repeated cross-validated neural
network model was built on preselected features. Top
30 signature genes were identified via Variable Importance
Measure (VIM) rankings computed through the connection
weights algorithm, quantifying cumulative contributions of
features to output nodes.

2.8.4 Model construction and validation
(1) Hyperparameter Optimization: Grid search tuned hidden

layer neurons (size∈{5,10}) and weight decay coefficients
(decay∈{0.01,0.1}), optimized by the receiver operating
characteristic area under the curve (AUC).

(2) Training Protocol: Parallel computing acceleration
(doParallel package(v1.0.17)) enabled 5 × 20 repeated
cross-validation: The training set was randomly partitioned
into 10 folds, with 20 independent validation cycles to
mitigate sampling bias.

(3) Performance Evaluation: Independent test set metrics
included: Accuracy, AUC, Sensitivity and specificity.

2.8.5 Statistical analysis
All visualizations (feature importance plots, ROC curves) were

generated using ggplot2 (v3.4.2). Significance testing employed
DeLong’s algorithm for ROC curve comparisons, with p <
0.05 considered statistically significant.

3 Results

3.1 Summary of genome and transcriptome
sequencing

A total of 1,223.6 GB of clean data were obtained after genome
resequencing, with an average of 24.97 GB per sample. The mapping
rate across all samples ranged from 98.72% to 99.76%, and the
average genome coverage depth (excluding N regions) ranged from
8.69X to 12.12X. Coverage of at least one base was above 97.67%,
and coverage of at least four bases exceeded 91.54%. After mapping
to the reference genome, SNP annotation was performed using
ANNOVAR software, identifying 25,515,212 SNPs. The SNPs were
located in intergenic (46.68%), intronic (40.74%), and exonic
(1.59%) regions. The transition-to-transversion ratio (ts/tv) was
2.685, with 1816 exonic SNPs leading to stop-gain variations,
372 to stop-loss variations, and 154,692 to non-
synonymous mutations.

For RNA-seq analysis, over 2.036 billion reads were analyzed,
with 996 million from the HT group and 1.039 billion from the CM
group. Each sample contained over 100 million reads, ranging from
84 million to 107 million. After trimming, approximately
29.4 million reads were removed, ensuring high data quality. Of
the 2.006 billion clean reads, 1.036 billion (~92.5%) were aligned to
the genome, with 84.4% uniquely mapped and 8.1% mapped to
multiple locations. The alignment rates for individual samples
ranged from 89.2% to 94.7%. A summary of the RNA-seq
datasets and mapping results is provided in Supplementary Table 4.

3.2 Screening of key functional genes

The distribution of the genetic differentiation statistic Fst across the
genomes of Hetian sheep (HT) and Chinese Merino sheep (CM) is
summarized in Figure 2A and Supplementary Table 5. SNP annotation
(top 5% of Fst scores) using the ARS-UI_Ramb_v2.0 sheep genome
identified a total of 3,533 genes. Notable overlaps were found between
the Fst outliers and known QTLs associated with wool traits (e.g.,
KRT71, KRT74, IRF2BP2), reproductive traits (e.g., ASTN2, TSHR,
GTF2A1), and production traits (e.g., PSAP, CDH23, UBE2B), among
others (Supplementary Table 6).

The combined selective sweep analysis of nucleotide diversity (θπ)
and Fst yielded interesting results (Figure 2B; Supplementary Tables
7 and 8). The Fst and θπ ratio strategy revealed 949 genes in HT
(Figure 2B, blue points) and 951 genes in CM (Figure 2B, red points).
This analysis enabled complete differentiation of genes under selection
pressure in both the HT and CM groups during growth.

RNA-seq data from the skin transcriptomes of 10 HT
(experimental group) and 10 CM (control group) were
compared, revealing a total of 2,902 differentially expressed genes
(DEGs). Of these, 1,065 genes were upregulated and 1,837 were
downregulated (Figure 2C; Supplementary Table 9).

