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Objectives: δ-thalassemia and δ-globin variants are rare hemoglobinopathies.
However, co-inheritance of β-thalassemia and δ-globin gene mutations may
affect the diagnosis of β-thalassemia carriers when based on the elevated Hb A2.
This study aimed to identify and characterize δ-thalassemia and δ-globin variants
in Southern China.

Methods: Ninety samples with suspected δ-globin gene mutations from
15,642 participants were selected for further molecular analysis based on their
Hb A2 level (&1.8%) and hematological parameters. Additionally, 37 samples with
suspected δ-globin gene mutations were sent from other hospital to our
laboratory for identification. GAP-PCR and PCR-reverse dot blot (PCR-RDB)
were used to detect common α- and β-thalassemia in the Chinese
population, and Sanger sequencingwas used to identify δ-globin genemutations.

Results: Among 15,642 samples examined, samples with δ-globin gene
mutations were identified in 127 (0.81%) cases with as many as 28 different
genotypes, including 81 (0.52%) cases of δ-thalassemia and 46 (0.29%) cases of δ-
globin variants. The most prevalent δ-thalassemia and δ-globin variants of this
study were HBD:c.−127T>C (75.3%, 61/81) and Hb A2-Melbourne (54.3%, 25/46).
Most of the samples were heterozygous (87.4%, 111/127), and only two cases of
homozygous were detected. There were three double heterozygotes and
11 cases of combined α/β-globin mutations. Notably, we also identified eight
cases of novel mutations in the δ-globin gene. In both heterozygous and
homozygous cases, δ-globin mutations maintained hematological parameters
within normal ranges, while their co-occurrence with α- or β-thalassemia
manifested as a thalassemia phenotype characterized by significantly reduced
MCV and MCH values.
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Conclusion: The study reveals that δ-globin gene mutations are prevalence in the
South China and necessitates integration of δ-globin screening into existing
thalassemia prevention protocols.
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Introduction

Hemoglobinopathies are the most common hereditary diseases
in China, with a higher prevalence in region south of the Yangtze
River (Huang et al., 2019; Chen et al., 2022; Wang et al., 2022).
These disorders can be classified into two types: thalassemia and
structural hemoglobin (Hb) variant. Thalassemia is characterized
by a reduction or absence in the production of normal globin
chains, while structural Hb variants are caused by amino acid
substitutions in the globin chains (Viprakasit and Ekwattanakit,
2018; Vijian et al., 2021). α- and β-globin variants, along with
thalassemia, are the most common and severe types of
hemoglobinopathies (Lou et al., 2023; Paiboonsukwong et al.,
2022). In contrast, δ-globin variant and thalassemia are less
frequently reported, as the carriers of these conditions are less
common in the population (Kordafshari et al., 2016; Morgado
et al., 2007). The clinical presentation of these hemoglobinopathies
can range from being asymptomatic to causing severe transfusion-
dependent anemia accompanied by other complications
(Harteveld et al., 2022). Therefore, early detection and accurate
diagnosis are essential for preventing the development of severe
forms of hemoglobinopathies.

Hb A2 level is a crucial hematological marker for
distinguishing between α- and β-thalassemia carriers
(Srivorakun et al., 2020; Colaco and Nadkarni, 2021). In normal

individuals, Hb A2 accounts for less than 3.5% of total Hb and is
composed of α- and δ-globin chains (α2δ2). Elevated Hb A2 levels
(Hb A2>3.5%) are usually considered β-thalassemia carrier in
Chinese clinical laboratories. Genetic defects in the δ-globin
gene (HBD gene) can lead to a reduced Hb A2 level (Hanart
et al., 2023). Our laboratory experience revealed that HbA2 values
for δ-globin mutant heterozygotes ranged from 1.1% to 1.8% using
the CE assay. Clinical implications are not associated with either
structural Hb A2 variants (δ-globin variant) or δ-thalassemia
caused by mutations in the δ-globin gene. However, co-
inheritance of a mutation in the δ-globin gene and β-
thalassemia might cause the phenotype of elevated Hb A2

characteristic of β-thalassemia carriers to decrease to normal or
borderline level, thus causing diagnostic results to be
misinterpreted (Panyasai and Pornprasert, 2020; Chen et al.,
2017). In previous studies, we reported that δ-globin variants
combined with β-thalassemia affected the diagnosis of β-
thalassemia (Lin et al., 2024; Li et al., 2020). To improve the
identification of β-thalassemia phenotype and at-risk couples in
regions with high thalassemia prevalence, it is important to
establish a regional database of δ-globin gene mutations.

