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Identifying individual genomic characteristics is a critical focus in personalized
therapies. To reveal targets in such therapies, we considered personalized gene
network analysis using kernel-based L1-type regularization methods. In kernel-
based L1-type regularized modeling, selecting optimal regularization parameters
is crucial because edge selection and weight estimation depend heavily on such
parameters. Furthermore, selecting a kernel bandwidth that controls sample
weighting is vital for personalized modeling. Although cross-validation and
information criteria (i.e., AIC and BIC) are often used for parameter selection,
such traditional techniques are computationally expensive or unsuitable for
approaches based on estimation techniques other than maximum likelihood
estimation. To overcome these issues, we introduced a novel evaluation criterion
in line with the generalized information criterion (GIC), which relaxes the
assumption of maximum likelihood estimation, making it suitable for
personalized gene network analysis based on various estimation techniques.
Monte Carlo simulations demonstrated that the proposed GIC outperforms
existing evaluation criteria in terms of edge selection and weight estimation.
Acute myeloid leukemia (AML) drug sensitivity-specific gene network analysis
revealed critical molecular interactions to uncover ALM drugs resistant
mechanism. Notably, PIK3CD activation and RARA/RELA suppression are
crucial markers for improving AML chemotherapy efficacy. We also applied
our strategy for gastric cancer drug sensitivity analysis and uncovered
personalized therapeutic targets. We expect that the proposed sample specific
GICwill be a useful tool for evaluating personalizedmodeling, including in sample
characteristic-specific gene networks analysis.
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1 Introduction

In recent years, significant attention has been paid to the identification of individual
genomic characteristics, particularly with the growing focus on personalized therapy across
various research areas, such as statistics, bioinformatics, and medical science.
Heterogeneous genetic network analysis is attracting growing interest, as it provides
crucial targets for personalized therapy because diseases are typically caused by
perturbations in complex molecular interactions rather than by isolated genetic defects
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(Ahmed et al., 2020). Various computational and statistical methods
have been developed to reveal the molecular interactions associated
with disease mechanisms, such as Bayesian networks (Imoto et al.,
2002), graphical lasso (Huang et al., 2020) and L1-type
regularization (Zou and Hastie, 2005), among others. Although
many strategies for gene network estimation have been developed
and successfully applied in various fields of research, these strategies
provide averaged gene network estimation results for all samples.
That is, the existing methods cannot uncover sample (e.g., cell line
and patient) characteristic-specific molecular interactions. Thus, we
cannot effectively provide evidence for personalized therapy using
these methods.

To address this issue, Shimamura et al. (2011) proposed the use
of a kernel-based L1-type regularization method with a varying
coefficient model (Hastie and Tibshirani, 1993), called
NetworkProfiler. Park et al. (2019) developed a robust version of
NetworkProfiler based on k-nearest neighbor-based bandwidth.

Kernel-based L1-type regularization strategies reveal molecular
interactions under varying sample characteristics (e.g., drug
sensitivity, cancer progression, survival time), enabling
personalized gene network analysis. In kernel-based L1-type
regularization for personalized gene network analysis, the selection
of regularization parameters is essential because it plays a major role
in determining edge selection and estimating edge weights.
Additionally, selecting the bandwidth in the kernel function is
crucial for sample-specific analysis because it determines the
weights assigned to the samples in personalized modeling.
However, relatively little attention has been paid to the evaluation
of personalized modeling. Previous studies have selected the
parameters and bandwidth using cross-validation (CV) or
traditional information criteria, such as the Akaike information
criterion (AIC) (Akaike, 1973) and Bayesian information criterion
(BIC) (Schwarz, 1978). CV is computationally intensive, particularly
in personalized gene network analysis, where nmodel estimations are
required for n samples, leading to significant computational
complexity. Furthermore, traditional information criteria are not
applicable to kernel-based L1-type regularized regression modeling,
because they were developed under the assumption that the model is
estimated using the maximum likelihood method (Konishi and
Kitagawa, 1996). To resolve these issues, we proposed a novel
model evaluation criterion for personalized gene network analysis.
We considered the generalized information criterion (GIC), which
was derived by relaxing an assumption imposed on AIC; that is, that
The model is estimated by the maximum likelihood method, and
extended the GIC for sample-specific analysis. In the derivative of
GIC, computation of the influence function is a crucial issue, where a
second-order differentiable functional estimator is required.
However, the functional estimator of the kernel-based L1-type
regularization method cannot be derived analytically owing to
indifferentiability of the L1-norm penalty. To address this
problem, we referred to the local quadratic approximation of the
L1-type penalty (Fan and Li, 2001). We then focused on the fact that
the objective function of the kernel-based L1-type regularization
method can be reformulated without a kernel function to derive a
GIC for personalized gene network analysis. The proposed strategy
enables us to evaluate a personalized model estimated using not only
the maximum likelihood method, but also various other estimation
methodologies.

Figure 1 shows schematic of the proposed strategy for
personalized gene network analysis.

Monte Carlo simulations are conducted to illustrate the
performance of the proposed strategy. The simulation results
showed that the proposed GIC outperformed other model
evaluation criteria for edge selection in a personalized gene
network analysis. Furthermore, our strategy showed effective
results for edge weight estimation. We applied the proposed GIC
to the Sanger Genomics of Drug Sensitivity in Cancer (GDSC)
dataset and performed drug sensitivity-specific gene network
analysis for the FDA-approved acute myeloid leukemia (AML)
drugs, i.e., doxorubicin, midostaurin, quizartinib, and cytarabine,
where drug sensitivity is considered a characteristic of cell lines. In
the AML drug sensitivity-specific gene network analysis, our
strategy also showed effective results for network estimation. We
then identified AML drug resistant- and sensitive-specific molecular
interactions. Our results revealed the activity of PIK3CD and RARA/
RELA in AML drug-sensitive- and resistant-specific molecular
interactions. The identified markers were validated through
literature as therapeutic targets for AML. Based on our findings
and the existing literature, we suggest that suppression of the
identified AML drug resistant-specific markers (i.e., RARA and
RELA) and activation of the sensitivity-specific marker
(i.e., PIK3CD) may offer essential guidance for improving
chemotherapy.

The proposed strategy was also applied to dataset obtained from
the Cancer Dependency Map (DepMap) Portal (https://depmap.
org/portal/) and we performed gastric cancer drug sensitivity-
specific gene network analysis. Our result uncovered FGF16,
FGF6, CSNK1A1L and WNT1 as personalized therapeutic targets
of gastric cancer.

