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Background and objective: Gene expression analysis plays a critical role in lung
cancer research, offering molecular feature-based diagnostic insights that are
particularly effective in distinguishing lung cancer subtypes. However, the high
dimensionality and inherent imbalance of gene expression data create significant
challenges for accurate diagnosis. This study aims to address these challenges by
proposing an innovative deep learning-based method for predicting lung
cancer subtypes.

Methods:Wepropose amethod called Exo-LCClassifier, which integrates feature
selection, one-dimensional convolutional neural networks (1D CNN), and an
improved Wasserstein Generative Adversarial Network (WGAN). First, differential
gene expression analysis was performed using DESeq2 to identify significantly
expressed genes from both normal and tumor tissues. Next, the enhancedWGAN
was applied to augment the dataset, addressing the issue of sample imbalance
and increasing the diversity of effective samples. Finally, a 1D CNN was used to
classify the balanced dataset, thereby improving themodel’s diagnostic accuracy.

Results: The proposed method was evaluated using five-fold cross-validation,
achieving an average accuracy of 0.9766 ± 0.0070, precision of 0.9762 ± 0.0101,
recall of 0.9827 ± 0.0050, and F1-score of 0.9793 ± 0.0068. On an external GEO
lung cancer dataset, it also showed strong performance with an accuracy of
0.9588, precision of 0.9558, recall of 0.9678, and F1-score of 0.9616.

Conclusion: This study addresses the critical challenge of imbalanced learning in
lung cancer gene expression analysis through an innovative computational
framework. Our solution integrates three advanced techniques: (1) DESeq2 for
differential expression analysis, (2) WGAN for data augmentation, and (3) 1D CNN
for feature learning and classification. The source codes are publicly available at:
https://github.com/lanlinxxs/Exo-classifier.

KEYWORDS

lung cancer, gene expression, WGAN, imbalanced data, DESeq2, 1D CNN

OPEN ACCESS

EDITED BY

Yiming Meng,
China Medical University, China

REVIEWED BY

Xiuli Zhang,
Peking University, China
Zhuming Lu,
Jiangmen Central Hospital, China
Maoshu Bai,
Dazhou Integrated Traditional Chinese
Medicine andWestern Medicine Hospital, China
Fei Qin,
National Cancer Institute at Frederick (NIH),
United States

*CORRESPONDENCE

Lu Guo,
guoluhx@edu.uestc.edu.cn

RECEIVED 27 February 2025
ACCEPTED 14 April 2025
PUBLISHED 30 April 2025

CITATION

Zhan S, Yu H, Liu S, Qin K and Guo L (2025)
High-precision lung cancer subtype diagnosis
on imbalanced exosomal data via Exo-
LCClassifier.
Front. Genet. 16:1583081.
doi: 10.3389/fgene.2025.1583081

COPYRIGHT

© 2025 Zhan, Yu, Liu, Qin and Guo. This is an
open-access article distributed under the terms
of the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction in
other forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in this
journal is cited, in accordance with accepted
academic practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

Frontiers in Genetics frontiersin.org01

TYPE Original Research
PUBLISHED 30 April 2025
DOI 10.3389/fgene.2025.1583081

https://www.frontiersin.org/articles/10.3389/fgene.2025.1583081/full
https://www.frontiersin.org/articles/10.3389/fgene.2025.1583081/full
https://www.frontiersin.org/articles/10.3389/fgene.2025.1583081/full
https://www.frontiersin.org/articles/10.3389/fgene.2025.1583081/full
https://github.com/lanlinxxs/Exo-classifier
https://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2025.1583081&domain=pdf&date_stamp=2025-04-30
mailto:guoluhx@edu.uestc.edu.cn
mailto:guoluhx@edu.uestc.edu.cn
https://doi.org/10.3389/fgene.2025.1583081
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2025.1583081


1 Introduction

Previous studies on early lung cancer diagnosis have
predominantly focused on computed tomography (CT) imaging
(Atmakuru et al., 2024; Han et al., 2021). Recently, exosomes have
gained significant attention due to their widespread presence in
bodily fluids, exceptional stability, and rich biological content,
including proteins, DNA, mRNA, and non-coding RNA (Travis,
2020). As exosomes can mirror the characteristics of tumor cells,
they hold immense potential for non-invasive diagnostics (Alharbi
and Vakanski, 2023). Compared to traditional imaging and tissue
biopsy methods, the collection of exosomes is simple, safe, and
highly reproducible, providing a non-invasive means to reflect the
molecular characteristics of tumors. This gives exosomal gene
expression a significant advantage in early lung cancer screening,
particularly in detecting small tumors or asymptomatic patients at
early stages (Liu et al., 2024; Xu and Lu, 2024a; Xu and Lu, 2024b).
Exosomal detection technology demonstrates significant advantages
over conventional CT imaging and tissue biopsy in early cancer
diagnosis, particularly in terms of molecular sensitivity, clinical
operability, and multidimensional information acquisition. At the
molecular level, exosomes enable detection of early-stage lesions
smaller than 1 cm in diameter and carry specific biomarkers
including miR-21 and miR-155. From a clinical operational
perspective, the procedure requires only 2–5 mL of bodily fluid,
eliminating the invasiveness associated with biopsies and radiation
exposure from CT scans, while costing merely one-third of CT
examinations. Particularly noteworthy is that exosomal analysis can
advance the cancer diagnostic window by an average of more than
10 months compared to CT imaging and can identify circulating
tumor microclusters undetectable by conventional
radiological methods.