In this study, we aim to identify the δ-thalassemia and δ-globin
variants in southern China, based on reduced HbA2 levels as
quantified by capillary electrophoresis. We also report eight novel
mutations for the first time.

TABLE 1 Hematological characteristics and Hb analysis of δ-thalassemia in this study.

Common name HGVS name Number Hb
(g/L)

MCV
(fL)

MCH
(pg)

Hb
A (%)

Hb
A2 (%)

Hb
F (%)

IthaGenes
ID

−77T>C HBD:c.−127T>C 61 143.3 ±
18.0

88.3 ± 6.2 29.7 ± 2.7 96.9 ± 5.7 1.3 ± 0.3 1.0 ± 1.1 1322

−30T>C HBD:c.−80T>C 5 137.4 ±
14.3

89.4 ± 3.1 30.1 ± 1.5 98.2 ± 1.0 1.4 ± 0.1 0.4 ± 0.9 1329

IVS I-127(−A)/IVS
I-3(−A)

HBD:c.93-2delA 3 136.7 ±
24.0

86.7 ± 2.8 27.8 ± 1.7 98.6 ± 0.2 1.1 ± 0.1 0.2 ± 0.3 3233

CD 10 GCT>−CT HBD:c.31delG 2 123.5 ± 6.4 86.8 ± 10.8 28.5 ± 6.4 98.5 ± 0.6 1.3 ± 0.3 0.3 ± 0.4 3232

CD7(−GAG) HBD:
c.22_24delGAG

1 132 91.3 29.5 98.8 1.2 0 3231

CD 97 CAC>CAT HBD:c.294C>T 1 136 60 18.3 92 2.8 5.2 3787

CD 87 CAG>TAG HBD:c.262C>T 2 145.5 ± 5.0 88.7 ± 0.3 30.2 ± 0 98.7 ± 0.1 1.3 ± 0.1 0 3844

CD122/123(+A) HBD:c.369dupA 1 153 87.9 30.9 98.5 1.5 0 Unregistered

−84C>T HBD:c.−134C>T 2 152 ± 14.1 87.4 ± 1.1 29.9 ± 0.4 98.2 ± 0 1.8 ± 0 0 Unregistered

Poly A+70 G>A HBD:c.*200G>A 1 162 91.5 31.4 98 1.3 0 Unregistered

Int ATG>ACG HBD:c.2T>C 2 145 ± 9.9 88.4 ± 2.4 29 ± 0.8 98.7 ± 0.1 1.35 ± 0.1 0 Unregistered

Reference ranges for parameters: Hb (115–155 g/L for females, 120–160 g/L for males), MCV (80–100 fL), MCH (27–34 pg), Hb A (91.5%–97.6%), Hb A2 (2.4%–3.5%), Hb F (0%–5.0%).
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Materials and methods

Samples

The population of this study included 15,642 individuals who
underwent routine screening for thalassemia in our hospital from
January 2020 to December 2024. Out of a total of 15,642 samples
processed, 90 samples were selected for furthermolecular analysis based
on their Hb A2 level and hematological parameters. Based on our
laboratory experience, an Hb A2 level of ≤1.8 can be used to as a
screening criterion for δ-globin gene mutations after exclusion of other
diseases (e.g., iron deficiency anemia). In addition, 37 samples with
suspected δ-globin gene mutations were sent from outside hospitals to
our laboratory for identification. This study was approved by the Ethics
Committee of People’s hospital of Guangxi Zhuang Autonomous
Region. Informed consents were collected from the participants.