Personalized medicine enables more precise treatments, early
prevention strategies, patient-centered care, and potential cost
reductions, which has driven extensive research efforts aimed at
improving therapeutic outcomes across diverse medical fields. In
statistics and computational biology areas, numerous studies have
been conducted to provide data-driven evidences for personalized
medicine. The kernel-based L1-type regularized regression modeling
is one of approaches and have widely used to sample-specific analysis.
In the sample-specific analysis based on the kernel-based L1-type
regularized regression modeling, model evaluation (i.e., hyper
parameters selection) is a crucial issue, because the model
estimation and crucial features selection heavily rely on the hyper
parameters values. However, there is a striking lack of research on
evaluation of sample-specific model, even though model evaluation is
also crucial for better understanding, interpreting model behaviors
and further improving model performance. To the best of our
knowledge, this is the first study on model evaluation criterion for
sample-specific analysis. It was demonstrated that our strategy
provides effective results for sample-specific analysis. We expect
that the proposed sample-specific GIC will be a crucial tool of
sample-specific analysis for personalized medicine. The remainder
of this paper is organized as follows. In Section 2, we introduce a
statistical model and estimation method for personalized gene
network analysis. We introduce the proposed generalized
information criterion in Section 3. The results of the Monte Carlo
simulations are presented in Section 4. Finally, we describe the results
of AML and gastric cancer drug sensitivity-specific gene network
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analysis in Section 5. The conclusions are presented in the
Discussion section.

2 Methods

2.1 Personalized gene network analysis

Let {(yiℓ , ri); i � 1, . . . , n} be a sample of i.i.d. random variables
with a common distribution G(yℓ , r) and density g(yℓ , r). We
consider ri � (ri1, . . . , rip)T to be the expression levels of p
regulator genes and y

ℓ
� (y1ℓ , . . . , ynℓ)T to be the expression

level of the ℓth target gene.
The following linear regression model is used to describe the

molecular interactions between genes:

yiℓ � rTi βℓ + ϵiℓ , i � 1, . . . , n, ℓ � 1, . . . , q, (1)
where β

ℓ
� (β

ℓ1, . . . , βℓp)T is the regression coefficient vector that
indicates the strength of the effect of p regulator genes on the ℓ

th

target gene, and ϵiℓ ~ N(0, σ2) is the random error for the model of
the ℓ

th target gene. Although the linear regression model in
Equation 1 has been used to represent gene networks, it cannot

describe sample (patient)-specific molecular interactions because it
represents an averaged regulatory effect of p gene; that is, β

ℓ
for all

n samples.
Figure 2 shows the correlations between two genes

(i.e., LEF1 and RUNX1) that vary depending on AML drug
sensitivity (i.e., as a characteristic of cell line), where the top left,
top right, bottom left, and bottom right indicate the correlations
between genes in all cell lines as well as drug-sensitive, moderate,
and drug-resistant cell lines, respectively. As shown in Figure 2, the
correlations between genes showed different patterns in the drug-
sensitive and drug-resistant cell lines. However, the correlations in
all cell lines did not capture drug sensitivity-specific patterns of
association between the genes. This implies that gene regulatory
networks should be estimated by considering the characteristics of
the cell lines.

To address this issue and estimate a personalized gene network,
we considered the following varying coefficient model (Hastie and
Tibshirani, 1993),

yiℓ � rTi βℓ mα( ) + εiℓ , i � 1, . . . , n, (2)
where β

ℓ
(mα) � (β1ℓ(mα), . . . , βpℓ(mα))T is the varying coefficient

vector that describes the strength of the effects of p regulatory genes

FIGURE 1
Overview of our strategy for personalized gene network analysis. By using the L1-type regularization method, we estimate personalized gene
network based on characteristic of sample (e.g., drug sensitivity) and expression levels of genes. We then evaluate the estimated gene network (i.e., hyper
parameters selection) by using the proposed sample-specific generalized information criterion (GIC).
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on the ℓth target gene in the network of the αth target sample having a
specific biological characteristic of cell lines, called a modulator mα

(e.g., drug sensitivity, cancer progression, etc.).
Shimamura et al. (2011) proposed the use of kernel-based

L1-type regularization methods to estimate personalized gene
networks (i.e., β

ℓ
(mα)),

β̂
ℓα � argmin

β
ℓα

1
2
∑n
i�1

yiℓ − rTi βℓα( )2K mi −mα|hℓα( ) + P |β
ℓα|( )⎧⎨⎩ ⎫⎬⎭,

(3)
where β

ℓα � β
ℓ
(mα) and P(|β

ℓα|) denotes the elastic net penalty
term (Zou and Hastie, 2005),

FIGURE 2
Correlations between two genes (i.e., LEF1 and RUNX1) under varying AML drug sensitivities; i.e., Z-score of IC50 values (top left: all cell lines; top
right: drug-sensitive cell lines; bottom left: moderate-sensitive cell lines; bottom right: drug-resistant cell lines). The red and green dots indicate drug
resistant and sensitive cell lines, respectively.
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P |β
ℓα|( )} � λℓα ∑p

j�1

1
2

1 − πℓα( )β2
ℓjα + πℓα|βℓjα|[ ], (4)

where λℓα > 0 is a regularization parameter that controls the degree
of shrinkage for β

ℓα, and 0≤ πℓα ≤ 1 is a mixing parameter between
the L2-norm [i.e., ridge (Hoerl and Kennard, 1970)] and L1-norm
[i.e., lasso (Tibshirani, 1996)] penalties, and

K mi −mα|hℓα( ) � exp
− mi −mα( )2

hℓα
{ }, (5)

is a Gaussian kernel function with the bandwidth hℓα. In kernel-
based L1-type regularized regression modeling, the Gaussian kernel
function plays a key role; that is, it measures the similarity between
sample characteristics (i.e., (mi −mα)2), and then determines the
amount of weight for each sample in gene network estimation of the
αth sample.

2.2 Generalized information criteria for
personalized gene network analysis

In personalized gene network analysis based on kernel-based
L1-type regularization, the selection of the regularization parameters
(i.e., λℓα and πℓα) in Equation 4 is crucial because parameter selection
can be considered edge selection and edge weight estimation.
Furthermore, bandwidth hℓα selection is for Gaussian kernel
function in Equation 5 vital in sample-specific analysis because
the bandwidth controls the sample weighting. That is, too large a
value of hℓα leads to ineffective sample-specific analysis results,
whereas too small a value provides extremely small weights for
almost all samples; both prevent proper gene network estimation.

In previous studies, cross-validation (CV) or traditional
information criteria, e.g., AIC and BIC, have often been used to
select the regularization parameters and bandwidth. However, CV
leads to time-consuming results; in particular, personalized gene
network analysis is based on n estimations of a model for each n
sample; thus, it requires considerable computational complexity. In
addition, traditional information criteria are not suitable for kernel-
based L1-type regularized regression modeling because the criteria
were derived under the assumption that the model is estimated using
the maximum likelihood method (Konishi and Kitagawa, 1996;
Konishi and Kitagawa, 2008).

