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Background: Triple-negative breast cancer (TNBC) is an aggressive subtype of
breast cancer (BRCA) with limited therapeutic targets. This study aimed to identify
T cell-related signatures for TNBC diagnosis and prognosis.

Methods: Clinical data and transcriptomic profiles were obtained from the
TCGA-BRCA dataset, and single-cell RNA sequencing (scRNA-seq) data were
downloaded from the GEO database. Differentially expressed genes (DEGs)
between TNBC and other BRCA subtypes were intersected with T cell-related
genes to identify candidate biomarkers. Machine learning algorithms were used
to screen for key hub genes, which were then used to construct a logistic
regression (LR) model. Immune cell infiltration patterns were analyzed
between high- and low-LR score groups, and Kaplan–Meier analysis evaluated
the prognostic significance of hub genes. Functional enrichment and pathway
analysis were performed using GSEA, and scRNA-seq data further explored hub
gene-related pathways in immune cells.

Results: Three hub genes (CACNA1H, KCNJ11, and S100B) were identified with
strong diagnostic and prognostic relevance in TNBC. The LR model based on
these genes achieved an AUC of 0.917 in diagnosing TNBC from other BRCA
subtypes. Low LR scoreswere associatedwith poorer overall survival and reduced
immune cell infiltration, particularly CD8 T cells and cytotoxic lymphocytes.
S100B showed strong associations with the cytokine–cytokine receptor
interaction pathway, JAK–STAT signaling, and T cell receptor signaling.

Conclusion: CACNA1H, KCNJ11, and S100B are potential diagnostic and
prognostic biomarkers in TNBC. Their immune-related functions highlight
their potential for guiding targeted immunotherapy strategies.
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1 Introduction

Triple-negative breast cancer (TNBC) is a highly aggressive
subtype of breast cancer (BRCA) characterized by the absence of
estrogen receptor (ER), progesterone receptor (PR), and human
epidermal growth factor receptor 2 (HER2) expression (Aysola et al.,
2013). It accounts for approximately 15%–20% of all BRCA cases,
disproportionately affecting younger women and those of African
descent (Xiong et al., 2024; Dietze et al., 2015). TNBC is
characterized by rapid progression, early metastasis, and poor
prognosis compared to other BRCA subtypes (Manjunath and
Choudhary, 2021). For non-metastatic BRCA, surgical
intervention is the primary treatment method, while hormone
receptor-positive BRCA is mainly treated through endocrine
therapy (Pan et al., 2023). TNBC, due to the absence of targeted
therapies, has a more complex treatment strategy. Chemotherapy is
the main treatment option for TNBC, but the efficacy of
chemotherapy is often unsatisfactory (Pan et al., 2023; Dobovisek
et al., 2024). Immunotherapy is a novel promising option for the
treatment of TNBC, however, the clinical response rate of immune
checkpoint inhibitors (ICIs) as a single therapy is relatively low
(Rahman et al., 2023).

Snowballing research suggests that the unique
immunosuppressive tumor microenvironment (TME) of TNBC is
associated with tumor therapeutic failure (Zhang et al., 2024). TME
of solid cancers mainly has three immune-related phenotypes:
immune-inflamed (abundant T cell infiltration into the tumor),
immune-excluded (abundant T cell infiltration but trapped in the
stroma surrounding the cancer nest), and immune-desert (scarce
T cell infiltration into the tumor) (Wu et al., 2022). T cells, including
CD4 and CD8 T cells, as part of the TME, participate in the
recognition and elimination of tumor cells. T cell-mediated anti-
tumor immune responses form the basis of tumor immunotherapy
(Yan et al., 2022), and T cell characteristics have been developed for
predicting cancer prognosis and immune therapy responses (Liu
et al., 2024). A study has shown that CD4+ T cells in peripheral blood
can stably predict all clinical outcomes for TNBC patients (Li et al.,
2022). We speculate that identifying T cell-related genes as
diagnostic biomarkers for TNBC could enable early detection,
thereby providing significant clinical value.

In this study, we identified T cell-related genes that could serve
as diagnostic biomarkers for TNBC using bioinformatics and
explored the association of these genes with the tumor immune
microenvironment (TIME) and their potential action mechanisms.
This research aimed to provide new perspectives on the role of T
cell-related genes in the progression and treatment of TNBC.
Furthermore, investigating the intrinsic mechanisms of these
genes may reveal new therapeutic targets and strategies, thereby
enhancing the efficacy of immunotherapy in TNBC and ultimately
improving patient outcomes.

