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Background: Esophageal squamous cell carcinoma (ESCC) does not have distinct
and highly sensitive biomarkers, making its diagnosis difficult. Consequently,
identifying dependable biomarkers is critical, as these indicators can facilitate
accurate ESCC diagnosis and enable effective prognostic evaluation.

Methods: ESCC datasets (GSE29001, GSE20347, GSE45670, and GSE161533)
were sourced from the GEO, and the Limma package identified differentially
expressed genes (DEGs). To characterize co-expression network, weighted gene
co-expression network analysis (WGCNA) was performed, allowing for the
identification of relevant co-expression modules. To assess the biological
pathways of intersecting genes, we performed pathway enrichment analysis
using Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology
(GO). The Support Vector Machine Recursive Feature Elimination (SVM), along
with Least Absolute Shrinkage and Selection Operator (LASSO) regression, was
applied to identify clinical biomarkers. Finally, the differences of immune cell
infiltration were also detected.

Results: 1,019 genes were derived by integrating DEGs with co-expressed
module genes. KEGG and GO revealed a strong association between these
genes and processes such as chemotaxis and IL−17 signaling pathways. Two
hub genes (IFIT3 and IFI35) were selected through LASSO regression and SVM.
Additionally, ROC curve analysis confirmed their potential for reliable diagnostic
performance. Furthermore, differences in immune cell infiltration were observed.

Conclusion: Collectively, IFIT3 and IFI35 emerged as promising candidate
biomarkers, offering novel insights to enhance early detection and guide
targeted treatment strategies for ESCC.
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1 Introduction

Ranked as the eighth most prevalent malignancy globally,
esophageal cancer comprises approximately 3% of all cancer
diagnoses. Despite its moderate incidence, the disease is
associated with unfavorable outcomes and stands as the sixth
leading contributor to cancer mortality worldwide (Morgan
et al., 2022). Esophageal cancer comprises two primary
histological subtypes: squamous cell carcinoma, which
accounts for 85% of cases, and adenocarcinoma, representing
the remaining 14%, with squamous cell carcinoma accounting
for 90% of cases in China (Chen, 2015; Yang et al., 2024; Zhao
et al., 2024). Most patients are diagnosed during late-stage
disease progression and have lost the opportunity for surgery,
being limited to radiotherapy, chemotherapy, or
immunotherapy. Although significant progress has been made
in therapeutic modalities over recent decades, no breakthrough
in the efficacy of esophageal cancer treatment has been achieved,
and the 5-year survival rate remains low (Cheng et al., 2024; Zou
et al., 2024). The absence of well-characterized highly sensitive
biomarkers for ESCC poses significant challenges to its precise
diagnosis and effective clinical management. This critical gap in
biomarker identification not only impedes early disease
detection but also complicates the development of targeted
therapeutic strategies, ultimately limiting opportunities for
personalized interventions. Therefore, discovering robust
biomarkers is essential to enhance diagnostic precision and
improve prognostic stratification in ESCC.

Recent advances in bioinformatics have enabled comprehensive
analysis of genes associated with ESCC. In the study, sequencing
data from publicly available repositories were analyzed, and the
WGCNA algorithm was employed to identify candidate genes
clusters with high correlations. These clusters were then
associated with modular trait genes or central genes within the
modules, and the module membership index was calculated (Cui
et al., 2024). We subsequently intersected the selected differentially
expressed genes and conducted KEGG and GO analyses to identify
shared pathogenic mechanisms. The hub genes were pinpointed by
LASSO and SVM, followed by an evaluation of their predictive
capabilities. Furthermore, we examined immune cell infiltration to
compare the differences between normal esophageal epithelium and
esophageal cancer.