In recent years, significant advancements in deep learning and
machine learning have been made in analyzing lung cancer gene
expression, particularly in classifying and diagnosingmajor subtypes
of non-small cell lung cancer (NSCLC), such as adenocarcinoma
(AC) and squamous cell carcinoma (SCC). For example, in 2020, Fei
et al. combined feature selection algorithms, such as Monte Carlo
feature selection and genetic algorithms, with support vector
machines (SVMs) and deep neural networks (DNNs) to identify
high-information gene features and optimize classifiers through
incremental feature selection (Yuan et al., 2020). Also in 2020,
Satoshi Takahashi et al. integrated multi-omics data and deep
learning to enhance NSCLC prognosis prediction accuracy
(achieving an AUC of up to 0.99) while identifying potential
molecular biomarkers (Takahashi et al., 2020). In 2022, Liu et al.
proposed a KL-divergence-based gene selection method and
developed a deep neural network using Focal Loss as the loss
function, effectively improving classification performance (Liu
and Yao, 2022). Additionally, Negar Maleki et al. and Margarita
Kirienko et al. made progress in lung cancer feature selection and
classification by utilizing genetic algorithms combined with
k-nearest neighbors (k-NN) and radiogenomic analysis,
respectively (Maleki et al., 2021).

Despite these advances, many studies have focused on single-
type lung cancer prediction, with limited research on the
classification of different lung cancer subtypes. Furthermore,
existing methods often assume balanced data distribution,

limiting their effectiveness in handling imbalanced datasets.
High-dimensional gene expression data also present challenges,
including excessive redundancy and noise, which may lead to
model overfitting and reduced classification performance.
Moreover, the complex and nonlinear relationships between gene
expressions make it difficult to extract disease-relevant features and
suppress irrelevant ones. In recent years, Generative Adversarial
Networks (GANs) have gained attention in cancer diagnostics due to
their potential for augmenting small sample datasets (Sedigh et al.,
2019). However, their applications have predominantly focused on
image data, and their adaptability to high-dimensional features such
as exosomal gene expression remains underexplored (Khan
et al., 2023).

This study proposes a novel deep learning-based framework,
Exo-LCClassifier, designed to improve the diagnostic accuracy of
lung cancer subtyping using exosomal gene expression data. The
proposed method innovatively integrates DESeq2 for biologically
informed feature selection, a Wasserstein Generative Adversarial
Network (WGAN) for data augmentation and class balancing,
and a one-dimensional convolutional neural network (1D CNN)
for robust classification. In the first stage, DESeq2 is applied to
identify significantly differentially expressed genes between
normal and tumor samples, effectively reducing data
dimensionality and retaining informative biomarkers. Next,
WGAN is utilized to generate realistic synthetic samples,
addressing the problem of class imbalance and enhancing
model generalization. Finally, 1D CNN is employed to extract
hierarchical representations and accurately classify gene
expression patterns. Compared to existing machine learning
and deep learning approaches, Exo-LCClassifier demonstrates
consistently superior performance across multiple metrics,
including accuracy, recall, and F1 score. These results
highlight the model’s potential as a powerful and non-invasive
diagnostic tool for lung cancer subtyping. Furthermore, this
study addresses a critical gap in the current literature by
introducing a fully integrated, data-driven pipeline tailored for
exosomal RNA-seq analysis in oncology.

2 Methods

The proposed Exo-LCClassifier, follows the workflow shown in
Figure 1. The process begins with differential gene expression
analysis (DESeq2 (Love et al., 2014)) for data preprocessing,
aimed at identifying significantly differentially expressed gene
features between normal and tumor tissues, thereby simplifying
high-dimensional data and extracting key information. Next, during
the imbalanced learning phase, a Wasserstein Generative
Adversarial Network (WGAN) is employed to generate new
samples, balancing the distribution of the training dataset and
effectively augmenting the minority class data. The balanced
dataset is then used to train a custom-designed one-dimensional
convolutional neural network (1D CNN). The model, after
optimization, is capable of uncovering latent patterns in gene
expression features and making accurate classifications. Finally,
the trained 1D CNN model is applied to the test dataset to
generate lung cancer diagnostic results. This method
comprehensively addresses the challenges of high-dimensional
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data and class imbalance, providing a robust framework for accurate
lung cancer diagnosis.