2 Methods

2.1 Data acquisition

The RNA-seq data and clinical information for BRCA patients
were obtained from The Cancer Genome Atlas (TCGA) database

(https://tcga-data.nci.nih.gov/tcga/), including 123 TNBC samples,
979 other BRCA subtype samples, and 114 normal samples. The
baseline clinical information is shown in Supplementary Table S1.
An external validation dataset GSE58812 (including 107 TNBC
tissue samples) with survival data and expression profiles, as well
as the single-cell RNA sequencing (scRNA-seq) dataset GSE176078
(including 10 TNBC samples and 16 other BRCA subtype samples),
were acquired from the Gene Expression Omnibus (GEO) database
(http://www.ncbi.nlm.nih.gov/geo/). T cell-related genes were
searched from the GeneCards database (https://www.genecards.
org) by searching with the keyword “T cell” on 26 August 2024.
GeneCards integrates data from multiple biological databases and
provides a comprehensive, evidence-weighted view of gene-function
relationships (Stelzer et al., 2016). The relevance score serves as a
useful filter for related signature genes with strong cumulative
evidence. In this study, genes with a relevance score ≥10 were
retained to ensure a strong association with T cell biology. A
total of 6,615 genes were included in the final gene set used for
downstream analysis (Supplementary Table S2).

2.2 Differential gene expression analysis and
functional enrichment analysis

The Limma package in R was used to identify differentially
expressed genes (DEGs) between the TNBC and other subtypes.
Transcript-level expression data (TPM) were downloaded from the
TCGA-BRCA cohort. To prepare the data for linear modeling, we
applied a log2 transformation with a pseudo count [log2 (TPM +1)]
to stabilize the variance across genes. Low-expression genes (mean
TPM <1 across all samples) were filtered out before analysis to
reduce background noise. The genes with p < 0.05 and |log2FC| >
1 were considered DEGs, and results were visualized using a volcano
plot. These DEGs were then intersected with T cell-related genes
through a Venn diagram. Gene Ontology (GO) and Kyoto
Encyclopedia of Genes and Genomes (KEGG) enrichment
analyses were performed to reveal the overlapping genes’
functions using R packages “clusterProfiler”, and results were
visualized through “Goplot” package.

2.3 Identification of hub genes using
machine learning algorithms

To identify T cell-related prognostic genes, the least absolute
shrinkage and selection operator (Lasso) regression analysis was first
applied on the overlapping genes using the “glmnet” R package. The
regularization parameter lambda was selected based on 10-fold
cross-validation using the cv.glmnet function, and the lambda
value corresponding to the minimum mean cross-validated error
(lambda.min) was chosen. The alpha parameter was set to 1, which
corresponds to standard Lasso regression. Subsequently, we utilized
three machine learning algorithms—random forest (RF) (Rigatti,
2017), XGBoost (Li et al., 2019), and AdaBoost (Sorayaie Azar et al.,
2022)—to rank the importance of prognosis-related genes identified
by Lasso. RF was implemented using the “randomForest” R package
with ntree = 500 and mtry = sqrt(p) (where p is the number of input
features). Genes were ranked based on theMeanDecreaseGini index.
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XGBoost was performed using the “xgboost” R package with
parameters nrounds = 100, eta = 0.3, max_depth = 6, and
objective = “binary: logistic”. Feature importance was ranked
using the “gain” metric. AdaBoost was conducted using the
“adabag” R package with default parameters (mfinal = 50). Gene
importance was ranked based on the decrease in classification error.
For each algorithm, the top 10 genes were visualized using bar plots
generated via the “ggplot2” package in R. Finally, the intersection of
the top 5 genes identified by all three algorithms was defined as the
hub genes for further analysis.