2 Materials and methods

2.1 Data source and preprocessing

Based on the selection criteria outlined in previous studies
(Alotaibi et al., 2023; Sun et al., 2021), we identified 4 datasets:
GSE29001, GSE20347, GSE45670, and GSE161533. We selected the
GSE29001 dataset and performed GeneSymbol mapping. Log2
(x+1) transformation was applied to the data, and
“normalizeBetweenArrays” function was conducted to correct for
batch effects. We subsequently employed the “limma” to select
DEGs (Ritchie et al., 2015). The threshold for DEG identification
was set at P < 0.05. We then identified 4,122 differentially
expressed genes.

2.2 WGCNA analysis and module
identification

For theWGCNA, the input matrix was generated using all genes
from the GSE29001 dataset. A soft threshold of 1–20 was used for
topology calculation and then the optimal soft threshold was further
selected. Adjacency matrices were subsequently computed and
converted into a Topological Overlap Matrix (TOM) to evaluate
network interconnectedness. The hierarchical cluster tree was
constructed by calculating the differential extent. Modules
exhibiting similar expressions were identified and combined.
Clinically relevant modules exhibiting significant correlations
with disease traits were prioritized for subsequent functional
exploration. Then, we use module membership (MM) and Gene
significance (GS) for further analyzing (Sun et al., 2024).

2.3 Enrichment analysis

Functional annotation of candidate genes was conducted
through GO and KEGG pathway analyses, implemented via the
clusterProfiler toolkit in R (Yu et al., 2012). In addition, the results of
GO analysis were also obtained by metscape.

2.4 PPI networks construction

The selected genes were input into the STRING database
(https://string-db.org/), and then Cytoscape was used to construct
a network. The top 10 genes in the PPI network were identified using
the MCC algorithm in Cytoscape.

2.5 Machine learning approach for selecting
diagnostic biomarkers

LASSO and SVM (Xie et al., 2023; Valkenborg et al., 2023) were
used as machine learning approaches. SVM was used to pinpoint
hub genes by filtering redundant features from high-dimensional
datasets. And the LASSO model was built to identify critical genes.
By using theMCCmethod the top 10 genes were chosen, followed by
further biomarker screening with SVM and LASSO.

2.6 Evaluating immune cell infiltration

To systematically characterize the immunemicroenvironment, a
computational deconvolution approach (CIBERSORT) was
employed to quantify the relative abundance of distinct
lymphocyte subsets through analysis of cell type-specific gene
signatures. The analytical framework integrated infiltration
patterns across 22 functionally annotated immune cell
populations, ultimately constructing a comprehensive immune
infiltration matrix for subsequent multidimensional evaluation. In
parallel, non-parametric correlation analysis utilizing Spearman’s
rank-order coefficients was implemented to explore potential
connections of immune cell infiltration dynamics and critical
biomarkers (Newman et al., 2015).
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FIGURE 1
Visualization of differentially expressed genes. The red dots represent genes that are significantly downregulated and the blue dots represent
significantly upregulated genes. (A) Volcano plot. (B) Top 5 upregulated and downregulated genes with the most significant differences. (C) Heatmap of
the first 20 upregulated genes and 20 downregulated genes in GSE29001.
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FIGURE 2
WCGNA of ESCC. (A,B) Mean connectivity for scale independence and soft threshold (β) in the GSE29001 cohort. (C) Clustering dendrograms of
genes in ESCC. (D)Heatmap of the correlation analysis of module eigengenes with clinical phenotypes in ESCC. Red color represents positive correlation
and blue color represents negative correlation. (E) Correlation between module membership and gene significance in blue modules. (F) Correlation
between module membership and gene significance in black modules. (G) Venn diagram for intersecting genes between blue module in ESCC and
the DEGs.
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2.7 Identification of potential drugs

The candidate genes of ESCC were input into the Enrichr
platform (https://maayanlab.cloud/Enrichr/) (Chen et al., 2013).
We then employed Drug Signatures Database (DSigDB) to select
the potential drugs (Yoo et al., 2015).

2.8 Statistical analysis

Data analysis was performed using R4.4.1. A T-test was used to
compare normally distributed data, while the Wilcoxon test was used
to compare nonnormally distributed data between the control group
and the tumor group. P < 0.05 was considered statistically significant.