Hematological parameters and Hb analysis

The automated blood cell counters (Sysmex, kobe, Japan) were
used to assess the hematological parameters of red blood cell counts.
Hb fractions separation and quantification were carried out using by
capillary electrophoresis (CE) system (Sebia capillarys2 Flex
Piercing; Sebia, Paris, France). The reference range for normal
hematologic parameters are mean corpuscular volume (MCV)

82~100 fL and mean corpuscular Hb (MCH) 27~35 pg. After
excluding iron deficiency anemia, subjects with low Hb A2 levels
(<2.4%) were considered α-thalassemia carriers, and ≤1.8% are
suspected to be carriers of the δ-globin gene mutations. The
reference interval is 2.4% < Hb A2 < 3.5%.

Routine genetic test for thalassemia

Genomic DNA was extracted from peripheral blood according
to the kit protocol (Yaneng Biotechnology Company, Shenzhen,
China). The gap-polymerase chain reaction (Gap-PCR) was used to
identify the four prevalent forms of deletional α-thalassemia in the
Chinese population: --SEA, --THAI, -α3.7, and -α4.2 (Yaneng
Biotechnology Company, Shenzhen, China). PCR and reverse dot
blot (PCR-RDB) were used for determining the three common
mutations of the α-globin gene: Hb Westmead (Hb WS), Hb
Quong Sze (Hb QS), and Hb Constant Spring (Hb CS) (Yaneng
Biotechnology Company, Shenzhen, China). The 17 known β-
thalassemia mutations including −32 (C→A), −30 (T→C),−29
(A→G), −28 (A→G), CD14/15 (+G), CD17 (A→T), CD26
(G→A) (Hb E), CD27/28 (+C), CD31 (−C), CD41/42 (-TTCT),
CD43 (G→T), CD71/72 (+A), IVS-Ⅰ-1 (G→T), IVS-Ⅰ-5 (G→C),
IVS-Ⅱ-654 (C→T), 5′UTR+40–43 (−AAAC) (CAP), and Initiation
codon (ATG>ACG) were analyzed by PCR-RDB (Yaneng
Biotechnology Company, Shenzhen, China).

FIGURE 1
Results of CE (A1) and Sanger sequencing (A2) in homozygous mutation of HBD:c.-127T>C. Results of CE (B1) and Sanger sequencing (B2) in
homozygous mutation of Hb A2-Melbourne.
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Sanger sequencing of the δ-globin gene

Sanger sequencing of the δ-globin gene was performed to ascertain
the existence of mutations in the gene. The amplification primers,
conditions and system were as described in our previous reports (Li
et al., 2020). The PCR fragments were sequenced by an 3500XL
automated genetic analyzer (ABI, Foster City, CA, United States).

Bioinformatic analysis

To assess the pathogenicity of novel δ-globin gene mutations, we
employed three established computational prediction algorithms:
PolyPhen-2 (probabilistic classification of missense variants), SIFT
(Sorting Intolerant From Tolerant), andMutationTaster. PolyPhen-2,

applicable exclusively to missense variants, generates normalized
scores (0–1) reflecting deleterious potential, with classifications
defined per db SNP/HGMD (The Human Gene Mutation
Database) standards as benign (score ≤0.446), possibly damaging
(0.447–0.908), or probably damaging (≥0.909). Parallel analysis using
SIFT quantified amino acid substitution impacts through evolutionary
conservation metrics, designating variants as deleterious (score ≤0.05)
or tolerated (>0.05). MutationTaster provided complementary
functional predictions through a Bayesian framework, categorizing
variants into four clinically relevant classes: disease-causing automatic
(A), disease-causing (D), polymorphism (N), or polymorphism
automatic (P). This multi-algorithm approach aligns with ACMG/
AMP guidelines for clinical variant interpretation and demonstrates
critical utility in resolving ambiguous δ-globin variants lacking
population frequency data.

TABLE 2 Hematological characteristics and Hb analysis of δ-globin variants in this study.