2.4 Construction and evaluation of a logistic
regression (LR) model

Based on the hub genes, a diagnostic model for TNBC was
established using the LR analysis. The LR score for each TNBC
patient in the TCGA-BRCA cohort was calculated using expression
levels and regression coefficients of hub genes in the LR analysis. The
model’s clinical value was evaluated through receiver operating
characteristic (ROC) curves and decision curve analysis (DCA)
curves. pROC package and ggDCA package were used to create
ROC curves and DCA curves, respectively. Then, TNBC samples
were divided into high and low groups based on the optimal
truncation value of the LR score. Kaplan–Meier (K-M) survival
curves were generated using the survival package to reveal the
overall survival (OS) between the two groups. To further evaluate
the prognostic utility of the LR model, we applied it to the external
validation dataset GSE58812. As described above, the LR score for
each TNBC patient in GSE58812 was calculated based on the
expression levels of the hub genes and the corresponding
regression coefficients. Patients were then divided into high and
low LR score groups using the optimal cutoff value. Subsequently,
K-M analysis was performed to compare OS between the
two groups.

Additionally, LR score differences in different clinical subgroups
(such as age, TNM stages, and pathological) were analyzed.

2.5 Tumor immune microenvironment
(TIME) analysis

Immune cell infiltration scores and the tumor immune
dysfunction and exclusion (TIDE) scores between low and high
LR score groups were evaluated using the MCPcounter package and
TIDE software (http://tide.dfci.harvard.edu/), respectively. Higher
TIDE score means a greater possibility of immune escape.

2.6 Role of hub genes in TNBC

K-M curves were utilized to compare OS between groups with
low and high expression levels of hub genes. The log-rank test was
used to assess statistical significance. To provide a more robust
estimate of survival differences and avoid the proportional hazards
assumption, we performed restricted mean survival time (RMST)
analysis, with the truncation time point (τ) set to 23 years. To further
explore the subtype specificity of the hub genes, we compared their

expression levels in TNBC versus non-TNBC samples from the
TCGA-BRCA cohort using the Wilcoxon rank-sum test. All
statistical analyses and visualizations were conducted in R, with
survival, survminer, and survRM2 packages being used.

Gene Set Enrichment Analysis (GSEA) can be used to assess
whether a predefined set of genes shows statistically significant
differences between two biological states (Lu et al., 2024). To
explore the biological pathways associated with each hub gene,
GSEA was performed using transcriptomic data from the TCGA-
BRCA cohort. For each hub gene, patients were divided into high-
and low-expression groups based on the median expression value.
GSEA was conducted using the “clusterProfiler” R package, where
all genes were ranked according to their differential expression
between the two groups. Pathways with a false discovery rate
(FDR) < 0.025 and p < 0.05 were considered significantly enriched.

2.7 Correlation of hub genes with
immune cells

The MCPcounter algorithm was used for immune infiltration
analysis to quantify the immune cell abundance for BRCA samples.
It can quantify the absolute abundance of eight immune cells (B-cell
lineage, CD8 T cells, cytotoxic lymphocytes, monocytic lineage,
myeloid dendritic cells, natural killer (NK) cells, neutrophils, and
T cells) and two stromal cells (fibroblasts and endothelial cells) using
transcriptome data (Zheng et al., 2022). Differences in cell
abundance between the high and low LR score groups were
assessed using Student’s t-test. Spearman correlation coefficients
were calculated to evaluate the associations between the expression
of each hub gene and the estimated abundance of each immune/
stromal cell type. Correlation significance was assessed using two-
tailed p-values, and results with p < 0.05 were considered statistically
significant. The correlations were visualized using a lollipop plot
constructed with the “ggplot2” R package.

2.8 scRNA-seq analysis

Preprocessing and filtering of scRNA-seq data were performed
using the Seurat package. The quality control criteria were set as
nFeature_RNA >500, 1,000 < nCount_RNA <20,000, and
percent.mt < 20. After standardizing the data using the scaling
function, principal component analysis was conducted to identify
significant principal components. Subsequently, t-distributed
stochastic neighbor embedding (t-SNE) analysis was performed
to identify cell clusters. These cell clusters were annotated using
SingleR version 2.0.0 in R. The Wilcoxon-Mann-Whitney test was
used to calculate the expression differences of each gene across
different samples in the model. Additionally, pathway scores for
three pathways identified in the GSEA were calculated in the
annotated cells using the singScore function in Seurat.
“singscore” quantifies the activity level of a specific biological
function or process within a single sample or cell (Zhao et al.,
2024). Spearman correlation analysis was performed using the
cor.test function in R to investigate the associations between
these three pathways and three hub genes. The results were
visualized using ggplot2 with scatter plots.
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2.9 Statistical analysis

R software version 4.1.2 was used for statistical analysis, and p <
0.05 was considered statistically significant.