Each module of the Exo-LCClassifier was compared with
similar modules from other methods to evaluate
improvements at each stage. The differential expression
analysis (DESeq2) used in Exo-LCClassifier was compared
with other feature selection techniques (such as mutual
information) to assess its ability to identify relevant gene
features. The data imbalance handling module using WGAN
in Exo-LCClassifier was compared with oversampling
techniques like SMOTE and ADASYN from other methods to
evaluate the effectiveness of the proposed method in balancing
the data. Finally, the one-dimensional convolutional neural
network (1D CNN) model in Exo-LCClassifier was compared
with classification models used in other methods (such as
decision trees and support vector machines) to highlight the
advantage of deep learning in capturing complex patterns in gene
expression data. Additionally, the final Exo-LCClassifier model was
compared with three methods (NS-Forest, SPLR, and ZIPLDA)
(Liu et al., 2023; Aevermann et al., 2021; Lambert, 1992), which

were chosen as benchmarks due to their proven effectiveness in
similar classification tasks.

2.1 Data collection and processing

In the data collection and processing phase, sample data were
initially obtained from both The Cancer Genome Atlas (TCGA) and
the Gene Expression Omnibus (GEO) databases. Specifically, data
from the LUSC and LUAD projects within TCGA and additional
lung cancer datasets from GEO were utilized. These samples contain
RNA-seq-based gene expression profiles, with each sample
representing a set of gene expression values. During the data
extraction process, raw gene expression values were obtained
from each sample and grouped accordingly. All samples were
categorized into three groups: normal tissue, lung
adenocarcinoma (LUAD), and squamous cell carcinoma (LUSC),
facilitating subsequent analysis and comparison.

For data processing, normalization was applied to mitigate
measurement discrepancies across different samples. This step

FIGURE 1
Exo-LCClassifier Architecture overview.

FIGURE 2
WGANs network architecture.
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ensured that gene expression values were comparable across all
samples. Common normalization techniques, including log
transformation and Z-score standardization, were used to

effectively eliminate batch effects and systematic biases, thereby
providing more consistent and reliable data for downstream analysis
and model development.

FIGURE 3
1D CNN network architecture.

FIGURE 4
Heatmap of partial features.
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2.2 DESeq2-based feature selection

The primary goal of feature selection in gene expression analysis
is to identify the most relevant genes that differentiate between
different tissue types, such as normal tissues and various cancer
subtypes. This process reduces the dimensionality of the data,
removing redundant or irrelevant features, which can improve
the performance of machine learning models and simplify
subsequent analyses.

With the rapid advancement of gene sequencing technology, the
scale of gene expression data has expanded significantly. These data
typically exhibit a high-dimensional structure, where each column
represents a tissue sample, each row corresponds to a gene, and the
feature values reflect gene expression levels. Despite the rich

biological information contained in high-dimensional gene
expression data, their analysis poses several challenges (Goveia
et al., 2020).

On one hand, the high dimensionality often includes substantial
redundancy and noise, which not only increases computational
complexity but also reduces model robustness, potentially leading
to overfitting and diminished classification performance (Wei et al.,
2023). On the other hand, the limited number of samples
exacerbates the issue of sparsity, further restricting the
generalization capability of traditional machine learning models
(Pes, 2020). Therefore, optimizing model performance under
constrained sample conditions requires effective dimensionality
reduction techniques.

Differential gene expression (DEG) analysis is an efficient
feature selection method that identifies significantly differentially
expressed genes (Muzellec et al., 2023).This approach filters out
redundant information and selects critical features, providing
refined inputs for model training, thereby improving
classification accuracy and data adaptability (Bezuglov et al.,
2023). In this study, we employed DESeq2 to perform differential
expression analysis on gene expression data, identifying genes with
significant differences among normal tissues, lung adenocarcinoma
(LUAD), and squamous cell carcinoma (LUSC). Specifically,
differential expression analysis was conducted on pairwise
combinations of the three tissue types to identify gene features
that exhibit significant differences between tissue groups.

DESeq2 identifies statistically significant differentially expressed
genes (DEGs) by applying dual thresholds: an absolute log2 fold
change (|log2FC| > 2) (indicating 2-fold differential expression) and
Benjamini–Hochberg adjusted p-value <0.05. These stringent
criteria effectively eliminate noise from random variations while
retaining biologically meaningful signals. To construct a
comprehensive feature set, we integrated DEGs identified in all
pairwise comparisons (normal vs. LUAD, normal vs. LUSC, and
LUAD vs. LUSC) through a union approach. This integrated feature
space captures both common and subtype-specific molecular

FIGURE 5
Volcano plot of features for cancer samples.

FIGURE 6
The real data distribution and the data distribution generated by WGANs. Comparison of Original Data Distribution (a) and Generated Data
Distribution by WGANs (b).
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signatures, providing: enhanced discriminative power for lung
cancer diagnosis, and a biologically interpretable foundation for
subsequent classification modeling.

2.3 Adjusting imbalanced data using WGANs

To address the issue of data imbalance and enhance the model’s
diagnostic performance on lung cancer exosome gene expression
data, this study employs an improved Wasserstein Generative
Adversarial Network (WGAN) for data augmentation. By
generating synthetic data that closely resembles the real data
distribution, WGAN effectively increases the training sample size,
thereby improving the robustness of the classification model and
enhancing its ability to distinguish between lung cancer subtypes.

Generative Adversarial Networks (GANs) are a type of deep
learning architecture composed of two neural networks: a generator
G and a discriminator D. These networks are trained in an
adversarial manner to produce synthetic data that approximates
the real data distribution. The generator G takes random noise z as
input and generates fake samples G(z), while the discriminator D
attempts to classify whether an input sample originates from the real
data distribution or is generated by G.