3 Results

3.1 Identification of DEGs

Analysis of the GSE29001 dataset revealed 4,122 genes
exhibiting differential expression, as shown in a volcano plot
displaying 1980 downregulated and 2,142 upregulated genes. And
a figure was provided to show the five most significantly
downregulated and upregulated genes (Figures 1A,B). In
addition, a heatmap shows the top 20 most significantly
downregulated and upregulated genes (Figure 1C).

3.2 WGCNA of ESCC

WGCNA was conducted on the ESCC dataset GSE29001 to
systematically explore associations between gene expression patterns
and clinical traits. Following network construction protocols,
parameter optimization identified an optimal soft-thresholding power
(β = 7) (Figures 2A,B). Based on the soft threshold of 7, we used the
average linkage hierarchical clusteringmethod to classify the TOM-based
modules, each module contains no less than 60 genes. Modules with
similarity greater than 75% were subsequently merged, and then the co-
expression network architecture was resolved into 19 discrete gene
clusters with distinct transcriptional coordination patterns (Figures
2C,D). We subsequently calculated the correlation of the traits and
modules, discovering that the blue module most closely associated
with tumor tissue (r = 0.91) and the black module exhibited the
strongest association to normal tissue (r = 0.82) (Figure 2D).
Furthermore, scatter plots show that a strong correlation was between
modulemembership (MM) and gene significance (GS) (tumor cor = 0.88,
normal tissue cor = 0.82) (Figures 2E,F). Ultimately, intersecting the blue
module genes with DEGs revealed 1,019 overlapping candidates,
suggesting their potential role in driving ESCC pathogenesis (Figure 2G).

3.3 Enrichment analysis of ESCC
driver genes

While WGCNA-derived modules aggregate genes with
analogous expression profiles, these genes might not encompass
full spectrum of DEGs and may be quite different from DEGs that

are critical for disease progression. To avoid omissions, we
combined module genes and DEGs and identified
1,019 candidate driver genes. KEGG and GO were subsequently
performed to elucidate the biological roles of these candidate genes.
We found that the genes were primarily involved in pathways such
as chemotaxis, taxis, and IL−17 signaling pathways (Figures 3A,B)
Additionally, to further explore the enriched pathways associated
with the marker genes, we discovered that different genes in the
Metascape may show varying functional group distributions, with
positive regulation of inflammatory responses being included
(Figure 4A). Metascape-based enrichment analysis further
highlighted that the positive regulation of inflammatory
responses also contributes to the etiology of ESCC (Figure 4B).
To classify genes into shared functional groups, the 1,019 candidate
driver genes were analyzed using the String database, and non-
interacting genes were systematically filtered out. Using the MCC
algorithm in the Cytoscape software, we finally identified the top
10 genes in the PPI network from the mentioned genes (Figure 4C).
Ultimately, ISG15, IFI35, IFIT3,MX1, OAS2, RSAD2,MX2, HERC5,
XAF1, and OASL have been identified as potential diagnostic
biomarkers.

3.4 Selection and validation of the hub genes
with SVM and LASSO

In order to filter the most diagnostically valuable key genes, we
utilized machine-learning algorithms to select the most significant
features. Sequential SVM and LASSO regression analyses were
conducted on the 10 candidate genes mentioned above. 6 genes
were identified in the dataset by applying the LASSO method
(Figures 5A,B). Concurrently, the SVM method filtered the
2 genes from the 10 genes (Figure 5C). The overlap of genes
identified by different methods across various datasets ultimately
pinpointed 2 common diagnostic biomarkers (IFIT3 and
IFI35) (Figure 5D).

The diagnostic potential of the hub genes was further validated
via ROC curve analysis (Figure 5E). The AUC values for IFIT3
(AUC = 0.852) and IFI35 (AUC = 0.927) were both >0.7. It suggests
that these two genes demonstrate strong diagnostic performance
and could serve as potential biomarkers for ESCC.