3 Results

3.1 Identification of T cell-related DEGs
in TNBC

As shown in the volcano plot (Figure 1A), a total of 2,397 DEGs
were identified between TNBC and other subtypes of BRCA. Then,
both upregulated and downregulated DEGs were intersected with T
cell-related genes to comprehensively capture T cell-related
dysregulation patterns associated with TNBC, resulting in
750 overlapping genes (Figure 1B; Supplementary Table S3). GO
enrichment analysis revealed that the 750 genes were correlated to
functions such as system development, response to chemical,
cellular developmental process, and regulation of biological
quality (Figure 1C). The KEGG pathways related to these
750 overlapping genes were enriched in the PI3K-Akt signaling

pathway, cytokine-cytokine receptor interaction, estrogen signaling
pathway, and IL-17 signaling pathway (Figure 1D).

3.2 Identification of hub genes related to
prognosis in TNBC

Lasso regression analysis was performed on the 750 T cell-
related DEGs to obtain genes related to the prognosis of TNBC, and
a total of 17 genes were identified (Figure 2A). Subsequently,
according to importance, these 17 genes were ranked using three
machine learning algorithms RF, XGBoost, and AdaBoost. The top
10 genes selected by RF, XGBoost, and AdaBoost were shown in
Figures 2B–D, respectively. After intersecting the top five genes
selected by these three machine learning algorithms, three hub genes
were acquired, including CACNA1H, KCNJ11, and S100B.

3.3 Construction of an LR model

Binary LR analysis was performed by integrating three identified
hub genes CACNA1H,KCNJ11, and S100B as independent variables,

FIGURE 1
Identification of T cell-related DEGs in TNBC (A) Volcano plot of DEGs between TNBC and other BRCA subtypes. (B) Venn diagram identified
750 overlapping genes between T cell-related genes and TNBC-DEGs. (C)Go enrichment analysis of 750 overlapping genes. (D) KEGG pathways related
to 750 overlapping genes. Abbreviations: DEGs, differentially expressed genes; TNBC, triple-negative breast cancer; BRCA, breast cancer; GO, Gene
Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes.
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and TNBC as the dependent variable. As shown in Table 1,
CACNA1H, KCNJ11, and S100B were independent predictors for
TNBC (p < 0.05). Based on the multivariable analysis results, an LR
model was constructed with an LR score computed:
0.5000*CACNA1H – 0.499*KCNJ11 + 0.252*S100B.

3.4 Clinical relevance of the LR model

The ROC analysis was then conducted to evaluate the diagnostic
value of the LR model in distinguishing TNBC from other subtypes
with an AUC value of 0.917 (Figure 3A). When the threshold was
about >0.5, there was a clinical net benefit for the LR model
(Figure 3A). Moreover, the ROC analysis was also conducted to
analyze the role of the LR model in distinguishing BRCA from

normal groups (AUC = 0.846), indicating satisfactory diagnostic
performance (Supplementary Figure S1A). The DCA result is also
shown in Supplementary Figure S1A.

Subsequently, the K-M analysis was used to explore the
association of the LR model with the prognosis of TNBC
patients. Individuals with low LR scores had significantly
shorter OS than those with high scores (p = 0.023, Figure 3B),
and this finding was validated in the external dataset (p = 0.047,
Figure 3C). Additionally, K-M curves revealed the correlation
between the LR model and the prognosis of BRCA patients. As
shown in Supplementary Figure S1B, BRCA patients with low
scores had worse prognoses than those with high scores (p =
0.0058). To further explore the clinical relevance of the LR score,
we assessed its distribution across subgroups with different
clinicopathological features, including age, TNM stage, and
pathological stage. As shown in Figure 3D, LR scores in the
TNBC patients at S3 + S4 stages were significantly lower (p <
0.01). In BRCA patients, those over 55 years old and at N1 + N2/S3
+ S4 stages also displayed lower LR scores (p < 0.05)
(Supplementary Figure S1C). These observations reveal that
lower LR scores are enriched in patients with more advanced
clinical stages, suggesting that the LR score may reflect tumor
progression and aggressiveness. Collectively, these results support
the prognostic value and potential clinical applicability of the
LR model.