During training, the generator aims to produce samples that are
as realistic as possible to “fool” the discriminator, while the
discriminator strives to accurately distinguish real data from
generated data. The adversarial training objective is
mathematically described in Equation 1:

min
G

max
D

V D,G( ) � Ex~pdata logD x( )[ ]

+ Ez~pz log 1 −D G z( )( )( )[ ] (1)

In this context, pdata represents the distribution of real data, and
pz denotes the noise distribution used as input to the generator.
Through this adversarial process, the generator gradually produces
samples that approximate the real data distribution. Wasserstein
GAN (WGAN) improves upon traditional GANs by addressing
their training instability. WGAN introduces the Wasserstein
distance (also known as Earth Mover’s Distance) to measure the
divergence between the real data distribution and the generated data
distribution. This adjustment significantly enhances the quality of
the generated samples (Weng, 2019). The loss function of WGAN is
formulated as Equation 2:

min
G

max
D∈D

Ex~pdata D x( )[ ] − Ez~pz D G z( )( )[ ] (2)

In WGAN, the discriminator (or the critic D) is constrained to be a
1-Lipschitz function, which is typically achieved through weight
clipping. WGAN’s advantages lie in its smoother loss function,
enabling the generator to receive more stable gradients, even when
the sample distribution is imbalanced. This results in the generation
of high-quality samples, which in turn improves the performance of
classification models.

Traditional GANs and WGANs often employ convolutional
neural networks (CNNs) as the primary architectures for both the
generator and the discriminator, especially for tasks involving image
data. However, the structural characteristics of gene expression data
differ significantly from image data. Genes are not arranged in a

fixed spatial relationship, and the correlations between genes are
relatively low, which makes CNNs’ local receptive field capability
less effective for gene expression data.

To address this, this study introduces tailored modifications to
WGAN, replacing CNNs with deep fully connected neural networks
(FCNNs) as the architectures for both the generator and
discriminator. This adjustment better accommodates the unique
characteristics of gene expression data. Furthermore, the model
structure and parameters were optimized to enhance WGAN’s
ability to handle imbalanced learning and improve classification
performance on cancer gene expression datasets.

The improved Wasserstein Generative Adversarial Network
(WGAN) used in this study consists of a generator and a
discriminator, as shown in Figure 2. The generator receives
random noise as input and aims to generate synthetic data that
closely resembles the real gene expression data distribution. The
discriminator, on the other hand, distinguishes whether the input
data comes from the real distribution or the generator’s output. The
network is structured with four layers for both the generator and
discriminator, and the training is carried out with a learning rate of
0.0001, a batch size of 16, and a total of 200 epochs. The model also
uses a clipping parameter of 0.01 to maintain the stability of the
Wasserstein distance during training. Through adversarial training
between the generator and the discriminator, the generator
progressively produces synthetic samples that approximate the
real data distribution, thereby enhancing the model’s diagnostic
performance on lung cancer datasets.

This approach leverages the strengths of WGAN while
addressing its limitations in handling non-image data, offering a
robust framework for analyzing imbalanced cancer gene
expression datasets.

In the generator network, random noise input is mapped to a
high-dimensional gene expression feature space. The generator
comprises multiple fully connected layers, employing the
LeakyReLU activation function to enhance the model’s non-
linear representation capability and generation quality.
Specifically, the generator first maps 100-dimensional random
noise to a 2960-dimensional feature space through a linear
transformation. This output is then processed through two
additional fully connected layers, which increase the model’s
depth and complexity. The final output is a 2960-dimensional
synthetic gene expression dataset.

The discriminator takes real or generated gene expression data
as input. Its architecture similarly consists of multiple fully
connected layers, with each layer followed by a LeakyReLU
activation function. The discriminator’s objective is to continually
optimize its classification ability to accurately distinguish real data
from generated data. During training, the discriminator provides
feedback to the generator through backpropagation, guiding it to
produce more realistic data.

To ensure the stability and efficiency of the adversarial training
process between the generator and the discriminator, RMSprop
optimizer is used for parameter optimization, with the learning rate
set to 0.0001. This optimization strategy effectively balances the
convergence and stability of the model during training.

This network design enables the generator to produce gene
expression data that closely resembles the real distribution. By
significantly expanding the sample size, it addresses the data
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imbalance issue and further enhances the performance of the model
in the diagnostic task for lung cancer exosome gene expression data.

2.4 Classification using 1D CNN

The purpose of employing a one-dimensional convolutional
neural network (1D CNN) in this study is to leverage its ability
to automatically extract meaningful features from high-dimensional
gene expression data, thereby enhancing diagnostic accuracy and
efficiency. By exploiting the latent patterns within the gene
expression profiles, the 1D CNN enables a more effective
classification of lung cancer subtypes, providing a robust model
that can handle the complex and high-dimensional nature of
genomic data.

In the classification stage, this study employed a one-
dimensional convolutional neural network (1D CNN) as the
classification model to fully exploit the latent features of gene
expression data and enhance diagnostic performance. By
applying convolution operations in a one-dimensional feature
space, the 1D CNN effectively captures patterns and trends in
gene expression levels while preserving the structural
characteristics of the data.