The AUC values from the different cohorts also showed good
predictive effectiveness in the validation sets (Figures 5F–H). The
AUC values of IFIT3 and IFI35 in the validation set (GSE20347)
were 0.862 and 0.882. In the validation sets (GSE45670 and
GSE161533), the AUCs of IFIT3 and IFI35 were all above 0.700.
The box plots revealed that both diagnostic markers were
significantly upregulated in the disease group of the training set
(Figure 6A). Crucially, consistent outcomes were observed across all
validation sets (Figures 6B–D).

3.5 Immune cell infiltration and correlation
with hub genes

We investigated whether the CIBERSORT method could
identify distinct immune infiltration patterns based on
22 immune cell types. The heatmap illustrates the differences in
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immune cell infiltration between normal tissue and tumor
(Figure 7A). Differential expression analysis revealed a significant
reduction of monocytes in tumor tissues compared to normal
tissues, with statistical significance (Figure 7B).

Through supplementary analyses, we investigated the potential
association of these two pivotal genes with immune cell infiltration
within peripheral circulatory systems. Upon establishing
significance, subsequent characterization revealed their

FIGURE 3
GO analysis and KEGG analysis. (A) GO analysis and (B) KEGG analysis of driver genes.
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demonstrated preferential correlations with specific immune cell
subtypes. The correlation analysis revealed that IFIT3 was positively
correlated with T cells CD4 memory activated in the dataset. IFI35

also showed a positive correlation with macrophages M0, mast cells
resting, and activated NK cells activate, whereas negatively
correlated with mast cells activated and dendritic cells resting

FIGURE 4
Enrichment of ESCC driver genes. (A,B) Enrichment analysis of 1,019 candidate driver genes using Metascape online tool. (C) PPI network analysis of
driver genes.
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FIGURE 5
Selection and validation of shared hub genes by SVM and LASSO. (A,B) LASSO regression analysis of the GSE29001 cohort. (C) SVM analysis of the
GSE29001 cohorts. (D) Cross-identification of optimal shared hub genes using SVM and LASSO. (E) ROC curves for two shared diagnostic markers in the
GSE29001 cohort. (F) ROC curves for two shared diagnostic markers in the GSE20347 cohort. (G) ROC curves for two shared diagnostic markers in the
GSE45670 cohort. (H) ROC curves for two shared diagnostic markers in the GSE161533 cohort.
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(Figure 7C). It indicates that hub genes may regulate autoimmune
responses by modulating immune cell expression.

3.6 Identification of potential drugs
associated with hub genes

Based on analysis using the DSigDB library within Enrichr,
2 drugs (Tamibarotene and calcitriol) were identified through
screening based on significant P-values after correction for
multiple comparisons. The Odds Ratio values for both drugs are
large, and although these numbers reflect enrichment of
transcriptional features rather than binding affinity, these
screened small molecules drugs can offer potential as therapeutic
agents for ESCC (Table 1).

4 Discussion

ESCC ranks among the most malignant cancers, being highly
metastatic, and none of the therapeutic approaches yield good
results (Reichenbach et al., 2019; Zhou et al., 2016; Yuan et al.,

2022). Over the past decade, oncologists have increasingly turned
their attention to targeted therapies, especially searching for a
specific gene. A gene that strongly linked to the initiation and
progression of ESCC could aid early diagnosis through level-
specific testing. Additionally, targeting and suppressing its
expression may provide a therapeutic strategy. Despite significant
endeavors, achievements in this area have been minimal. Hence,
exploring the regulatory pathways and critical targets of ESCC is
vital for advancing early prevention and therapeutic strategies.