FIGURE 2
Identification of hub genes related to prognosis in TNBC (A) Lasso regression analysis was performed on the 750 T cell-related DEGs. (B–D) The top
10 genes identified through (B) random forest, (C) XGBoost, and (D) AdaBoost.

TABLE 1 Logistic regression analysis based on three hub genes.

Genes Coefficients Odds ratio (95%
confidence interval)

p-value

CACNA1H −0.500 0.607 (0.517–0.712) < 0.001

KCNJ11 −0.499 0.607 (0.530–0.695) < 0.001

S100B 0.252 1.286 (0.160–1.426) < 0.001
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3.5 TME landscapes in two different groups

Cell infiltration was then analyzed to explore the TME
landscapes of TNBC patients between different LR score groups.
Levels of CD8 T cells, cytotoxic lymphocytes, NK cells, monocytic
lineage, and myeloid dendritic cells were significantly lower in the
low LR score group than in the high LR score group. Conversely,
levels of endothelial cells and fibroblasts were significantly higher in
the low LR score group (Figure 4A). To further reveal the role of the
LR model in immune therapy in TNBC patients, we performed the
TIDE analysis. As illustrated in Figure 4B, the TIDE and exclusion
scores were higher in the low LR score group (p < 0.05), although
microsatellite instability (MSI) and dysfunction scores showed no
significant differences. These results suggest that TNBC patients
with low LR scores may be in an immunosuppressed
microenvironment, potentially increasing their likelihood of
immune escape. We also investigate the TME landscape of BRCA
patients. Immune infiltration analysis using the MCPcounter
algorithm showed that, except for fibroblast, the levels of the
other 9 cell types were significantly lower in the low LR score
groups compared with those in the high LR score groups (p < 0.05,
Supplementary Figure S2A). In comparison to the high LR score
group, the exclusion score was significantly higher in the low LR

score group (p < 0.001), while TIDE, dysfunction, and MSI scores
showed no significant differences between the two groups
(Supplementary Figure S2B).

3.6 Prognosis performance and expression
of three hub genes in TNBC

Moreover, K-M curves were utilized to reveal the prognosis
value of three hub genes in TNBC. The results showed that patients
with high expression of CACNA1H or low expression of KCNJ11
and S100B had significantly worse prognosis (p < 0.05, Figure 5A).
RMST analysis further validated these results, as shown in Figures
5B–D. The mean survival time of patients with high expression of
CACNA1H was 7.19 years, while that of the low-expression group
was 9.03 years, with a significant difference (p = 0.01, Table 2). For
KCNJ11 and S100B, patients with low expression had mean survival
times of 6.33 and 8.85 years, respectively, which were significantly
shorter than those of the high-expression groups (p < 0.05, Table 2).
Expression analysis revealed that, compared to other BRCA
subtypes, CACNA1H and KCNJ11 were significantly
downregulated in TNBC, whereas S100B was significantly
upregulated (p < 0.0001, Figure 5E).

FIGURE 3
Clinical relevance of the LR model in TNBC patients (A) ROC and DCA curves for diagnosing TNBC. (B) Kaplan-Meier curve for the LR model based
on the TCGA dataset. (C) Kaplan-Meier curve for the LR model based on the GSE58812. (D) LR score differences between different clinical subgroups.
**p < 0.01, ns means no significance, yr means year. Abbreviations: LR, logistic regression; TNBC, triple-negative breast cancer; ROC, receiver operator
characteristic; AUC, area under curve; DCA, decision curve analysis.

Frontiers in Genetics frontiersin.org06

He et al. 10.3389/fgene.2025.1584334

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2025.1584334


To further investigate the prognostic value of these three hub genes,
survival analysis was performed using all tumor samples from the
TCGA-BRCAdataset. As shown in Supplementary Figure S3A, patients
with high expression of CACNA1H or low expression of S100B had
shorter OS (p < 0.01). However, the K-M curve for KCNJ11 showed a
crossing point around 4,000 days, prompting us to conduct RMST
analysis. The results for CACNA1H and S100Bwere consistent with the
K-M analysis, showing that the high expression group of CACNA1H
had a shorter survival time (Supplementary Figure S3B), while the low
expression group of S100B had a shorter survival time (Supplementary
Figure S3D) (Supplementary Table S4). For KCNJ11, RMST analysis
showed that the low expression group had a shorter survival time,
indicating a worse prognosis (Supplementary Figure S3C). These results
were consistent with finding in the TNBC patients. However, compared

with normal tissue samples, CACNA1H and KCNJ11 were significantly
upregulated in BRCA, whereas S100B was significantly downregulated
(p < 0.0001, Supplementary Figure S3E). Although the expression
patterns of these hub genes vary across BRCA subtypes and normal
tissues, their distinctive expression trends and prognostic associations in
TNBC suggest that they may play crucial roles in TNBC progression
and immune microenvironment modulation.