Hb name HGVS
name

Number Hb
(g/L)

MCV
(fL)

MCH
(pg)

Hb
A (%)

Hb
A2 (%)

Hb
F (%)

Variant
(%)

IthaGenes
ID

Hb A2-
Melbourne

HBD:
c.130G>A

25 136.2 ±
22.5

85.7 ± 9.8 28.0 ± 4.3 95.8 ± 8.9 1.4 ± 0.4 0.2 ± 0.4 1.0 ± 0.4 1364

Hb A2-Coburg HBD:
c.350G>A

2 153.5 ± 2.1 95.6 ± 10.1 29.2 ± 0.1 98.0 ± 0.5 1.4 ± 0.1 0.2 ± 0.3 0.7 ± 0.4 1385

Hb A2-Henan HBD:
c.221A>T

2 146/N 89.1/N 28/N 96.8 ± 0.4 1.7 ± 0.1 0.3 ± 0.4 1.3 ± 0.1 3335

Hb A2-Huadu HBD:
c.127T>C

2 122.5 ±
12.0

88.7 ± 3.9 28 ± 1.1 98.6 ± 0 1.4 ± 0 0 0 3239

Hb A2-Lepore HBD:
c.350G>T

2 162 ± 1.4 93.2 ± 4.0 30.9 ± 1.8 97.7 ± 0.4 1.4 ± 0.1 0 1.0 ± 0.4 3318

Hb A2-
Guangxi*

HBD:
c.238G>A

2 162 91.5 31.4 98 1.3 0 0.7 4091

Hb A2-
Troodos

HBD:
c.349C>T

1 134 86.1 29.7 97.7 1.4 0 0.9 1384

Hb A2-
Fengshun

HBD:
c.364G>A

1 N N N 97.3 1.4 0.5 0.9 3058

Hb A2-Yulin HBD:
c.139G>A

1 109 57.1 18.9 91.9 2.7 4 1.4 4069

Hb A2-
Liangqing

HBD:
c.362A>C

1 160 88.6 28.9 97.4 1.5 0 1.1 3843

Hb A2-Laibin HBD:c.52A>C 1 147 82 27.3 97.5 1.4 0 1.1 4097

Hb A2-Hechi HBD:
c.347C>T

1 143 92.1 29.6 98.7 1.3 0 0 3230

Hb A2-
Nanning

HBD:
c.277C>T

1 144 84.8 28.9 98.7 1.3 0 0 Unregistered

Hb A2-
Guigang

HBD:c.17C>T 1 81 65.9 17.5 98.7 1.3 0 0 Unregistered

Hb A2-
Wuzhou

HBD:
c.374C>T

1 127 88.4 28.8 98.5 1.5 0 0 Unregistered

Hb A2-Jinxiu HBD:
c.186G>T

1 142 87.1 28.5 97.6 1.4 0 1 Unregistered

Hb A2-
Liuzhou

HBD:
c.290T>C

1 121 85.3 28.7 98.2 1.8 0 0 Unregistered

*: One sample was amniotic fluid. N: Undetected. Reference ranges for parameters: Hb (115–155 g/L for females, 120–160 g/L for males), MCV (80–100 fL), MCH (27–34 pg), Hb A (91.5%–

97.6%), Hb A2 (2.4%–3.5%), Hb F (0%–5.0%).
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Results

Prevalence of δ-globin gene

In this study, a total of 127 cases of δ-globin gene mutations were
detected, including 37 samples sent to our laboratory from outside
hospitals for characterization. In our hospital, 90 samples with δ-
globin gene mutations were detected. Based on the number of
screened cases, we can deduce that the carrier rate of the
population in southern China is 0.81% (127/15,642), of which
0.52% (81/15,642) is in the case of δ-thalassemia, and the δ-
globin gene variants is 0.29% (46/15,642). Of the 37 cases of δ-
globin gene mutations sent from outside hospitals to our laboratory
for detection, 17 were δ-thalassemia and 20 were δ-globin
gene variants.

Genotype and phenotype features of δ-
thalassemia

This study identified 11 distinct mutations across 81 δ-
thalassemia individuals, with an overall carrier rate of 0.52% (81/
15,642) in the screened poplulation (Table 1). The most prevalent δ-

thalassemia mutation wasHBD:c.−127T>C, representing 75.3% (61/
81) of cases, followed by HBD:c.-80T>C (n = 5, 6.2%). In the
heterozygous mutation state, the hematological parameters were
observed as follows: Hb 144.0 ± 16.9 g/L, MCV 89.5 ± 3.8 fL, and
MCH 30.1 ± 1.8 pg. A significant reduction in Hb A2 levels (range:
1.1%–1.8%; 1.3% ± 0.1%) was characteristic of δ-thalassemia in
heterozygous carriers. Only one homozygous case of δ-thalassemia
(HBD: c.−127T>C) was identified in this study, with CE analysis
demonstrating the absence of Hb A2 peak (Figure 1A).