A Venn diagram (Figure 2D) based on candidate genes from the
Fst and θπ ratio and differential expression analysis identified
106 KFGs associated with single-coat fleece formation and
101 KFGs associated with double-coat fleece formation
(Supplementary Table 10).

3.3 GO and KEGG enrichment analysis
of KFGs

KFGs identified in the sheep genome and transcriptome using
Fst and θπ ratio and differential expression analysis were further
enriched for Gene Ontology (GO) and KEGG pathways.

For the double-coated fleece trait, 17 significant terms were
identified (Figure 3A; Supplementary Table 11), including 16 KEGG
pathways and 1 GO term (p < 0.05). Key pathways include
Endocytosis (oas04144, PDGFRA, RABEP1, ARAP2, EPS15L1,
RAB11FIP4), Toll-like receptor signaling (oas04620, MAP2K3,
TICAM1, LY96), Cell cycle (oas04110, CCNB2, CDC6, RAD21),
Cellular senescence (oas04218, MAP2K3, CCNB2, ITPR1),
Pertussis (oas05133, LY96, TICAM1), Focal adhesion (oas04510,
ITGA1, PDGFRA, FLNC), PD-L1 expression and PD-1 checkpoint
pathway in cancer (oas05235, MAP2K3, TICAM1) and
Proteoglycans in cancer (oas05205, FLNC, IQGAP1, ITPR1).
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FIGURE 1
Geographical distribution of Hetian and Chinese Merino sheep, sampling locations and coat characteristics. (A) Geographic distribution and
sampling locations. (B) Chinese merino sheep. (C) Single-coated fleece from Chinese Merino sheep. (D) Hetian sheep. (E) Double-coated fleece from
Hetian sheep.

FIGURE 2
(A) Fst analysis of Manhattan (Fixation Indices: 0–0.05: genetic differentiation between populations is small and negligible. 0.05–0.15: Moderate
genetic differentiation between populations. 0.15–0.25: Genetic differentiation between populations. >0.25: There is significant genetic differentiation
between populations). (B) Fst and θπ ratio strategy selection signature analysis results are displayed (Note: The abscissa is the Log2π ratio, the ordinate is
the Fst score, which corresponds to the frequency distribution map above and the frequency distribution map on the right, respectively, and the dot
plot in the middle represents the corresponding Fst and Log2π ratio in different windows. The blue and redareas are the top 5% areas selected by Fst and
Log2Pi ratio, blue represents Hetian sheep, and red represents Chinese merino sheep). (C) HT vs. CM mRNA gene level differential analysis results. (D)
Venn diagram for Fst and θπ ratio and differential expression analysis (red: CM Fst and θπ ratio; blue: HT Fst and θπ ratio; grey: DEGs).
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For the single-coated fleece trait, 31 significant terms were
identified (Figure 3B; Supplementary Table 12), including
25 KEGG pathways and 6 GO terms (p < 0.05). These included
Endocrine resistance (oas01522, TP53, EGFR, NCOR1), MAPK
signaling pathway (oas04010, EGFR, MAP4K2, STMN1, TP53),
protein processing in the endoplasmic reticulum (oas04141,
SAR1B, RPN2, HSP90B1), DNA replication (oas03030, POLA1,
FEN1), ErbB signaling pathway (oas04012, EGFR, PAK1) and
negative regulation of cell growth (GO: 0030308, TP53).

3.4 Protein protein interaction network
of DEGs

To further investigate the relationships between KFGs, the selected
KFGs were imported into the STRING database to construct the

protein-protein interaction (PPI) network, and Cytoscape was used
to visualize the network. The cytoHubba plugin (Chin et al., 2014) was
applied for network topology and node centrality analysis, allowing the
identification of hub genes and subnetworks through network
algorithms.