Compared to traditional classification methods, 1D CNNs have
the advantage of automatically extracting key features, reducing
dimensionality, and minimizing redundant information (24, .). This
approach significantly improves the model’s accuracy and efficiency,
making it particularly suitable for analyzing high-dimensional and
complex gene expression datasets.

The architecture of the 1D CNN consists of several key
components aimed at maximizing feature extraction and
classification performance, as illustrated in Figure 3. Initially, the
input gene expression data passes through a one-dimensional
convolutional layer with 16 output channels and three
convolutional kernels of size 3. This layer is responsible for
extracting local feature patterns from the input data. Next, a
batch normalization layer is applied to normalize the features
output by the convolutional layer, ensuring that the distributions
of each layer’s outputs are similar, thus preventing issues like
vanishing or exploding gradients. Subsequently, the ReLU
activation function is used to introduce non-linearity, enhancing
the network’s expressive power. A max-pooling layer is then added
to downsample the convolutional feature maps, reducing the feature
dimensions while retaining the most critical spatial information.

To further enhance the model’s focus on important feature
regions, a spatial attention layer is incorporated. This layer
automatically applies a weighted focus to the most critical areas
for classification, thereby improving the quality of feature
representation. To prevent overfitting and improve the model’s
generalization ability, a dropout layer is added before the fully
connected layer. This layer reduces model complexity by
randomly dropping a portion of the neurons, thus improving the
model’s performance on unseen data.

The network training process utilizes cross-entropy as the loss
function and the Adam optimizer for parameter updates. The
learning rate is set to 0.001, and the batch size is set to 16. To
ensure the model’s generalizability, early stopping is applied to
prevent overfitting to the training set. Additionally,

hyperparameters such as learning rate and batch size are
optimized through parameter selection via the validation set.
Ultimately, after training and validating on preprocessed and
balanced gene expression data, the 1D CNN establishes an
optimized classification framework capable of distinguishing
between different lung cancer subtypes, such as adenocarcinoma
and squamous cell carcinoma. Experimental results demonstrate
that the 1D CNN-based classification approach exhibits outstanding
performance across various tissue types, providing robust support
for accurate lung cancer subtype diagnosis.

2.5 Evaluation metrics

In this study, to comprehensively evaluate the performance of
the proposed Exo-LCClassifier, we primarily use the following four
evaluation metrics: accuracy, precision, recall, and F1-score. These
metrics are calculated based on the confusion matrix. Accuracy
refers to the proportion of correctly classified samples out of the total
samples, as shown in Equation 3:

Accuracy � TP + TN
TP + FP + FN + TN

(3)

Precision quantifies the fraction of true positives among all predicted
positives, as shown in Equation 4:

Precision � TP
TP + FP

(4)

Recall (Sensitivity) measures the fraction of true positives
correctly identified, as defined in Equation 5:

Recall � TP
TP + FN

(5)

F1-score balances precision and recall via their harmonic mean, as
formulated in Equation 6:

F1 − score � 2 ×
Precision × Recall
Precision + Recall

(6)

In lung cancer diagnosis, accuracy, precision, recall, and F1-score
are key metrics for evaluating model performance. Accuracy
provides an overview of the model’s overall performance,
reflecting the proportion of correct predictions across all
samples. Precision focuses on evaluating the reliability of the
model’s positive predictions, while recall measures the model’s
sensitivity in identifying positive samples, directly influencing the
detection rate of potential cases. In medical diagnostics, false
negatives are particularly critical as they can cause patients to
miss the optimal treatment window, making improving recall
crucial. F1-score, as the harmonic mean of precision and recall,
offers a more comprehensive evaluation for imbalanced datasets.
By combining these metrics, the diagnostic model’s effectiveness
can be more accurately assessed, providing a scientific basis for
doctors and optimizing lung cancer screening and
diagnostic decisions.

This suite of metrics, encompassing true positives, false
positives, true negatives, and false negatives, thoroughly appraises
the deep learning model’s capabilities in the realm of image semantic
segmentation.
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3 Experiments and results

3.1 Dataset

The dataset utilized in this study was derived from The Cancer
Genome Atlas (TCGA) database, focusing on two major lung cancer
projects: LUSC (lung squamous cell carcinoma) and LUAD (lung
adenocarcinoma). The LUSC project included 553 samples, while
the LUAD project comprised 600 samples, resulting in a combined
dataset that offers comprehensive RNA-seq-based gene expression
profiles. These datasets encompass 60,660 features representing gene
expression levels. The samples were systematically categorized into
three groups: normal tissue samples, lung adenocarcinoma samples,
and squamous cell carcinoma samples. Additionally, data from the
GEO (Gene Expression Omnibus) database were incorporated,
which included 194 samples, further enhancing the dataset’s
diversity and providing an external validation set for model
testing. This combined dataset offers a robust foundation for the
analysis and classification of lung cancer subtypes based on gene
expression data.