Genotype and phenotype features of δ-
globin variants

Seventeen different mutations were found in 46 δ-globin
variants in this investigation, and the population that was
screened had an overall carrier rate of 0.29% (46/15,642)
(Table 2). Among δ-globin variants, Hb A2-Melbourne (HBD:
c.130G>A) was the most frequent (n = 25, 54.3%), while other
variants such as Hb A2-Coburg and Hb A2-Henan occurred in
smaller cohorts (n = 2–3). In CE analyses, the majority of δ-globin
variants are characterized by resolvable Hb A2 variants, while six
variants remained undetectable. A homozygous case of Hb A2-

TABLE 3 Hematological characteristics and Hb analysis of homozygous mutation/double heterozygousmutations in δ-globin gene or coinherited δ-globin
gene and α/β-globin genes.

No. Gender Age
(years)

Hb
(g/L)

MCV
(fL)

MCH
(pg)

Hb
A (%)

Hb
A2 (%)

Hb
F (%)

Variant
(%)

Genotypes

1 Female 45 119 67.9 20.9 97.4 1.2 1.4 0 --SEA/αα, δ/δ−77

2 Female 56 113 80 25.4 98.8 1.2 0 0 -α4.2/αα, δ/δ−77

3 Female 29 118 70.9 22 98.8 1.2 0 0 -α4.2/-α4.2, δ/δ−77

4 Female 24 111 69.1 21.6 98.1 1.2 0 0.7 --SEA/αα, δ/δCD43 (Hb A2-Melbourne)

5 Male 27 158 91.9 30.3 97.1 1.1 0 1.0, 0.8 αCSα/αα, δ/δCD43 (Hb A2-Melbourne)

6 Male 36 160 86.2 29.4 54.6 1.5 0 43.9 αα/αα, βCD114 (Hb NewYork)/βIVS-II-81,
δ/δ−77

7 Male 36 135 58.4 18.4 94.4 8.0 0 0 αα/αα, βCD17/β, δ/δCD97

8 Female 37 115 67.1 20.4 94 2.6 3.4 0 αα/αα, βCD41-42/β, δ/δCD97

9 Male 28 148 60.3 18.8 95.1 2.6 0.4 1.9 αα/αα, βCD41-42/β, δ/δCD43 (Hb A2-

Melbourne)

10 Female 30 135 91.2 29.8 53.3 1.3 0 44.3, 1.1 αα/αα, βCD114 (Hb NewYork)/β, δ/
δCD43 (Hb A2-Melbourne)

11 Female 5 109 57.1 18.9 91.9 2.7 4 1.4 αα/αα, βCD41-42/β, δ/δCD46 (Hb

A2−Yulin)

12 Male 31 151 89.8 30.9 98.1 0 1.9 0 αα/αα, δ−77/δ−77

13 Female 25 118 85 26.4 97.8 0 0.6 1.6 αα/αα, δCD43 (Hb A2-Melbourne)/δCD43
(Hb A2-Melbourne)

14 Male 35 142 88.5 30.2 98.6 1.4 0 0 αα/αα, δCD87/δ−77

15 Male 34 149 88.9 30.2 98.8 1.2 0 0 αα/αα, δCD87/δ−77

16 Male 32 152 88.4 29.1 97.6 1.4 0 1 αα/αα, δCD116 (Hb A2-Coburg)/δ−130

17 Male 35 162 91.5 31.4 98.0 1.3 0 0.7 αα/αα, δCD79 (Hb A2-Guangxi)/
δpolyA+70

Reference ranges for parameters: Hb (115–155 g/L for females, 120–160 g/L for males), MCV (80–100 fL), MCH (27–34 pg), Hb A (91.5%–97.6%), Hb A2 (2.4%–3.5%), Hb F (0%–5.0%).
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Melbourne was identified, with CE revealed the lack of a visible Hb
A2 peak (Figure 1B). Normal hematological parameters were
preserved by δ-globin variants in both heterozygous and
homozygous situations.