3.7 Signaling pathways and immune cells
related to three hub genes

GSEA was performed to further explore the functions of three
hub genes in TNBC. Three TME-related pathways associated with

FIGURE 4
Tumormicroenvironment landscapes between two LR score groups in TNBC patients (A) Immune cell infiltration in high- and low-LR score groups.
(B) TIDE in high- and low-diagnostic score groups. *p < 0.05, ***p < 0.001, ****p < 0.0001, ns means no significance. Abbreviations: LR, logistic
regression; TNBC, triple-negative breast cancer; NK, natural killer; TIDE, tumor immune dysfunction and exclusion; MSI, microsatellite instability.
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all hub genes were enriched, including the cytokine-cytokine
receptor interaction pathway, JAK-STAT signaling pathway, and
T cell receptor signaling pathway (Figures 6A–C). CACNA1H and
KCNJ11 were negatively correlated to these three pathways, while
S100Bwas positively related to these pathways. In addition, the three
hub genes were significantly correlated to most of the 10 immune
cells identified above.

Because of the enrichment of TME-related pathways, we
further explore the association of hub genes with 10 cell
types identified in the MCPcounter algorithm. As shown in
Figure 7A, CANA1H was positively related to fibroblasts,
endothelial cells, and neutrophils while negatively related to
cytotoxic lymphocytes and CD8 T cells. KCNJ11 was negatively
correlated to NK cells, cytotoxic lymphocytes, and

FIGURE 5
Prognosis performance expression of three hub genes in TNBC (A) Kaplan-Meier curves of three hub genes CACNA1H, KCNJ11, and S100B. (B-C)
RMST analysis for three hub genes (B) CACNA1H, (C) KCNJ11, and (D) S100B. (E) Expression of three hub genes between other BRCA subtype samples
(defined as T) and TNBC samples; ****p < 0.0001. Abbreviations: TNBC, triple-negative breast cancer; BRCA, breast cancer; RMST, restricted mean
survival time.

TABLE 2 RMST of TNBC patients in different hub gene expression groups.

High-RMST (year) Low-RMST (year) Differences (95%CI) p

CACNA1H 7.19 9.03 −1.84 (−3.22, −0.42) 0.01

KCNJ11 7.79 6.33 1.46 (0.16, 2.78) 0.03

S100B 18.40 8.85 9.55 (8.13, 10.77) < 0.01
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monocytic lineage (Figure 7B). S100B was positively associated
with myeloid dendritic cells, CD8 T cells, NK cells, and cytotoxic
lymphocytes (Figure 7C).

3.8 Immune cell distribution and hub gene-
related pathways in TNBC

Because of the significant association between hub genes and
immune cells, we then used a single-cell RNA sequencing dataset to
explore the immune cell distribution in TNBC. A total of 14 cell

clusters were identified (Supplementary Figure S4A), and seven cell
types were then annotated, including T cells, monocyte, epithelial
cells, endothelial cells, fibroblasts, tissue stem cells, and B cells
(Figure 8A). In the TNBC samples, T cells, monocyte, fibroblasts,
and B cells were the main cell types (Supplementary Figure S4B).
The expression of the three hub genes was examined
across these cell types. CACNA1H was primarily enriched in
tissue stem cells, KCNJ11 was mainly expressed in epithelial
cells, and S100B was broadly expressed in the majority of these
cell types, particularly in monocytes, T cells, and epithelial cells
(Supplementary Figure S4C).