3.2 1D CNN vs. baseline models

We evaluated the performance of our model against several
traditional machine learning models, including Decision Tree
(Quinlan, 1996), K-Nearest Neighbors (KNN) (Kramer and
Kramer, 2013), Linear Discriminant Analysis (LDA)
(Xanthopoulos et al., 2013), Naive Bayes (Webb et al., 2010),
Random Forest (Rigatti, 2017), Support Vector Machine (SVM)
(Hearst et al., 1998), and Logistic Regression (Nick and Campbell,
2007). According to the results in Table 1, we compared the
performance of traditional models with the one-dimensional
convolutional neural network (1D CNN) in lung cancer
diagnosis. Among the traditional models, Linear Discriminant
Analysis (LDA) achieved the best performance, demonstrating
the highest or near-highest metrics in accuracy, precision, recall,
and F1-score, with an accuracy of 0.9246. Random Forest also
showed robust performance, maintaining consistently high results
with an accuracy of 0.9081. Support Vector Machine (SVM)
achieved an accuracy of 0.8925, with precision and F1-score
comparable to those of LDA and Random Forest.

Other traditional models included Naive Bayes, which achieved
an accuracy of 0.8847, demonstrating moderate performance across
all metrics, and Decision Tree with an accuracy of 0.8959. K-Nearest
Neighbors (KNN) achieved the lowest accuracy among the models,
with an accuracy of 0.8222. In contrast, the 1D CNN achieved
comparable or superior metrics across all evaluation criteria, with an
accuracy of 0.9306, precision of 0.8760, recall of 0.8888, and F1-score
of 0.8808, positioning it as a highly competitive model.

3.3 Feature selection results

Through feature selection, 2,960 genes were identified as inputs
for classification and prediction. The results are visualized using a
heatmap and a volcano plot, with a table summarizing the
classification performance of various classifiers after
feature selection.

The heatmap was constructed to illustrate the expression
differences of 50 selected genes across 21 samples, including lung
squamous cell carcinoma (LUSC), lung adenocarcinoma (LUAD),
and adjacent normal tissues, as shown in Figure 4. The gene
expression values were normalized and log2-transformed. Red
indicates downregulation and blue indicates upregulation relative
to the reference.

Samples are grouped by tissue type (LUSC in orange, LUAD in
blue, and Normal in gray). The heatmap clearly shows distinct
expression patterns among different tissue types, highlighting
several genes with differential expression between tumor and
normal tissues, as well as between cancer subtypes.

The volcano plot further reveals the differences in gene
expression between the target and control groups, as shown in
Figure 5. The horizontal axis represents the fold change in gene
expression (log (Fold Change)), while the vertical axis indicates the
significance level (-log10 (p-value)). Red dots denote significantly
upregulated genes, such as TP63, NTRK2, and CLCA2, highlighting
their elevated expression in cancer samples. Blue dots correspond to
significantly downregulated genes, indicating reduced expression in
cancer states, while gray dots represent genes that do not reach the
significance threshold.

Table 2 presents a comparative performance evaluation of six
feature selection methods (mean ± standard deviation). Notably, our
adopted DESeq2 method demonstrates superior performance across

TABLE 1 Performance comparison of 1D-CNN and Classical models (with standard deviation).

Model Accuracy Precision Recall F1 score

Decision Tree 0.8959 ± 0.0153 0.8791 ± 0.0220 0.9090 ± 0.0135 0.8900 ± 0.0132

KNN 0.8222 ± 0.0587 0.7917 ± 0.0520 0.8677 ± 0.0395 0.8131 ± 0.0595

LDA 0.9246 ± 0.0230 0.9146 ± 0.0221 0.9437 ± 0.0174 0.9265 ± 0.0203

Naive Bayes 0.8847 ± 0.0213 0.9249 ± 0.0125 0.7427 ± 0.0318 0.7777 ± 0.0357

Random Forest 0.9081 ± 0.0225 0.9207 ± 0.0225 0.8999 ± 0.0313 0.9074 ± 0.0263

SVM 0.8925 ± 0.0238 0.9219 ± 0.0230 0.9134 ± 0.0129 0.9101 ± 0.0185

Logistic Regression 0.9055 ± 0.0304 0.8594 ± 0.0388 0.9311 ± 0.0226 0.8833 ± 0.0382

1D CNN 0.9306 ± 0.0242 0.8760 ± 0.1392 0.8888 ± 0.1187 0.8808 ± 0.1291
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multiple metrics: it achieves the highest accuracy (0.9532 ± 0.0138),
recall (0.9651 ± 0.0104), and F1-score (0.9563 ± 0.0116) among all
methods. This outstanding performance can be attributed to
DESeq2’s negative binomial distribution model specifically
designed for count data, which enables more accurate
identification of differentially expressed features, particularly
demonstrating significant advantages in processing biomedical data.

While mutual information (accuracy: 0.9497 ± 0.0138) and
ANOVA (F1-score: 0.9518 ± 0.0086) show acceptable
performance, they remain inferior to DESeq2 in overall metrics.
It is particularly noteworthy that DESeq2’s exceptional recall
performance (0.8 percentage points higher than the suboptimal
ANOVA method) indicates its remarkable effectiveness in
reducing false negatives, which is crucial for ensuring
comprehensive feature inclusion. Furthermore, all methods
maintain relatively low standard deviations (<0.02), further
validating the reliability of DESeq2’s results.