In this study, we considered the generalized information
criterion (GIC) for model evaluation of personalized gene
network analysis (i.e., λℓα, πℓα, and bℓ selection) (Konishi and
Kitagawa, 1996). The GIC is derived by relaxing the following
assumptions imposed on the AIC (Konishi and Kitagawa, 1996;
Konishi and Kitagawa, 2008):

• The model is estimated by the maximum likelihood method.
• The estimation is carried out in a parametric family of
distributions including the true model.

Thus, the GIC enables us to properly evaluate models estimated
using various methodologies, not only the maximum
likelihood method.

We derived a GIC for personalized gene network analysis based
on a kernel-based L1-type regularization method. One of the key
ideas for deriving GIC for the personalized gene network analysis is
that the objective function of the kernel-based L1-type regularized
regression model in Equation 3 can be represented without a
Gaussian kernel function as follows:

β̂
ℓα � argmin

β
ℓα

1
2
∑n
i�1

yiℓ − rTi βℓα( )2K mi −mα|hℓα( ) + P |β
ℓα|( )⎧⎨⎩ ⎫⎬⎭

� argmin
β
ℓα

1
2
y
ℓ
− Rβ

ℓα( )TKT
ℓαK ℓα y

ℓ
− Rβ

ℓα( ) + P |β
ℓα|( ){ }

� argmin
β
ℓα

� 1
2
y
ℓ
* − R*β

ℓα( )T y
ℓ
* − R*β

ℓα( ) + P |β
ℓα|( ){ }

(6)
where R � (r1, . . . , rn)T ∈ Rn×p and

y
ℓ
* � K ℓαyℓ �

k1α
1

knα

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦
y1ℓ

..

.

ynℓ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

R* � K ℓαR �
k1α

1
knα

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦
r11 / r1p

..

.
1 ..

.

rn1 / rnp

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

and where kiα �
�������������
K(mi −mα|hℓα)

√
. This Equation 6 implies that the

personalized gene network is estimated using ordinary L1-type
regularization methodology without the kernel function.

In the derivative of the GIC, the calculation of an influence
function is crucial, where the second-order differentiable functional
estimator β̂

ℓα � T(Ĝ) is required (Konishi and Kitagawa, 1996). For
personalized gene network analysis based on the kernel-based
L1-type regularization method, we estimate β̂

ℓα � T(Ĝ) as a
solution to the system of implicit equations

∂

∂β
ℓα

1
2
∑n
i�1

yiℓ* − r′Ti βℓα( )2 + P |β
ℓα|( )⎧⎨⎩ ⎫⎬⎭ � 0. (7)

However, the estimator β
ℓα in Equation 7 cannot be derived

analytically, owing to the indifferentiability of L1-type penalty as
shown in Equation 4. To resolve this issue, we referred to the
following local quadratic approximation (LQA) of an L1-type
penalty (Fan and Li, 2001).

Suppose that we provide an initial value β
ℓα0 that is close to the

minimizer of the objective function of the personalized gene
network estimation in Equation 3. If βjℓα0 is close to 0, then
β̂jℓα � 0. Otherwise, the L1-type penalty term can be
approximated locally using a quadratic function as follows:

P |βjℓα|( )[ ]′ � P′ |βjℓα|( )sgn βjℓα( ) ≈ P′ |βjℓα0|( )/|βjℓα0|{ }βjℓα,
when βjℓα ≠ 0. Therefore,

P |βjℓα|( ) ≈ P |βjℓα0|( ) + 1
2

P′ |βjℓα0|( )/|βjℓα0|{ } β2jℓα − β2jℓα0( ),
βjℓα ≈ βjℓα0. Thus, Equation 7 can be approximated as follows:

−∑n
i�1

yiℓ* − r*Ti β
ℓα{ }ri* + P′ |βjℓα0|( )/|βjℓα0|{ }βjℓα � 0.
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This implies that the estimator β̂
ℓα is given by β̂ℓα � T(Ĝ) for the

p-dimensional functional vector T(G), which is defined as the
solution of the implicit equation

∫ y
ℓ
* − r*TT G( )( )r* + P′ |T0 G( )|( )/|T0 G( )|{ }T G( )[ ]dG � 0. (8)

To derive the following influence function T(1)
ℓα , which is crucial

to the derivative of GIC,

T 1( ) G( ) ≡ ∂

∂ε
T 1 − ε( )G + εδy[ ]|ε�0,

We substitute G with (1 − ϵ)G + ϵδ in Equation 8, as follows:

∫ y
ℓ
* − rTT 1 − ϵ( )G + ϵδ[ ]( )r* + P′ |T0 G( )|( )/{[

× |T0 G( )|}T 1 − ϵ( )G + ϵδ[ ]]d 1 − ϵ( )G + ϵδ[ ] � 0. (9)
We then differentiate both sides of Equation 9 with respect to ϵ

as follows:

∫[ − r*r*T
∂

∂ε
T 1 − ε( )G + εδy[ ] − P′ |T0 G( )|( )/|T0 G( )|{ }

∂

∂ε
T 1 − ϵ( )G + ϵδy[ ]]
d 1 − ε( )G + εδy[ ]

+∫[ y
ℓ
* − r*TT 1 − ε( )G + εδy[ ]( )r*

− P′ |T0 G( )|( )/|T0 G( )|{ }T 1 − ε( )G + εδy[ ]]
d δy − G( ) � 0,

and set ε � 0. We then obtain the following Equation 10,

∫ −r*r*T − P′ |T0 G( )|( )/|T0 G( )|{ }[ ]dG · ∂
∂ε

T 1 − ε( )G + εδy[ ]|ε�0
+ y

ℓ
* − r*TT G( )( )r* − P′ |T0 G( )|( )/|T0 G( )|{ }T G( ) � 0. (10)

Consequently, the influence function T(1)(G) of the functional
that defines the kernel-based L1-type regularization estimator is
given by the Equation 11,

T 1( ) G( ) ≡
∂

∂ε
T 1 − ε( )G + εδy[ ]|ε�0

� ∫r*r*T + P′ |T0 G( )|( )/|T0 G( )|{ }dG[ ]−1
· yℓ

* − r*TT G( )( )r* − P′ |T0 G( )|( )/ T0 G( )|| }T G( ){ }[ ].
(11)

Thus, the bias correction term in GIC for personalized gene
network estimation is given as the following Equation 12,

b 1( ) � tr ∫r*r*T + P′ |T0 G( )|( )/|T0 G( )|{ }dG[ ]−1(
×∫ y

ℓ
* − r*TT G( )( )r* − P′ |T0 G( )|( )/|T0 G( )|{ }T G( )[ ]