Co-inherited δ-globin gene andα/β-globin
gene mutations

Eleven cases harbored compound heterozygosity involving δ-
globin and α/β-globin mutations, including 5 cases with α-globin
mutations and 6 cases with β-globin mutations (Table 3). Co-
inherited δ-globin gene and α/β-thalassemia resulted in a
hematological phenotype that was comparable to the thalassemia
it was associated with.

Eight novel mutations of δ-globin gene

In this study, eitght novel δ-globin gene mutations (three δ-
thalassemia and five δ-globin variants) were identified through
systematic molecular and Hb analyses (Figures 2, 3).
Hematological profiling presented nomal erythrocyte indices in
most carriers. Quantification of Hb fractions by CE demostrated
uniformly reduced Hb A2 levels across all variants (1.3%–1.8%). All
variants were classified as novel mutations based on absence in

population databases. Bioinformatic analysis showed that seven of
the eight novel mutations were deleterious (Table 4).

Discussion

In this study, our analysis identified 28 distinct δ-globin variants
and δ-thalassemiamutations among 127 carriers, corresponding to a
population-level carrier frequency of 0.81% (127/15,642). The
prevalence is higher than in Thailand and Tunisia, as well as that
reported by other Chinese investigators (Hanart et al., 2023; Kasmi
et al., 2021; Xu et al., 2023; Liu et al., 2013). The most common
discovery was δ-thalassemia (81 cases, 0.52% carrier rate), which
was followed by δ-globin variant (46 cases, 0.29% carrier rate).
Notably, eight novel mutations were detected; comprising five δ-
globin variants and three δ-thalassemia mutations, none previously
cataloged in the HbVar or IthaGenes databases. The finding of eight
novel mutations (6.3% of the total number of δ-globin gene
mutations) further highlights the limitations of existing variant
databases. This study indicates that a need for integration of δ-
globin mutations screening into existing thalassemia prevetion
protocols in the region.

The molecular epidemiology of δ-thalassemia in this cohort
revealed a predominance of the HBD:c.−127T>C variant,
accounting for 67.8% (61/90) of cases. This prevalence consisted
with previous reports from China but exceeds Chinese regional

FIGURE 2
Electropherograms of eight novel mutations. (A) HBD:c.369dupA; (B) HBD:c.186G>T (Hb A2-Jinxiu); (C) HBD:c.374C>T (Hb A2-Wuzhou); (D) HBD:
c.17 C>T (Hb A2-Guigang); (E) HBD:c.−134 C>T; (F) HBD:c.290T>C (Hb A2-Liuzhou); (G) HBD:c.277C>T (Hb A2-Nanning); (H) HBD:c.2T>C.
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frequencies documented in earlier studies (63.2% and 51.6%) (Xu
et al., 2023; Liu et al., 2013). Surprisingly, the second most frequent
mutations, Hb A2-Melbourne (27.8%, 25/90), demonstrated a
disproportionately higher incidence compared to historical
Chinese cohort data. This finding represents a notable deviation
from establishedmutation profiles in China andmay be attributed to
the genetic heterogeneity of regional populations. Genotypic
analysis indicated that the majority of δ-globin mutations
occurred in heterozygous states, with a few co-inheritances of α/
β-globin mutations. Only two isolated homozygous cases, one δ-
thalassemia (HBD:c.−127T>C) and one δ-globin variant (Hb A2-
Melbourne), were identified, both exhibiting undetectable Hb A2

peak by CE. δ-thalassemia and δ-globin variant heterozygotes, all of
them showed reduced A2 values in their CE results (1.1%–1.8%), and
some of the δ-globin variants additionally detected low levels of Hb
A2 variant peaks. In this study, six δ-globin variants failed to
produce resolvable Hb A2 variant peaks (Table 2). Hematological
parameters of heterozygous and homozygous cases remained within
normal range, reinforcing the clinically silent phenotype associated
with δ-globin mutations.