These comparative results substantiate the rationale for selecting
DESeq2 as our feature selection method, and its excellent
performance will provide more reliable feature sets for
subsequent analyses.

3.4 WGANs performance

We present the visualized data of the original dataset after t-SNE
dimensionality reduction, as well as the data generated by WGANs,
as shown in Figure 6. (a) illustrates the distribution of high-
dimensional features of the original data in a two-dimensional
space, providing an intuitive representation of the clustering
patterns between different samples. (b) shows the distribution
changes after data expansion with WGANs. In the plot, we
observe that the distribution of the WGANs-generated data is
largely consistent with the original data.

Table 3 compares the performance of four data augmentation
methods across key evaluation metrics (mean ± standard
deviation). Our implemented WGAN approach demonstrates
superior performance, achieving the highest scores in all
metrics: accuracy (0.97659 ± 0.00703), precision (0.97624 ±
0.01005), recall (0.98274 ± 0.00503), and F1-score
(0.97927 ± 0.00681).

The significant performance advantage of WGAN
(approximately 1.5-2 percentage points higher than suboptimal
methods) can be attributed to its adversarial training framework
that generates more realistic synthetic samples, particularly effective

for addressing class imbalance problems. Notably, WGAN’s
exceptionally high recall (0.98274) indicates its outstanding
capability in minimizing false negatives, which is crucial for
sensitive applications.

While SMOTE shows competitive results (F1-score: 0.96648 ±
0.01179) among conventional methods, all non-WGAN approaches
exhibit clear performance gaps. The consistently low standard
deviations (<0.02) across all methods confirm the reliability of
these comparative results.

3.5 Comparison of advanced methods

Table 4 presents the performance comparison of various
feature selection and classification methods in terms of
accuracy, precision, recall, and F1 score. Among all the
evaluated models, the proposed Exo-Classifier achieved the
highest overall performance, with an accuracy of 0.9766,
precision of 0.9762, recall of 0.9827, and an F1 score of 0.9793.
These results notably surpass those of the other advanced methods.
Although NS-Forest and SPLR demonstrated competitive
performance, with F1 scores of 0.9613 and 0.9594 respectively,
and ZIPLDA achieved an F1 score of 0.9571, none matched the
overall balance and robustness of the Exo-Classifier. These findings
highlight the superior effectiveness of the proposed method in
accurately classifying lung cancer subtypes based on exosomal
gene expression data.

3.6 External validation with GEO data

Table 5 reports the performance of different deep learning
strategies for lung cancer subtype classification, evaluated in
terms of accuracy, precision, recall, and F1 score. The baseline
1D CNN model achieved an accuracy of 0.9072 and an F1 score
of 0.9178, indicating reasonable performance. When combined with
DESeq2 for feature selection, the performance improved
substantially, yielding an accuracy of 0.9381 and an F1 score of
0.9381, demonstrating the effectiveness of integrating biologically
informed feature selection. Notably, the proposed Exo-Classifier
outperformed both baseline models, achieving the highest accuracy
(0.9588), recall (0.9678), and F1 score (0.9616), highlighting its
superior ability to capture informative patterns from exosomal gene
expression data and its robustness in classifying lung
cancer subtypes.

TABLE 2 Performance comparison of different feature selection methods.

Method Accuracy Precision Recall F1 score

F-test 0.9410 ± 0.0185 0.9413 ± 0.0196 0.9514 ± 0.0167 0.9450 ± 0.0166

Chi-squared Test 0.9454 ± 0.0141 0.9502 ± 0.0127 0.9547 ± 0.0121 0.9515 ± 0.0098

Mutual Information 0.9497 ± 0.0138 0.9511 ± 0.0088 0.9554 ± 0.0142 0.9523 ± 0.0097

Variance Threshold 0.9471 ± 0.0143 0.9533 ± 0.0166 0.9512 ± 0.0103 0.9515 ± 0.0111

ANOVA 0.9488 ± 0.0127 0.9492 ± 0.0124 0.9572 ± 0.0106 0.9518 ± 0.0086

DESeq2 0.9532 ± 0.0138 0.9491 ± 0.0133 0.9651 ± 0.0104 0.9563 ± 0.0116
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4 Discussion

In comparison with traditional machine learning models, the 1D
CNN demonstrates a clear advantage in lung cancer diagnosis.
Although models like LDA, Random Forest, and Support Vector
Machine also show good performance in terms of accuracy and
other metrics, the 1D CNN outperforms all traditional models in
terms of accuracy, precision, recall, and F1 score. The superior
performance of the 1D CNN can be attributed to its ability to
automatically extract important features from the data and perform
nonlinear mappings through deep networks. This makes it
particularly well-suited for learning from high-dimensional data
and complex patterns, whereas traditional models rely on manually
engineered features or assumptions, which are less effective in
capturing the intricate relationships within the data.