·∂logf y
ℓ
*|r*, β

ℓα( )
∂βT

ℓα

|β
ℓα�T G( )dG) + O n−1( ). (12)

By replacing the unknown distribution G with the empirical
distribution Ĝ and subtracting the asymptotic bias estimate from the

log-likelihood, we can derive the GIC for the statistical
model f(y

ℓ
*|r*, β̂

ℓα) with the functional estimator β̂
ℓα � T(Ĝ)

as follows:

GIC � −2∑n
i�1

logf yiℓ* |ri*, β̂ℓα( ) + 2tr R Ĝ( )−1Q Ĝ( ){ }, (13)

where

R Ĝ( ) � 1
n

R*TR* + Σλ β̂
ℓα( ){ },

Q Ĝ( ) � 1
n

R*TΛ̂
2
R* − Σλ β̂

ℓα( )β̂
ℓα1

T
n Λ̂R*{ },

and where Λ̂ and Σλ(β̂ℓα) are n × n and p × p diagonal matrices,
respectively,

^ Λ � diag y1ℓ* − r*T1 β̂
ℓα( )/σ*21 , . . . , y1ℓ* − r*Tn β̂

ℓα( )/σ*2n{ },
Σλ β̂

ℓα( ) � diag P′ |β1ℓα0|( )/|β1ℓα0|, . . . , P′ |βpℓα0|( )/|βpℓα0|[ ],
and σ*2i � kiασ2 and 1n � (1, 1, , . . . , 1)T are n-dimensional vectors.
This implies that the GIC was derived without assuming maximum
likelihood estimation. Thus, it can be applied tomodel evaluation for
personalized gene network analysis based on various
estimation methods.

Personalized gene network analysis is based on the selected
tuning parameters λℓ,α, πℓ,α, and hℓ,α, which minimize the
derived GIC.

3 Monte Carlo simulation

Monte Carlo simulations were conducted to illustrate the
performance of the proposed GIC in personalized gene
network analysis.

Gene expression data were simulated under assumed
personalized networks that varied depending on the
characteristics of the samples. The expression levels of
p-regulator genes were generated from a p-dimensional
multivariate normal distribution, where the correlation between
rj and rk was ρ|j−k| with ρ � 0.5. The expression levels of the ℓ

th

target genes were calculated as the following Equation 14,

yiℓ � rTi βℓ mα( ) + εiℓ , i � 1, . . . , n, (14)
where εiℓ ~ N(0, 1) and M � (m1, . . . , mn) are generated from a
uniform distribution U(−1, 1).

We considered a sample size n � 300 and a p-dimensional
vector of coefficients consisting of a randomly selected 10% of
variables with non-zero coefficients for 95% of samples (285 of
300 samples) and zero coefficients for 5% of samples. We then
considered the remaining 90% of the regulator genes as noisy
features (i.e., 90% of p variables have zero coefficients for all n
samples). The nonzero-varying coefficients β

ℓα of the crucial 10% of
variables were generated from various scenarios:

• Scenario 1:

βjℓα � are generated fromU 0.1, 1( ), α � 1, . . . , 285,
0, otherwise.

{
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• Scenario 2:

βjℓα � are generated fromU 0.9, 1( ), α � 1, . . . , 285,
0, otherwise.

{

• Scenario 3:

βjℓα � are generated fromU −1,−0.1( ), α � 1, . . . , 285,
0, otherwise.

{

• Scenario 4:

βjℓα � are generated fromU −1,−0.9( ), α � 1, . . . , 285,
0, otherwise.

{
Scenarios 1 and 2 (3 and 4) represent positive (negative) edge

weights; that is, the strength of the effects of activators (inhibitors)
on their target genes, where edge weights that vary greatly depending
on the modulator values (i.e.,mi) are described in Scenarios 1 and 3.
We also considered varying coefficients in descending and
ascending order in simulation types 1 and 2. Figure 3 shows the
varying coefficients to describe edge weights in personalized
gene networks.

We considered the number of genes consisting of networks p + 1
as 50, 100, and 500. Personalized gene networks were estimated for
40 randomly selected modulator values M � (m1, . . . , m40).

The performance of the proposed model evaluation criterion
(i.e., GIC) for personalized gene network analysis was evaluated by
comparing it with CV and traditional information criteria, including
AIC, BIC, Akaike’s second-order corrected Information Criterion
(AICc) (Hurvich and Tsai, 1989), and the Hannah and Quinn
Criterion (HQC) (Hannan and Quinn, 1979). CV was
implemented using the R package glmnet (Friedman et al., 2024)
and traditional information criteria were implemented using the R

packageHDeconometrics (Gabriel, 2016).We also show the evaluate
results by the recently developed model evaluation criteria,
i.e., extended BIC (EBIC) (Chen et al., 2022) and high-
dimensional BIC (BIC-p) (Nan and Yang, 2014). The evaluation
was conducted based on the accuracies of edge selection, including
true positive (TP), true negative (TN), and their average values,
based on 100 iterations. Table 1 lists the edge selection results, where
bold numbers indicate the most effective performance among the
model evaluation criteria.

As shown in Table 1, the proposed GIC and BIC-type criteria
(BIC, EBIC, BIC-p) provide outstanding edge selection performance
in personalized gene network analysis. Although EBIC and BIC-p
show effective results, the methods cannot perform well for edge
selection in high-dimensional situations (i.e., YGenes: 500). The
proposed GIC shows the most effective results compared with those
of other traditional information criteria. Although other
information criteria also show effective results for true edge
selection, existing methods cannot perform well in terms of the
true negative rate; in particular, AIC, AICc, and HQC show poor
results. The performance of our strategy was also improved in
scenarios with large absolute values of varying coefficients, as in
scenarios 2 and 4, whereas the performance of other criteria did
not improve.

We also evaluated the accuracy of edge weight estimation based
on the mean absolute error (MAE) of β̂

ℓα as follows:

MAE β̂
ℓα( ) � 1

ω
∑ω
α�1

∑p
j�1

|βjℓα − β̂jℓα|, ℓ � 1, . . . , p, (15)

where ω � 40 denotes the number of target samples corresponding
to the modulator values M � (m1, . . . , m40). Figure 4 shows the
MAE of the edge weight estimation in personalized gene network
analysis in Equation 15. It can be seen through Figure 4 that the

FIGURE 3
Varying coefficients to describe sample-specific edge weights.
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TABLE 1 Accuracy of edge selection (true negative rate, true positive rate, and their average values), where bold numbers indicate the best performance among the model evaluation criteria, where “SNx” indicate
scenarios x.