FIGURE 6
Gene set enrichment analysis of three hub genes (A–C). Three pathways (cytokine-cytokine receptor interaction pathway, JAK-STAT signaling
pathway, and T cell receptor signaling pathway) were related to (A) CACNA1H, (B) KCNJ11, and (C) S100B.
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Furthermore, we explored the pathway scores of three pathways
(T cell receptor signaling pathway, JAK-STAT signaling pathway,
and cytokine-cytokine receptor interaction pathway) related to hub
genes in the identified immune cells. As shown in Figures 8B–D, the
pathway scores of these three pathways were higher in the T cells,
revealing that these pathways may be more active in T cells. The
correlation between these three pathways and three hub genes was
further analyzed. As shown in Figure 8E, S100B was highly
associated with the cytokine-cytokine receptor interaction
pathway and JAK-STAT signaling pathway.

4 Discussion

Accurate diagnosis of TNBC is crucial for guiding treatment
decisions and predicting patient prognosis. However, due to the
complexity of tumor biology and the limitations of current
diagnostic tools, accurately diagnosing TNBC remains a clinical
challenge (Yang et al., 2023; Tierno et al., 2023). TNBC is known
for its immunogenicity, with nearly half of the cases being immune-
excluded, and about 33% are in an immune-inert state (Zhao et al.,
2020). Previous studies have shown that T cells are associated with the
progression and prognosis of TNBC. In this study, 2,397 DEGs
between TNBC and other BRCA subtypes were cross-referenced
with T cell-related genes, resulting in 750 overlapping genes. LR
analysis and three machine learning algorithms (RF, XGBoost, and
AdaBoost) further narrowed these genes down to three key hub genes:
CACNA1H, KCNJ11, and S100B, which showed strong performance
in diagnosing TNBC from other BRCA subtypes and predicting
TNBC prognosis. We found that these genes are closely related to
the cytokine-cytokine receptor interaction pathway, JAK-STAT
signaling pathway, and T cell receptor signaling pathway.

CACNA1H and KCNJ11 are ion channel-related genes.
Although ion channels are traditionally associated with neural
functions, their roles in cancer are increasingly recognized.
CACNA1H is a T-type calcium channel gene that has been
shown to influence calcium influx, which is crucial for tumor cell
proliferation and metastasis, including in BRCA (Scholl et al., 2015;
Mei et al., 2022; Ragab et al., 2022). A previous study suggested that
CACNA1H might be a potential biomarker for survival and
treatment response in specific BRCA subtypes (Pera et al., 2016).
KCNJ11 is a subunit of the ATP-sensitive potassium channel
(Lahmann et al., 2019), and mutations in this gene are associated
with hyperinsulinemia (Sempoux and Kloppel, 2023). Several
studies have also indicated that KCNJ11 can be used to predict
BRCA prognosis (Qiu et al., 2024; Zhu et al., 2021). S100B is part of
the calcium-binding protein S100 family and acts as an
inflammatory mediator. Numerous studies have shown its
relevance to BRCA prognosis (Tian et al., 2020; Li et al., 2023).
The diagnostic model based on these three hub genes is highly
effective, with an AUC value of 0.917 for TNBC, demonstrating
strong predictive ability for TNBC. In the prognosis analysis, high
expression levels of CACNA1H or low expression levels of KCNJ11
and S100B were associated with poorer OS in TNBC patients.
Further expression analysis revealed that, compared with normal
breast tissue, the expression levels of CACNA1H and KCNJ11 were
significantly upregulated in BRCA tissues, whereas S100B was
markedly downregulated. These findings suggest that CACNA1H
and KCNJ11may function as potential oncogenes, while S100Bmay
act as a tumor suppressor. However, in the TNBC subtype, we
observed an opposite expression pattern: CACNA1H and KCNJ11
were significantly downregulated compared to other breast cancer
subtypes, whereas S100B showedmarkedly elevated expression. This
discrepancy in expression patterns may reflect the high degree of

FIGURE 7
Correlation of three hub genes with immune cells (A–C). Correlation of immune cells with (A) CACNA1H, (B) KCNJ11, and (C) S100B.
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molecular heterogeneity present in TNBC. We hypothesize that
CACNA1H and KCNJ11 are restricted in their expression within
TNBC, being highly expressed only in specific patient subgroups.
Single-cell transcriptomic analysis supports this assumption: among
the seven major cell types identified, CACNA1H expression was
primarily observed in tissue stem cells, while KCNJ11 was mainly
expressed in epithelial cells, and both genes showed low expression
across other cell types. In contrast, S100B was broadly expressed
across multiple cell populations, with notably high levels in
monocytes, T cells, and epithelial cells. These findings suggest

that S100B may play a more prominent role in immune
regulation and the TME.