The analysis revealed that 42 KFGs formed six distinct PPI
networks associated with the double-coated fleece trait (Figure 4A;
Supplementary Table 13). Key genes such as PDGFRA, RABEP1,
EPS15L1, TICAM1, LY96, CCNB2, CDC6, RAD21, ITGA1, and
FLNC were present in these networks. In the first reciprocal
network, the KFGs were primarily enriched in pathways such as
regulatory actin cytoskeleton, NF-kappa B signaling, Toll-like
receptor signaling, and MAPK signaling (Figure 3C; Supplementary
Table 14). Among these genes, there was an interaction relationship
between the PDGFRA and EPS15L1, RABEP1 and EPS15L1, CCNB2
and CDC6, CCNB2 and RAD21, and ITGA1 and FLNC.

FIGURE 3
(A) The double-coated fleece trait (HT); (B) The single-coated fleece trait (CM); (C) The first interaction network of the double-coated fleece trait
(HT); (D) The first interaction network of the single-coated fleece trait (CM).
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A total of 43 differentially expressed genes formed seven
protein-protein interaction (PPI) networks for the single-coated
fleece trait (Figure 4B; Supplementary Table 15). Key genes such
as TP53, EGFR,NCOR1, STMN1, FEN1, PAK1,HSP90B1, and RPN2
were included in these networks. In the first reciprocal network, the
KFGs were primarily enriched in pathways like MAPK signaling,
thyroid hormone signaling, PI3K-Akt signaling, protein processing
in the endoplasmic reticulum, and negative regulation of cell growth
(Figure 3D; Supplementary Table 16). Among these genes, there was
an interaction relationship between the TP53 and EGFR, EGFR and
HSP90B1, EGFR and PTCH1, HSP90B1 and RPN2, and NCOR1
and IRF2BP2.

3.5 Machine learning analysis of key
functional gene

Machine learning using the Neural Network (NNET) algorithm
was applied to the 106 (single-coated fleece) and 101 (double-coated
fleece) KFGs identified earlier, selecting the top 30 feature genes for
each trait (Figures 4C, D). Among these, IRF2BP2, TP53, FEN1,
ALOX12, LY96, FLNC, and ATP5ME were identified as highly
important for wool growth traits and environmental adaptation.
The results of transcriptome differential gene analysis also showed
that the expression of these genes in HT and CM was extremely
different (Figure 5). The performance of the constructed models was

evaluated using tenfold cross-validation repeated ten times. Area
Under the Curve (AUC) values were calculated based on Receiver
Operating Characteristic (ROC) curves (Supplementary Figure S2).
Detailed data used for the machine learning analysis is provided in
Supplementary Tables 17 and 18.

4 Discussion

4.1 Enrichment analysis of KFGs in Chinese
Merino and Hetian sheep

Enrichment analyses revealed that the KFGs enriched in Chinese
Merino sheep were predominantly associated with pathways related
to wool growth traits. In contrast, the KFGs enriched in Hetian
sheep were linked not only to wool growth but also to adaptive traits.
These differences reflect the distinct environments in which the two
breeds have evolved. The Hetian sheep production region is
characterized by a temperate continental desert climate with
drought, high temperatures, and minimal rainfall. Such extreme
climatic conditions, combined with long-term selective breeding,
have resulted in the development of an exceptional local breed with
remarkable drought and heat tolerance as well as high adaptability.
On the other hand, the Chinese Merino sheep production region
features a temperate continental climate with relatively mild
ecological conditions. Decades of breeding efforts have focused

FIGURE 4
(A) Protein-protein interaction networks in the double-coated fleece trait. (B) Protein-protein interaction networks in the single-coated fleece trait.
(C) Feature genes for double-coated fleece. (D) Feature genes for single-coated fleece. The abscissa coordinates show the importance of the features,
sorted by the importance of the variables in descending order.
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on optimizing wool yield and fiber quality, particularly in terms of
fineness, length, and crimp (Ciani et al., 2015; Wang et al., 2014).