Type Y genes: 50 Y genes: 100 Y genes: 500

SN1 SN2 SN3 SN4 SN1 SN2 SN3 SN4 SN1 SN2 SN3 SN4

1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2

True Negative Rate (TNR) GIC 0.76 0.75 0.91 0.91 0.76 0.75 0.91 0.91 0.74 0.74 0.88 0.88 0.75 0.74 0.88 0.88 0.73 0.73 0.79 0.79 0.73 0.73 0.79 0.79

BIC 0.81 0.80 0.77 0.79 0.81 0.80 0.77 0.78 0.73 0.73 0.67 0.67 0.73 0.74 0.68 0.67 0.72 0.73 0.76 0.76 0.72 0.72 0.76 0.76

EBIC 0.87 0.88 0.90 0.90 0.88 0.87 0.91 0.90 0.87 0.88 0.88 0.88 0.87 0.87 0.88 0.88 0.97 0.96 0.88 0.87 0.96 0.96 0.88 0.88

BICp 0.89 0.89 0.90 0.90 0.90 0.89 0.91 0.90 0.89 0.89 0.88 0.88 0.89 0.89 0.88 0.88 0.97 0.97 0.91 0.90 0.97 0.97 0.91 0.91

AIC 0.27 0.28 0.27 0.27 0.28 0.28 0.28 0.29 0.16 0.17 0.15 0.15 0.16 0.17 0.16 0.15 0.68 0.68 0.74 0.74 0.68 0.68 0.74 0.74

AICc 0.38 0.40 0.39 0.39 0.40 0.40 0.39 0.40 0.39 0.40 0.37 0.38 0.39 0.41 0.38 0.38 0.48 0.49 0.77 0.76 0.48 0.48 0.76 0.77

HQC 0.57 0.59 0.56 0.57 0.58 0.58 0.56 0.56 0.46 0.47 0.43 0.44 0.46 0.47 0.44 0.43 0.69 0.69 0.74 0.74 0.68 0.68 0.75 0.74

CV 0.73 0.72 0.71 0.71 0.73 0.73 0.71 0.72 0.73 0.73 0.73 0.71 0.73 0.73 0.71 0.72 0.72 0.73 0.70 0.70 0.71 0.71 0.70 0.70

True Positive Rate (TPR) GIC 0.98 0.98 1.00 1.00 0.99 0.99 1.00 1.00 0.98 0.98 1.00 1.00 0.98 0.98 1.00 1.00 0.86 0.86 0.95 0.94 0.86 0.86 0.94 0.94

BIC 0.94 0.95 1.00 1.00 0.94 0.94 1.00 1.00 0.96 0.95 1.00 1.00 0.96 0.96 1.00 1.00 0.84 0.85 0.96 0.96 0.84 0.85 0.96 0.96

EBIC 0.88 0.88 1.00 1.00 0.87 0.89 1.00 1.00 0.81 0.81 1.00 1.00 0.83 0.81 1.00 1.00 0.16 0.17 0.59 0.60 0.19 0.17 0.59 0.58

BICp 0.86 0.87 1.00 1.00 0.86 0.87 1.00 1.00 0.79 0.79 1.00 1.00 0.80 0.78 1.00 1.00 0.14 0.15 0.46 0.47 0.16 0.15 0.45 0.46

AIC 0.99 0.99 1.00 1.00 0.99 0.99 1.00 1.00 1.00 0.99 1.00 1.00 0.99 1.00 1.00 1.00 0.87 0.87 0.96 0.96 0.88 0.88 0.96 0.96

AICc 0.99 0.99 1.00 1.00 0.99 0.99 1.00 1.00 0.99 0.99 1.00 1.00 0.99 0.99 1.00 1.00 0.94 0.94 0.96 0.96 0.94 0.95 0.96 0.96

HQC 0.98 0.98 1.00 1.00 0.98 0.98 1.00 1.00 0.99 0.99 1.00 1.00 0.99 0.99 1.00 1.00 0.87 0.87 0.96 0.96 0.87 0.88 0.96 0.96

CV 0.96 0.96 1.00 1.00 0.97 0.96 1.00 1.00 0.96 0.96 1.00 1.00 0.95 0.96 1.00 1.00 0.84 0.84 0.97 0.98 0.85 0.85 0.98 0.98

Average of TPR and TNR GIC 0.87 0.86 0.95 0.96 0.87 0.87 0.96 0.96 0.86 0.86 0.94 0.94 0.86 0.86 0.94 0.94 0.80 0.79 0.87 0.87 0.80 0.80 0.86 0.87

BIC 0.87 0.88 0.89 0.89 0.87 0.87 0.89 0.89 0.84 0.84 0.84 0.84 0.84 0.85 0.84 0.84 0.78 0.79 0.86 0.86 0.78 0.79 0.86 0.86

EBIC 0.87 0.88 0.95 0.95 0.88 0.88 0.95 0.95 0.84 0.84 0.94 0.94 0.85 0.84 0.94 0.94 0.56 0.57 0.73 0.74 0.58 0.57 0.73 0.73

BICp 0.87 0.88 0.95 0.95 0.88 0.88 0.95 0.95 0.84 0.84 0.94 0.94 0.84 0.84 0.94 0.94 0.55 0.56 0.68 0.69 0.56 0.56 0.68 0.68

AIC 0.63 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.58 0.58 0.58 0.58 0.58 0.58 0.58 0.58 0.77 0.78 0.85 0.85 0.78 0.78 0.85 0.85

AICc 0.69 0.69 0.69 0.70 0.69 0.69 0.70 0.70 0.69 0.69 0.68 0.69 0.69 0.70 0.69 0.69 0.71 0.72 0.86 0.86 0.71 0.71 0.86 0.86

HQC 0.78 0.78 0.78 0.79 0.78 0.78 0.78 0.78 0.72 0.73 0.71 0.72 0.72 0.73 0.72 0.72 0.78 0.78 0.85 0.85 0.78 0.78 0.85 0.85

CV 0.84 0.84 0.86 0.86 0.85 0.85 0.86 0.86 0.85 0.85 0.86 0.85 0.84 0.84 0.86 0.86 0.78 0.78 0.84 0.84 0.78 0.78 0.84 0.84
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proposed GIC effectively performed edge weight estimation overall,
although there were a few differences between the methods. CV also
showed outstanding performance, particularly in gene network
analysis with a large number of genes (i.e., # Genes 500) in

scenarios 2 and 4. Our strategy also provided stable results,
notably, with a small variance in the MAE, while AIC and AICc
show especially poor results compared to those of other model
selection criteria.