In the TME, we found that the diagnostic score was strongly
correlated with immune cell infiltration, where lower diagnostic
scores were associated with reduced levels of multiple immune cells,
including CD8+ T cells and cytotoxic lymphocytes. These immune
cells are known to be critical in tumor suppression and response to
immunotherapy (Farhood et al., 2019), implying that TNBC patients
with lower diagnostic scores may experience immune evasion. This
finding is consistent with previous studies demonstrating that TNBC

FIGURE 8
Immune cell distribution and hub gene-related pathways in TNBC (A) Seven cell types were annotated based on a single cell-RNA sequencing dataset;
different colors represent different cell types. (B) Pathway scores of T cell receptor signaling pathway in cells. (C) Pathway scores of JAK-STAT signaling
pathway in cells. (D) Pathway scores of cytokine-cytokine receptor interaction in cells. Orange-colored dots indicate higher pathway activity scores. (E)
Correlation of three hub genes with three pathways; dark blue dots represent significant negative correlations, while dark red dots represent significant
positive correlations. The size of the dots reflects the magnitude of the correlation coefficients. Abbreviation: TNBC, triple-negative breast cancer.
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is often characterized by an immunosuppressive TME, contributing
to poor patient outcomes (Ding et al., 2023). The increased exclusion
score in the low diagnostic score group, as demonstrated by the
TIDE analysis, further supports this immunosuppressed
microenvironment, which is a hallmark of TNBC and a
significant barrier to effective immune checkpoint blockade
therapy. Our results also revealed that S100B was positively
associated with CD8 T cells. A previous study reported the
expression of S100B in CD8+ T cells (Houtman et al., 2018). In
our research, we found that S100B expression was higher in TNBC
patients than in other BRCA types. We speculate that S100B may
serve as a tumor suppressor gene in TNBC, exerting its immune-
activating role by activating CD8+ T cells. Therefore, single-cell RNA
sequencing analysis was performed, which confirmed the significant
association between S100B and immune cell types in TNBC,
particularly T cells. The high expression of S100B in immune
cells, especially in T cells and cytotoxic lymphocytes, indicates its
crucial role in regulating immune responses within the TNBC.

Additionally, pathway enrichment analysis further highlighted
that S100B is highly associated with the cytokine-cytokine receptor
interaction pathway and JAK-STAT signaling pathway. The
cytokine-cytokine receptor interaction pathway plays a critical
role in the regulation of the immune system, inflammatory
responses, and processes such as cell growth and differentiation
(He et al., 2024). After binding to their respective receptors,
cytokines trigger conformational changes in the receptors,
initiating intracellular signaling cascades, including the JAK-
STAT pathway. Wang et al. suggested that immune stemness
genes may play a role in lung adenocarcinoma via the cytokine-
cytokine receptor interaction/JAK-STAT pathway (Wang et al.,
2022). Another study indicated that DEGs, including S100B, are
associated with the cytokine-cytokine receptor interaction (Qiu
et al., 2021). Moreover, RAGE ligands (including S100B) can
activate the JAK-STAT pathway in rat neurons to promote
axonal growth (Saleh et al., 2013). We speculate that S100B may
regulate the TIME in TNBC via the cytokine-cytokine receptor
interaction/JAK-STAT pathway, however, this requires further
experimental validation.

This study has several limitations. First, the diagnostic analysis
was based on bulk RNA-seq data, which may not fully capture the
heterogeneity of TNBC. Second, the top three overlapping genes
were identified by multiple machine learning algorithms; although
this approach enhances robustness and consistency, it may appear
arbitrary and lacks the interpretability provided by methods such as
SHAP. Lastly, the proposed mechanism involving S100B and the
cytokine/JAK-STAT pathway remains speculative and requires
further functional studies. Future research should focus on
clinical validation and mechanistic exploration to confirm the
translational potential of these findings.

In summary, this study identifies three novel hub genes
(CACNA1H, KCNJ11, and S100B) as potential diagnostic and
prognostic biomarkers for TNBC. These genes are intricately
involved in immune regulation, especially the S100B. These
findings lay the groundwork for future investigations aimed at
integrating molecular biomarkers into precision oncology
approaches for TNBC, potentially improving early diagnosis,
prognostic stratification, and immunotherapy responsiveness
prediction.
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