Feature selection played a critical role in enhancing model
performance by selecting genes with significant discriminative
power. This process reduced the dimensionality of the data,
lowered computational complexity, and eliminated redundant
information, allowing the model to focus on the most
informative features. As a result, the model was better able to
capture key patterns related to lung cancer diagnosis, free from
the interference of noise or irrelevant features, thus improving both
accuracy and robustness. The effectiveness of feature selection was
clearly illustrated through heatmap and volcano plot visualizations,
which revealed significant differences in gene expression between
normal and cancer samples. In particular, the heatmap showed
distinct expression patterns in LUSC and LUAD samples,

highlighting specific genes that are crucial for identifying the
different lung cancer subtypes. The volcano plot further
confirmed the importance of these genes by pinpointing
significantly upregulated and downregulated genes, such as TP63,
NTRK2, and CLCA2, which are strongly associated with cancer.

The performance improvements of various classifiers after
feature selection further validate the effectiveness of our
approach. The CNN model, in particular, showed notable gains
in accuracy, precision, and F1 score, demonstrating that the
optimized features made the model more sensitive to the data
and improved its ability to learn and classify cancer samples. The
significant increase in F1 score suggests that our method addressed
the issue of imbalanced data, enhancing the classifier’s ability to
avoid bias towards any one class. Traditional classifiers, such as
KNN and SVM, also benefited from feature selection, showing
improved accuracy and precision. This demonstrates that feature
selection helps these models better adapt to high-dimensional data
and enhances their classification ability. Overall, feature selection
not only improved classification performance but also provided
greater interpretability, helping us to focus on the most relevant
features for lung cancer diagnosis.

Analyzing the t-SNE visualization of WGAN-generated data
and classifier performance highlights the critical role of data
augmentation in enhancing model accuracy. The t-SNE results
demonstrate that the generated data closely aligns with the
original dataset’s distribution, effectively capturing its key
features while avoiding noise or bias. This consistency ensures a
solid foundation for classification tasks, particularly in medical
datasets where maintaining the authenticity of data distribution
is essential.

The performance improvements across classifiers further
validate the benefits of data augmentation. The 1D CNN model
achieved the highest accuracy, precision, recall, and F1-score,
indicating that the augmented data provided a richer and more
diverse feature space for learning complex patterns. Traditional
models like Random Forest and LDA also showed significant
gains, underscoring the broad applicability of WGAN-generated

TABLE 3 Performance comparison of data augmentation methods.

Method Accuracy Precision Recall F1 score

MIXUP 0.9575 ± 0.0148 0.9599 ± 0.0087 0.9660 ± 0.0101 0.9627 ± 0.0090

ADASYN 0.9593 ± 0.0133 0.9600 ± 0.0179 0.9700 ± 0.0099 0.9642 ± 0.0139

SMOTE 0.9610 ± 0.0142 0.9633 ± 0.0120 0.9708 ± 0.0110 0.9665 ± 0.0118

WGAN 0.9766 ± 0.0070 0.9762 ± 0.0101 0.9827 ± 0.0050 0.9793 ± 0.0068

TABLE 4 Performance comparison of feature selection and classification methods.

Model Accuracy Precision Recall F1 score

NS-Forest 0.9540 ± 0.0139 0.9612 ± 0.0160 0.9631 ± 0.0088 0.9613 ± 0.0116

SPLR 0.9558 ± 0.0118 0.9559 ± 0.0163 0.9647 ± 0.0123 0.9594 ± 0.0122

ZIPLDA 0.9540 ± 0.0130 0.9508 ± 0.0198 0.9657 ± 0.0099 0.9571 ± 0.0148

Exo-Classifier 0.9766 ± 0.0070 0.9762 ± 0.0101 0.9827 ± 0.0050 0.9793 ± 0.0068

TABLE 5 Performance comparison of different deep learning strategies.

Model Accuracy Precision Recall F1 score

1D CNN 0.9072 0.9332 0.9142 0.9178

1D CNN + DESeq2 0.9381 0.9481 0.9315 0.9381

Exo-Classifier 0.9588 0.9558 0.9678 0.9616
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data. These improvements can be attributed to increased sample
size, better data representativeness, and improved handling of class
imbalance, all of which enhance the robustness and reliability of
machine learning models.

5 Conclusion

This study proposes a method named Exo-LCClassifier, which
integrates multiple techniques to effectively address the challenges of
class imbalance, high dimensionality, and noise in cancer gene
expression data. We designed an improved oversampling strategy
based on the Wasserstein Generative Adversarial Network
(WGAN), utilizing a fully connected deep network structure to
expand each class to 1,000 samples, thereby enhancing data diversity
and representativeness. Additionally, we employed the
DESeq2 feature selection method to identify significantly
expressed cancer-related genes from high-dimensional data,
reducing noise and improving model generalization. Based on
this expanded dataset, we implemented a one-dimensional
convolutional neural network (1D CNN) for classification tasks.
The results demonstrate that our model exhibits outstanding
performance in cancer subtype diagnosis, providing high
accuracy and stable, reliable classification outcomes. By
integrating deep learning with traditional statistical methods, this
study not only enhances classification performance but also offers
new insights into cancer gene expression analysis, contributing to
both theoretical research and practical applications in cancer
diagnosis and treatment.
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