FIGURE 4
Mean absolute error of the edge weight estimation in personalized gene network analysis.
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We also evaluated computational efficacy of the proposed GIC
by compared with the CV. The varying coefficient model in
Equation 2 for various data dimensional situations was
considered, i.e., various number of regulator genes p �
50, 250, 500, 750, 1000 and n � 500, where 40 target samples
(i.e., M � (m1, . . . , m40)) are considered. The computational
efficiency is evaluated for modulator values in scenario for type
1, because computational cost is not affected by scenarios of
modulator values. Table 2 shows computational times for the
kernel-based L1-type regularized regression modeling with GIC
and 10-fold CV.

As shown in Table 2, the proposed GIC provides computational
cost-effective results compared with the CV. The challenge in
computational complexity of GIC was computational of inverse
matrix of R(Ĝ) in (13) and the problem becomes increasingly
complex as the number of dimensions increases. Thus, the
efficient computations of the inverse of a matrix should be
considered for high-dimensional gene network analysis.

In summary, the proposed GIC effectively performed edge
selection in personalized gene network analysis and provided
efficient results for edge weight estimation. We expect that the
proposed GIC will be a useful tool for model evaluation in
personalized gene network analysis.

4 Anticancer drug sensitivity-specific
gene network analysis

4.1 Acute myeloid leukemia drug sensitivity-
specific gene network analysis

We applied the proposed GIC to AML drug sensitivity-specific
gene network analysis. AML is a deadly hematopoietic malignancy
characterized by the malignant proliferation of myeloid stem/
progenitor cells (Culver-Cochran et al., 2024; Niu et al., 2022)
Although the primary treatment for AML involves
chemotherapy, acquired drug resistance in AML cell lines is a
critical issue that leads to ineffective chemotherapy. Thus,
uncovering the mechanisms underlying acquired AML drug
resistance has been recognized as a critical problem. To uncover
these mechanisms, we performed drug sensitivity-specific gene
network analysis. We used the publicly available “Sanger
Genomics of Drug Sensitivity in Cancer (GDSC) dataset from the
Cancer Genome Project.” The gene expression and drug sensitivity
data (i.e., the half-maximal inhibitory concentration (IC50) and its
Z-score) were obtained from the GDSC dataset (https://www.
cancerrxgene.org/). We considered four FDA-approved AML
drugs, namely, doxorubicin, midostaurin, quizartinib, and
cytarabine, which have sensitivity values in the GDSC dataset.
We then considered 68 genes involved in the pathway “Acute

myeloid leukemia (hsa05221)” of the KEGG pathway database
(https://www.genome.jp/kegg/pathway.htm). For the 36 genes
involved in the AML pathway that existed in the GDSC data, we
extracted the expression levels of 300 randomly selected cell lines,
including resistant (greater than 3rd quantile of drug sensitivity),
sensitive (smaller than 1st quantile of drug sensitivity), andmoderate
(between the 40th and 60th percentiles of drug sensitivity) cell lines.

4.1.1 Evaluation
We first evaluated the performance of the proposed GIC based

on an AML drug sensitivity-specific gene network analysis in which
the Z-score of the IC50 value was used as a characteristic of the cell
lines (i.e., modulator). Drug sensitivity-specific gene networks were
estimated for a randomly selected set of each five sensitive, resistant,
and moderately sensitive cell lines. We then evaluated the gene
network estimation error, namely, the mean square error (MSE) of
estimating the expression levels of the target genes based on the
varying coefficient model (Equation 2). Figure 5 presents the average
MSE over 50 iterations.

For doxorubicin, midostaurin, and cytarabine sensitivity-
specific gene network analyses, the proposed GIC showed
outstanding performance compared with that of other model
evaluation criteria, whereas AIC also showed effective results in
the quizartinib sensitivity-specific gene network estimation.
Although there was no significant difference between the
accuracies of the model selection criteria, the proposed GIC
showed effective results in AML drug-specific gene network analysis.

4.1.2 Uncovering AML drug resistant-specific
molecular interactions

To uncover AML drug resistant-specific molecular interactions,
we estimated drug sensitivity-specific gene networks for
100 randomly selected resistant and sensitive cell lines.

The medians of edge weights were computed for the 100 gene
networks of 100 resistant cell lines. We then computed the means of
the edge weights using four median edge weights from doxorubicin,
midostaurin, quizartinib and cytarabine sensitivity-specific gene
networks, where edges having non-zero median edge weights in
the networks of the four drugs were only extracted. We defined the
network based on the computed edge weights as the AML drug
resistant-specific gene network. A similar process was conducted for
the AML drug sensitivity-specific gene network.

Figure 6 shows the estimated AML drug-resistant- and sensitive-
specific gene networks, where we considered only the largest 5%
absolute edge weights for effective visualization.

In both AML drug resistant- and sensitive-specific gene
networks, CSF1R, SPI1, and PPARD played key roles as hub
genes. The activity of PIK3CD can be considered a drug
sensitive-specific molecular interaction, whereas its activity
becomes weaker in resistant cell lines. The hubness of RARA and

TABLE 2 Computational costs in seconds for the kernel-based L1-type regularized regression modeling, where the hyper parameters are selected by GIC
and CV. The computations are implemented by the glmnet R-packages.

Methods YGenes: 50 YGenes: 250 YGenes: 500 YGenes: 750 YGenes: 1000

GIC 46.89 308.31 969.27 1195.34 2050.36

CV 109.27 1022.5 1430.52 1980.17 2309.81
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RELA were AML drug resistant-specific molecular characteristic.
Thus, CSF1R, SPI1, PPARD, PIK3CD, RARA, and RELA can be
considered crucial biomarkers associated with the mechanisms of
AML drug sensitivity. The markers identified in our analysis have
been identified as crucial biomarkers of AML in literature, especially
previous studies identified some markers as therapeutic targets of
AML as follows.

• CSF1R (Common marker)
According to Edwards et al. (2019), inhibition of CSF1R, a
receptor tyrosine kinase essential for the survival, proliferation,
and differentiation of myeloid-lineage cells, demonstrated
sensitivity. They identified CSF1R as a promising
therapeutic target for AML and described its involvement in
paracrine cytokine/growth factor signaling within this
condition. CSF1R was suggested as an important target for
sunitinib and related drugs (Kogan et al., 2012).

• SPI1 (Common marker)
Xiong et al. (2023) demonstrated that reduced circ-SPI1
expression correlates with lower white blood cell counts,
favorable risk profiles, and enhanced therapy response, while
its decrease during therapy independently predicts prolonged
event-free and overall survival in patients with AML.

• PPARD (Common marker)
Lymboussaki et al. (2009) identified PPARD as a negative
regulator of vitamin D3-induced monocyte differentiation,
leading to the hypothesis that plays a role in the
differentiation block observed in M5-type AML.