Initially, we conducted a differential analysis of GSE29001,
identifying 4,122 DEGs, and applied WCGNA to identify
modules with the highest correlation. By combining the WCGNA
modules with DEGs, we identified 1,019 candidate driver genes.
KEGG and GO enrichment analyses revealed that the chemotaxis
and IL−17 signaling pathways were significantly upregulated.
Research indicates that blocking chemotaxis not only suppresses
tumor-induced osteomyelitis in metastatic castration-resistant
prostate cancer (CRPC) patient subgroups, but also lowers
circulating neutrophils and reduces intratumoral infiltration of
CD11b+HLA-DRloCD15+CD14−myeloid cells. Additionally, it
provides durable clinical advantages in metastatic CRPC
subgroups via biochemical and radiographic responses (Guo

FIGURE 6
The expression of hub genes in ESCC. (A) Expression of two hub genes in GSE29001. (B) Expression of two hub genes in GSE20347. (C) Expression of
two hub genes in GSE45670. (D) Expression of two hub genes in GSE161533. Blue color represents normal tissue and red color represents ESCC. *p <
0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001.
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FIGURE 7
Correlation of immune cell infiltration and hub genes in ESCC. (A)Heatmap showing the differences in immune cell infiltration between the normal
tissue and ESCC. (B) Boxplots showing the pattern of immune cell infiltration. (C)Heatmap showing the correlation between hub genes and immune cells.
Red color represents positive correlation and purple color represents negative correlation. *p < 0.05; **p < 0.01; ***p < 0.001; ns, non-significant.
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et al., 2023). The IL−17-expressing CD4+ helper T cell (Th) subset is
significantly involved in immune response signaling pathways,
correlating not only with autoimmune diseases but also with
cancer progression (Amatya et al., 2017). This indicated that
these genes play a role in immune response regulation.
Dysregulation of the immune system may be a primary
contributor to ESCC development and progression. Further
enrichment analysis using the Metascape database revealed a
significant upregulation in the inflammatory response pathway,
corroborating this view.

Next, utilizing 1,019 common driver genes, Within a systems
biology framework, the Cytoscape platform was performed to
generate a PPI network model, enabling systematic screening of
topologically pivotal genes. Subsequent algorithmic curation
identified a panel of 10 candidate genes exhibiting characteristics
concordant with molecular signatures of diagnostic potential. For
the refined selection of the diagnostic hub genes, LASSO and SVM
analyses were utilized to pinpoint the optimal diagnostic
biomarkers. Specifically, IFIT3 and IFI35 showed excellent
diagnostic capabilities, validated by ROC curve analyses across
the training and validation sets within the ESCC cohort. Notably,
both genes showed a uniform upregulation trend in the tissue of
ESCC relative to that in the normal tissue.

IFIT3, a member of the IFIT family with a four-peptide repeat
sequence, is important in viral and immune system responses, andmost
studies have focused on antiviral and innate immunity (Platanias, 2005;
Shi et al., 2019; Wu et al., 2022). Recent studies have highlighted the
close association between IFIT3 and tumors. Previous investigations
utilizing bioinformatics approaches have identified elevated IFIT3
expression in ESCC compared to adjacent normal tissues, a finding
subsequently validated through analysis of clinical specimens.
Furthermore, these studies demonstrated that patients exhibiting low
IFIT3 expression levels achieved significantly longer disease-free
survival (DFS) and overall survival (OS) durations than those with
high IFIT3 expression (Cao et al., 2024). AND IFIT3 may also
contribute to chemotherapy resistance in pancreatic ductal
adenocarcinoma, with transcriptomic analysis revealing enriched
pathways in high IFIT3 groups, such as inflammation, immune
response, NF-κB signaling, and apoptosis (Wang et al., 2020).
Moreover, IFIT3 is overexpressed in head and neck squamous cell
carcinoma, where it activates the PI3K/AKT pathway by targeting PD-
L1, thereby promoting proliferation, migration, and invasion (Liu et al.,
2024). IFI35, a 35 kDa interferon-induced protein, is broadly expressed
in monocytes/macrophages, epithelial cells, and fibroblast. And it can
regulate virus-associated immune-inflammatory responses across
different cell types and tissues (Bange et al., 1994; Zheng et al., 2014;
Das et al., 2014). IFI35 showed completely opposite effects on tumors in
different studies. A research indicates that IFI35 promotes CD8+ T cell
proliferation and cytotoxic activity through the PI3K/AKT/mTOR
pathway in colorectal cancer, thus suppressing tumor growth (Li
et al., 2023). In rectal cancer cell experiments, the upregulation of