Eleven cases with co-inherited δ-globin and α/β-globin
mutations displayed clinically diverse symptoms ranging from
asymptomatic to mild anemia. δ-globin combined with
thalassemia showed a thalassemia phenotype with decreased

FIGURE 3
Sanger sequencing result of eight novel mutations. (A) HBD:c.369dupA; (B) HBD:c.186G>T; (C) HBD:c.374C>T; (D) HBD:c.17 C>T; (E) HBD:
c.−134 C>T; (F) HBD:c.290T>C; (G) HBD:c.277C>T; (H) HBD:c.2T>C.

TABLE 4 Bioinformatics analysis using three different predictive tools.

HGSV name Common name Polyphen-2 Mutation taster SIFT

HBD:c.−134C>T −84C>T N N N

HBD:c.2T>C Int ATG>ACG N Deleterious N

HBD:c.17C>T Hb A2-Guigang Benign Deleterious Tolerated

HBD:c.186G>T Hb A2-Jinxiu Possibly damaging Deleterious Deleterious

HBD:c.277C>T Hb A2-Nanning Probably damaging Deleterious Deleterious

HBD:c.290T>C Hb A2-Liuzhou Probably damaging Deleterious Deleterious

HBD:c.369dupA CD122/123(+A) N Deleterious N

HBD:c.374C>T Hb A2-Wuzhou Possibly damaging Deleterious Tolerated

N: not applicable.
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values of hematological parameters MCV and MCH, whereas in the
case of the combined α/β-globin variant, hematological parameters
were normal, with separation of abnormal peaks only during
electrophoresis. Elevated Hb A2 levels were considered as a
diagnostic criterion for typical β-thalassemia trait. However,
when combined with the δ-globin mutation, the Hb A2 level may
be normal, thus masking the β-thalassemia trait and resulting in
underdiagnosis. Our results emphasize the importance of integrated
α/β/δ-globin genotyping in regions with high thalassemia prevalence
for accurate diagnosis and counseling.

Molecular characterization confirmed all novel mutations
adhere to Human Genome Variation Society (HGVS)
nomenclature standards, including promoter mutations (e.g.,
HBD:c.−134C>T), initiation codon alterations (e.g., HBD:c
.2T>C), and missense substitutions (e.g., HBD:c.347C>T).
Bioinformatic analysis of eight novel mutations revealed diverse
pathogenic potentials. HBD: c.277C>T and HBD: c.290T>C were
unanimously predicted as deleterious by three tools, while the
prediction of the two software programs for HBD: c.186G>T and
HBD: c.374C>T were inconsistent. Surprisingly, for the prediction
of HBD: c.17C>T, they had opposite conclusions, with Mutation
Taster considered deleterious, while PolyPhen-2 and SIFT were
recognized as benign and tolerated. These findings underscored
the limitations of prediction tools and the need for functional studies
to validate predictions, particularly for variants with atypical
phenotypes. Based on the residence of the probands, we named
the δ-globin variants HBD:c.17C>T, HBD:c.186G>T, HBD:
c.277C>T, HBD:c.290T>C, and HBD:c.374C>T as Hb A2-
Guigang, Hb A2-Jinxiu, Hb A2-Nanning, Hb A2 -Liuzhou, Hb
A2-Wuzhou, respectively. In addition, HBD: c.347C>T has been
registered in the Ithagene database, but did not name the Hb name;
we try to name it as Hb A2-Hechi to facilitate the study and
communication.

This study expanded the molecular spectrum of δ-globin gene
defects and highlighted critical discrepancies in mutation

frequencies across populations, underscoring the necessity for
ethnically tailored genetic databases to optimize
hemoglobinopathy diagnostics. While our findings did not
represent a comprehensive epidemiological survey of δ-globin
molecular defects in China, they revealed a substantial carrier
burden (0.81% aggregate frequency) within the studied cohort,
challenging historical perceptions of δ-globin variants as clinically
negligible in Chinese populations. To address diagnostic challenges,
we implemented a standardized δ-globin screening protocol
(Figure 4) integrating CE, multiplex gap-PCR, andSanger
sequencing, which successfully resolved β-thalassemia cases
masked by conventional screening methods, thereby mitigating
risks of underdiagnosis. The workflow’s efficacy in detecting co-
inherited α/β-globin defects (8.7% of resolved cases) demonstrated
its utility for refining carrier risk stratification and informing
precision prenatal counseling.
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