• PIK3CD (Sensitive specific marker)
Mutations in the AKT3 and PIK3CD genes were frequently
observed in de novo Philadelphia chromosome-positive AML,
highlighting the significant role of PIK3CD in cell proliferation
and its potential as a therapeutic target for AML (Follo
et al., 2019).

• RARA (Resistant specific marker)
de Botton et al. (2023) suggested that utilizing tamibarotene-
based treatment in patients with AML or MDS and RARA
overexpression might provide a personalized approach to
achieving better therapeutic results. Fiore et al. (2020)
suggested that SY-1425 plus azacitidine could serve as a
novel targeted treatment option for RARA + newly
diagnosed unfit AML, particularly for patients resistant to
venetoclax-based standard-of-care therapy, warranting
further exploration in this specific genomic subset. Stein
et al. (2023) demonstrated that combining tamibarotene
and azacitidine yielded a high response rate and rapid
response onset with an associated favorable tolerability
profile in newly diagnosed unfit patients with AML and
RARA overexpression.

• RELA (Resistant specific marker)
RELA and PARP1 establish a positive feedback loop for DNA
damage repair in AML cells, and inhibiting both NF-κB and
PARP1 boosts the antileukemic efficacy of daunorubicin
in vitro and in vivo, highlighting the broader therapeutic
potential of PARP1 inhibitors (Li et al., 2019). van Dijk
et al. (2022) demonstrated that bortezomib could improve

FIGURE 5
AML drug sensitivity-specific gene network estimation errors.
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clinical outcomes in patients with AML and low levels of
RELA-pSer536 and HSF1-pSer326.

To reveal the biological pathways and functions involved in
AML drug resistant- and sensitive-specific gene networks, we
performed gene enrichment analysis using the bioinformatics
tool Database for Annotation, Visualization, and Integrated
Discovery (DAVID) (Dennis et al., 2003). Gene Ontology
(GO) analysis was performed using the categories “Molecular
Function,” “Cellular Component,” and “Biological Processes.”
The genes comprising the drug resistant- and sensitive-specific
gene networks were used as inputs for GO term pathway analysis.

Figure 7 shows the five most significant pathways with
−log(p.value).

As shown in Figure 7, the AML drug resistant and sensitive
specific gene networks involve different biological pathways. The
drug resistant-specific gene network was enriched in the Cytosol
Positive regulation of DNA-templated transcription, Signal
transduction and Negative regulation of cell population
proliferation pathways. In contrast, Positive regulation of gene
expression, insulin-like growth factor receptor signaling pathway
and Vascular endothelial growth factor signaling pathway were
identified as GO terms enriched in drug sensitive-specific gene
networks. Furthermore, Negative regulation of apoptotic process

FIGURE 6
AML drug resistant- and sensitive-specific gene networks, where edge color indicates sign of the effect (red and blue are “-” and “+,” respectively),
thickness represents the strength of the edge, and arrows (X → Y) indicate that gene X regulates gene Y.

Frontiers in Genetics frontiersin.org12

Park et al. 10.3389/fgene.2025.1583756

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2025.1583756


and Positive regulation of DNA-templated transcription were
identified as common GO terms enriched in both the drug
resistant and sensitive specific gene networks.

Our results suggest that suppression of the identified AML drug
resistant-specific markers (i.e., RARA and RELA) and activation of
the sensitive-specific marker (i.e., PIK3CD) may be powerful means
of improving chemotherapy efficacy in AML. Additionally,
controlling the revealed AML drug resistant- and sensitive-
specific pathways may help overcome drug resistance in AML.

4.2 Gastric cancer drugs sensitivity-specific
gene network analysis

We also applied our strategy for gastric cancer drugs sensitivity-
specific gene network analysis. We used the dataset obtained from
the Cancer Dependency Map (DepMap) Portal (https://depmap.
org/portal/), where the RNA expression levels were from the Cancer
Cell Line Encyclopedia (CCLE) dataset and drug sensitivity
measurements were obtained from the PRISM repurposing
primary screen (https://depmap.org/repurposing). For the
148 genes involved in the gastric cancer pathway (i.e., “Gastric
cancer” (hsa05226) of KEGG database) that existed in the CCLE

data, we extracted the expression levels of 100 randomly selected cell
lines. We focused on FDA approved gastric cancer drugs, 5-
Fluorouracil, Capecitabine, Docetaxel, Doxorubicin, and
Mitomycin-c. In the gastric cancer drugs sensitivity-specific gene
network analysis, we consider a module of the drug sensitivities that
describes common features of five drugs sensitivities. We then
extracted the module of the gastric cancer drugs, i.e., we
computed the first principal component of the drug sensitivities
of 5 drugs. We then performed the gastric cancer drugs module-
specific gene network analysis.

4.2.1 Evaluation
We first evaluated our strategy based on MSE of the estimating

expression levels of target genes, where randomly selected
10 samples having 5 largest and 5 smallest module values are
considered as target samples. Our strategy was applied to hyper
parameter selection in the kernel based L1-type regularized
regression modeling. Figure 8 shows the average MSE over
50 iterations.

The proposed sample-specific GIC also provides outstanding
performance for personalized gene network estimation.
Furthermore, our strategy shows stables results compared with
other methods, i.e., low variance of MSE. The result implies that

FIGURE 7
Gene Ontology analysis of AML drug resistant- and sensitive-specific gene networks.

FIGURE 8
Gastric cancer drugs module sensitivity-specific gene network estimation errors.
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the proposed method is a useful tool for personalized gene
network analysis.

4.2.2 Gastric cancer drugs sensitivity-specific
molecular interplays

We aim to uncover gastric cancer markers, i.e., candidate
chemotherapy targets that have drug sensitivity specific molecular
interplays. From the gastric cancer drug sensitivity module-specific
gene networks, we computed effect change of regulator genes on
their target gene according to ten modulator values, called a regulate
effect. The regulate effect changes are computed as range of varying
coefficients for 10 modules values. Figure 9 present the regulator
effect changes of regulator genes on their target genes, where the
numbers indicate total regulator effects for all target genes.

We focus on four genes, FGF16, FGF6, CSNK1A1L and
WNT1 that show the largest regulate effect changes according to
the module values of gastric cancer drug sensitivity. That is, FGF16,
FGF6, CSNK1A1L and WNT1 show gastric cancer drug module-
specific molecular interplays, and thus can be considered as
candidate chemotherapy targets of gastric cancer.

• FGF family (FGF16 and FGF6)
Dysregulated FGF-FGFR signaling plays a major role in the
onset of skeletal diseases and gastric cancer (Zhang et al., 2019).
According to Zhang et al., 2021, FGF16 was found to be an
immune-related gene with differential expression, significantly
associated with overall survival in gastric cancer. Their study
also highlighted the roles of NRP1, PPP3R1, IL17RA, and
FGF16 in tumor progression and prognosis prediction.