In Chinese Merino sheep, 15 key functional genes (KFGs),
including TP53, FEN1, EGFR, TCF7, HSP90B1, PTCH1, NCOR1,
MAP4K2, STMN1, PAK1, DNMT3B, POLA1, SAR1B, RPN2, and
SPI1, are involved in endocrine resistance, the MAPK signalling
pathway, protein processing in the endoplasmic reticulum, the ErbB
signalling pathway, and the negative regulation of cell growth, across
21 signalling pathways. These KFGs are likely to include potential
regulators of wool growth in Chinese Merino sheep. Among these,
the MAPK signalling pathway is well known for its close association
with wool growth and development (Zhang et al., 2020; Öztürk et al.,
2015; Sulayman et al., 2019; Lv et al., 2020). Endocrine resistance
involves alterations in multiple signalling pathways and gene
expression, with the ErbB pathway playing a key role in
regulating cell proliferation and differentiation (Lu et al., 2021).
Protein processing in the endoplasmic reticulum encompasses
protein folding, modification, and transport (Potter and
Nicchitta, 2002), processes that are critical for the proper
formation of wool fibres (Yue et al., 2023). Additionally, the
negative regulation of cell growth is essential for maintaining
tissue homeostasis and preventing abnormal cell proliferation
(Rousseau et al., 1996).

In Hetian sheep, 21 key functional genes (KFGs), including
MAP2K3, ALOX12, ARAP2, ATP2B2, BHLHE40, CALD1, CCNB2,
CDC6, EPS15L1, FLNC, HMGCS1, IQGAP1, ITGA1, ITPR1, LY96,
PDGFRA, PRKCE, RAB11FIP4, RABEP1, RAD21, and TICAM1, are

involved in aldosterone synthesis and secretion, the Toll-like
receptor signalling pathway, the cell cycle, the calcium signalling
pathway, focal adhesion, and the GnRH signalling pathway across
17 signalling pathways. These pathways are primarily associated
with adaptation and wool growth in Hetian sheep. Aldosterone is an
important corticosteroid that promotes sodium reabsorption and
water retention, playing a critical role in the survival of Hetian sheep,
which are adapted to saline soils (Bizzarri et al., 2016). The Toll-like
receptor signalling pathway is vital to the immune system, with
TLRs being central to inflammation, immune cell regulation, cell
survival and proliferation, as well as adaptive immune responses by
directing the differentiation of naïve T cells into effector T cells
(Kulkarni et al., 2011; Kumar et al., 2024). The cell cycle pathway
responds to external signals, such as growth factors, cytokines, and
cell-to-cell contact, to regulate cell growth and division (Maddika
et al., 2007). The GnRH signalling pathway is key in regulating the
production and release of reproductive hormones, activating
intracellular signalling cascades, and influencing both
reproductive function and metabolic homeostasis (Kraus
et al., 2001).

4.2 Genes associated with coat fleeced type
in sheep

As early as 8,000 years ago, sheep were known to have a brown
coat consisting of an outer layer of kemps (coarse hairs) that shed

FIGURE 5
Expression levels of key genes associated with HT and CM coat types and wool growth traits. (A) IRF2BP2 gene. (B) EGFR gene. (C) FEN1 gene. (D)
TP53 gene. (E) STMN1 gene. (F) ALOX12 gene. (G) BHLHE40 gene. (H) LY96 gene. (I) AT5ME gene.
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annually, along with a fine, woolly undercoat that also shed
(Meadows et al., 2006). Over time, as food sources became more
secure and sheep were domesticated, the characteristics of their wool
evolved. It shifted from being coarse to fine, from short to long, and
the coat fleece transitioned from double-layered to single-layered. In
the present study, we identified two genes, IRF2BP2 and EGFR, that
are associated with coat fleece type.

IRF2BP2 is involved in various cellular functions, including
apoptosis, survival, and cell differentiation. It also plays a role in
regulating the Hippo signaling pathway and acts as a tumor
suppressor in hepatocellular carcinoma. Given the significant
selection differences observed in the IRF2BP2 gene in our study,
we propose that IRF2BP2 plays a pivotal role in the evolutionary
transition from double-coated fleece to single-coated fleece. This is
supported by previous studies, such as those by Demars et al. (2017);
Lv et al. (2022); Sun et al. (2024), which identified mutations in
IRF2BP2 that are linked to wool traits, further suggesting its role in
fleece composition.