IFI35 after X-ray exposure significantly suppressed CRC cell
proliferation and colony formation. Additionally, G2 phase arrest
along with increased production of reactive oxygen species (ROS),
increased mitochondrial membrane potential, and elevated apoptosis
rates were observed. Conversely, downregulation of IFI35 caused the
opposite effects. These findings indicate that IFI35 upregulation
significantly increases the radiosensitivity of CRC cells (Hu et al.,
2021). These findings suggest that IFI35 inhibits tumor progression,
and in a separate study on triple-negative breast cancer, we observed
that high expression of IFI35 promotes CCL2 secretion, which leads to
the infiltration of myeloid-derived suppressor cells (MDSC) and
dysfunction of anti-tumor CD8+ T cells, thereby limiting its anti-
tumor effects. In contrast, inhibition of IFI35 expression improves
immunotherapy outcomes (Xu et al., 2024). Studies on glioblastoma
multiforme (GBM) have also demonstrated the tumor-promoting role
of IFI35, suggesting that inhibiting the expression of it could offer a
promising strategy for enhancing GBM treatment (Li et al., 2024). Our
study, based on database analysis, found that IFI35 expression is
elevated in ESCC, and inhibiting its expression may help suppress
the tumorigenesis and progression of ESCC. In summary, both hub
genes (IFIT3 and IFI35) are involved in immune responses and could be
potential biomarkers for ESCC.

In summary, it is evident that immune responses are critically
involved in the enriched pathways of differential genes and the
tumor-related mechanisms of hub genes. We subsequently applied
CIBERSORT to examine the immune cell infiltration in ESCC.
Monocyte infiltration was markedly diminished in ESCC tissues
relative to adjacent normal tissues, as evidenced by comparative
analysis. Human monocytes are categorized into three distinct
subsets: classical/inflammatory, non-classical/surveillance, and
intermediate subtype (Ugel et al., 2021). Recent study indicates
that in the process of tumor development, different monocyte
populations play divergent roles, where certain subsets facilitate
tumor growth whereas others suppress oncogenesis. Similar
dynamics are observed during tumor metastasis (Chen et al.,
2023). Thus, the function of monocytes and their lineage-derived
cells in ESCC tumorigenesis and therapy necessitate more profound
mechanistic exploration. Analysis of key genes and immune
infiltration in peripheral blood revealed that IFIT3 positively
correlates with T cell CD4 memory activated, while IFI35 is
positively associated with Mast cells resting, NK cells activated,
and Macrophages M0, but negatively correlated with Mast cells
activated and Dendritic cells. These differences in immune cell
expression may significantly affect the prognosis of ESCC.

By mining datasets from the GEO database, this study screened
and validated the upregulated genes IFIT3 and IFI35 in ESCC,
subsequently performing functional enrichment analysis,
infiltration investigation, and drug prediction. Building upon the
aforementioned investigations, we have identified both IFIT3 and
IFI35 as promising candidate therapeutic targets in ESCC. However,
this study also has limitations. The study in this paper is only limited

TABLE 1 Identification of potential drugs for ESCC based on the hub genes.

Term P-value Adjusted P-value Odds ratio Combined score Overlap

Tamibarotene CTD 00002527 7.80E-04 0.021055 38882 278256.7424 2/559

Calcitriol CTD 00005558 0.00958 0.024973 36084 167721.6296 2/1958
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to the analysis of data, and there is a lack of in vivo and in vitro
experiments for further research. Further functional and pathway
studies are warranted. We plan to address these issues in the future
to better present our point of view.

Our research investigated the hub genes of ESCC, focusing on
two critical genes, IFIT3 and IFI35, which have been validated in
various datasets. These findings indicate their potential as
biomarkers of ESCC.
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