• CSNK1A1L
CSNK1A1L, implicated in the Wnt signaling cascade, has been
suggested as a diagnostic and prognostic marker in gastric and
ovarian cancers (Anderson et al., 2015; Yang et al., 2017; Seabra
et al., 2014 further demonstrated that CSNK1A1L expression
varies across tumor stages, with notable differences between
T4 and T1–T3 stages.

• Wnt1
Dou et al. (2020) demonstrated that dysregulation of the cell
cycle by Wnt1 plays a critical role in driving ovarian cancer
development. The study byWang and Gao (2021) revealed that
H19 promotes ovarian cancer progression by sequestering
miR-140, which in turn leads to Wnt1 upregulation and
increased cell proliferation and migration. Li et al., 2023
found that WNT1 expression is significantly upregulated in
gastric cancer tumors. Their findings also indicate that
KLF3 may enhance tumor progression and metastasis by
stimulating the WNT/β-catenin signaling cascade via
WNT1. Mao et al., 2014 demonstrated that elevated
Wnt1 and CD44 expression correlates with higher gastric
cancer grades.

Figure 10 shows the most significant GO terms for the identified
gastric therapeutic targets (i.e., FGF16, FGF6, CSNK1A1L and
WNT1) and their target genes.

The results indicate that the identified therapeutic targets are
involved in Wnt signaling-related pathways (i.e., Wnt signaling
pathway and Canonical W. signaling pathway). Abnormal
regulation of Wnt pathway components has been observed in

FIGURE 9
Regulate effect change of regulator genes according to the module of gastric cancer drugs.

FIGURE 10
Gene Ontology terms for gastric cancer therapeutic targets.
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gastric cancer cells, contributing to uncontrolled cell growth,
increased invasiveness and metastasis, poor clinical outcomes,
and resistance to chemotherapy (Han et al., 2024). Furthermore,
positive regulation-related terms (i.e., Positive regulation of gene
expression and Positive regulation of protein phosphorylation) are
also identified as GO terms enriched in the identified markers. It can
be suggested through our results and literature survey that the
identified genes (FGF16, FGF6, CSNK1A1L, WNT1) and Wnt
signaling-related pathways provide crucial clue to chemotherapy
efficacy of gastric cancer.

5 Discussion

In this study, we introduce a novel model evaluation tool for
personalized gene network analysis. Although the kernel-based
L1-type regularization methodology has been used to estimate
sample-specific gene networks, relatively little attention has been
paid to model evaluation of sample-specific analysis
(i.e., regularization parameters and bandwidth selection).
Previous studies have used CV or traditional information criteria
(e.g., AIC and BIC, etc.) to evaluate personalized models. However,
CV suffers from computational complexity and is thus unsuitable
for personalized gene network analysis based on n estimations of
models. Furthermore, traditional information criteria were derived
under the assumption that the model is estimated using the
maximum likelihood method. Thus, traditional information
criteria cannot properly perform personalized gene network
analysis using a kernel-based L1-type regularization method.

To address these issues, we proposed a GIC for personalized
gene network analyses. Because the GIC was derived by relaxing the
assumptions that 1. The model was estimated using the maximum
likelihood method and 2. The estimation was carried out in a
parametric family of distributions, including the true model, it
properly evaluated the models for personalized gene network
analysis. To derive the GIC, we first focused on the objective
function of the kernel-based L1-type regularization method,
which can be represented without a kernel function.
Subsequently, to address the indifferentiability of the L1-type
penalty in the computation of the influence function of the GIC,
we referred to the local quadratic approximation of the L1-type
penalty term and derived the GIC for personalized gene
network analysis.

Monte Carlo simulations were conducted to demonstrate the
performance of the proposed model evaluation strategy.
Experiments with synthetic data demonstrated that the
proposed GIC provided superior performance for edge
selection in personalized gene network analysis. Furthermore,
our strategy demonstrated effective results for edge weight
estimation. We applied the proposed GIC to AML drug
sensitivity-specific gene network analysis for FDA-approved
AML drugs, including doxorubicin, midostaurin, quizartinib,
and cytarabine. Our strategy yielded efficient network
estimation results. From AML drug resistant- and sensitive-
specific gene network analysis, we revealed that PIK3CD and
RARA/RELA are sensitive- and resistant-specific markers,
respectively. We suggest that RARA and RELA suppression
and PIK3CD activation may provide crucial targets for

improving chemotherapy efficacy in AML. We expect that the
proposed strategy will be a useful tool not only for personalized
gene network analysis, but also for various sample characteristic-
specific analyses.

Although our strategy showed effective results for personalized
gene network analysis, there are several limitations.

• Asymptotic bias of L1 norm penalty
To calculation of the influence function in GIC, we use the
LQA of L1 norm penalty. Unfortunately, the LQA suffers bias
because the technique is based on the Taylor series expansion.
That is, there is a bias between the true function and the
quadratic approximation of the L1 norm penalty. Although the
LQA is used for derivative of GIC to model evaluation and thus
not lead to biased edge weight estimation in our strategy,
evaluation of the estimated gene network suffers from the
asymptotic bias. The employing bias-corrected approximation
in derive GIC is considered as one of future work of
our strategy.

• Applicability for categorical sample characteristic (e.g., tumor
subtypes) analysis
The proposed strategy cannot be applied to categorical sample
characteristic (e.g., tumor subtypes) analysis, because the
kernel-based L1-type regularization is based on Gaussian
kernel function. We consider extension of our strategy to
categorical sample characteristic-specific gene network
analysis based on kernel functions of categorical variables
(Belanche and Villegas, 2013) as another future work of
current study.

• Lack of experimental validation
In this study, we identified CSF1R, SPI1, PPARD, PIK3CD,
RARA, and RELA as crucial AML markers by data-driven
strategy and the identified markers were validated through
literature survey. However, the literature survey is not
enough to support biological evidences of our results.
Although our study focuses on a computational strategy
for personalized gene network analysis, the lack of
experimental validation can be considered as one of
limitation of this study.

Although we performed personalized gene network analysis
focused on the anti-cancer drug sensitivity of samples, our
strategy can be extended to various sample characteristics-
specific analysis with continuous sample characteristics (e.g.,
drug sensitivity, cancer progression, survival time). Especially in
the medical field, survival analysis plays a pivotal role in
examining how outcomes evolve over a period. We consider
application of our strategy for survival time specific gene
network analysis and uncovering crucial molecular interplays
influencing survival time dynamics as one of future work of
this study.
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