EGFR (epidermal growth factor receptor) is a member of the
HER family, known for its crucial role in skin and hair development.
Research has demonstrated that subcutaneous injection of EGF into
neonatal mice can delay the development of hair follicles and the
epidermis. In adult sheep, EGF injection not only inhibits hair fiber
production and stimulates mitosis in basal epidermal cells, but also
induces hair follicle degeneration. Further studies in mice have
shown that EGFR deficiency leads to abnormal expression of
LEF1, which causes differentiation disorders in medullary cells
(Mak and Chan, 2003; Amberg et al., 2019). In Hetian sheep, the
EGFR-LEF1 pathway may regulate the alternating appearance of
myelinated and unmyelinated regions within certain hair follicle
units, contributing to the distinctive structure of heterotypical hair.

4.3 Genes related to wool growth and
adaptation

The TP53 gene encodes the p53 protein, a key regulator of cell
division and cell death. It is involved in several signaling pathways
directly related to wool growth, including the MAPK, Wnt, and
PI3K-Akt pathways (Amberg et al., 2019; Chamcheu et al., 2019).
Another critical gene, FEN1, encodes a flap endonuclease-1 enzyme
that plays a central role in maintaining genome stability and
replication. FEN1 interacts with various proteins required for
genome stability. In highly proliferative tissues such as bone
marrow, testis, and thymus, FEN1 expression is notably high.
Studies of fusion gene expression in the epidermis (skin explants)
of adult Fen1y/y mice revealed that proliferating keratin-forming
cells were confined to the basal lamina and peri-follicular rondelles,
suggesting that FEN1 is crucial for hair follicle cell proliferation and
hair growth (Kleppa et al., 2012). Stathmin 1 (STMN1) is a
ubiquitously expressed cytosolic phosphoprotein involved in
integrating diverse intracellular signaling pathways that control
cell proliferation, differentiation, and activity. Depletion of
Stmn1 leads to increased apoptotic death, accelerated
degenerative transformation, and premature inhibition of hair
follicle proliferation, highlighting its critical role in the hair
follicle cycle (Yang et al., 2022; Zhang et al., 2021; Bichsel et al.,
2016). Achidonate 12-lipoxygenase (ALOX12) is downregulated in

senescent hair follicles. Its inhibition can prevent the breakdown and
conversion of arachidonic acid in hair follicles, thereby promoting
stratum corneum maturation (Zheng et al., 2020). BHLHE40 Basic
Helix-Loop-Helix Family Member E40 plays a pivotal role in cell
differentiation. Knockdown of BHLHE40 impairs the ability of
epidermal cells to regenerate hair follicles (Wang et al., 2024).
LY96, also known as MD2, is a small glycoprotein expressed by
macrophages and dendritic cells. It is functionally related to Toll-like
receptor 4 (TLR4) and plays a significant role in innate immunity by
participating in the Toll-like receptor signaling pathway (Cao and
Yang, 2024). ATP5ME, a subunit of ATP synthase, is involved in
cellular energy metabolism and thermogenesis (Zhuang et al., 2023).

5 Conclusion

In summary, our research offers valuable insights into the
regulatory mechanisms underlying wool growth, coat fleece type,
and adaptability in wool growth observed in Hetian sheep. By
comparing genetic differences between Hetian and Chinese
Merino sheep, we identified both novel and previously reported
candidate genes through selective sweep analysis, transcriptome
differences, and machine learning approaches. In the Chinese
Merino sheep population, we identified candidate genes
associated with wool growth (TP53, FEN1, and STMN1) and coat
fleece type (IRF2BP2 and EGFR). In the Hetian sheep population, we
identified key functional genes (KFGs) related to wool growth
(ALOX12, BHLHE40, RICTOR, and PIP4K2A) and environmental
adaptation (LY96 and ATP5ME). Further research is required to
fully elucidate the complex interactions between these KFGs and to
develop effective strategies for their application in sheep
breeding programs.
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