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Background: Mitochondrial dynamics and mitophagy play crucial roles in
osteoarthritis (OA); however, the specific contributions of mitochondrial
dynamics-related genes (MD-RGs) and mitophagy-related genes (MP-RGs)
remain unclear. This study aimed to elucidate the precise mechanisms linking
these genes in the context of OA.

Methods: OA-related transcriptome datasets and single-cell RNA sequencing
(scRNA-seq) dataset incorporating MD-RGs and MP-RGs were utilized in this
study. Hub genes were identified through differential expression analysis,
weighted gene co-expression network analysis (WGCNA), and machine
learning. A nomogram was then constructed based on the hub genes.
Enrichment and immune infiltration analyses were performed on the hub
genes, and key cell types were identified based on hub gene expression.
Finally, the expression of the hub genes was validated using reverse
transcription-quantitative polymerase chain reaction (RT-qPCR).

Results: SLC38A1 and STX11were identified as hub genes linked tomitochondrial
dynamics and mitophagy in OA. These genes enabled the construction of a
reliable nomogram for predicting OA risk. Enrichment analysis revealed that the
top biological processes converged on the ECM–receptor interaction,
underscoring its critical role in OA pathogenesis. Immune infiltration analysis
uncovered significant disparities in 10 immune cell types, including activated
CD4 T cells and central memory CD4 T cells, between OA patients and healthy
controls. The levels of these immune cells were strongly correlated with the
expression of SLC38A1 and STX11. Additionally, endothelial cells, monocytes, and
T cells emerged as key cellular players in OA. RT-qPCR validation showed that
SLC38A1 was significantly downregulated in OA samples, and STX11 exhibited a
similar trend, suggesting their potential roles in OA progression.

Conclusion: This study identified SLC38A1 and STX11 as key genes linked to
mitochondrial dynamics and mitophagy in OA. These findings provide a
theoretical basis and valuable reference for the diagnosis and treatment of OA.
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1 Introduction

Osteoarthritis (OA) is a chronic joint disease characterized by
degenerative changes in the articular cartilage, synovium, and
subchondral bone (Steinmetz et al., 2023). It is the most
common joint disorder, with a prevalence that increases with age,
affecting approximately 595 million people worldwide in 2020
(Steinmetz et al., 2023). OA has a series of complex pathological
changes, including articular cartilage abrasion, synovial
inflammation, subchondral bone remodeling, and osteophyte
formation, which influence the development and progression of
OA (Chu et al., 2020; Chilelli et al., 2024). OA is an irreversible
degenerative disease, presenting with late-stage symptoms such as
joint pain and deformity, which severely impact the daily activities of
the patients (Duruöz et al., 2023). The causes of OA include age,
gender, genetics, metabolism, and joint injury (Tibor and Ganz,
2022). Chondrocyte death, including autophagy, ferroptosis,
apoptosis, and pyroptosis, contributes to the progression of OA
(Guan et al., 2024; Zhu et al., 2023). Therefore, early diagnosis and
timely intervention are extremely important as they can help delay
disease progression and alleviate symptoms. In recent years, an
increasing number of studies have confirmed that various
dysregulated genes can serve as important diagnostic markers
and therapeutic targets (Hadzic and Beier, 2023).

Mitochondria are essential organelles within cells that carry out
and coordinate various metabolic processes and play a significant
role in the development of OA (Blanco et al., 2004). Studies have
shown that ERK1/2 is a key factor in promoting IL-1-induced
mitochondrial fission and apoptosis in chondrocytes (Ansari
et al., 2022). The mitochondrial network in normal chondrocytes
remains intact, whereas several chondrocytes in OA cartilage exhibit
excessive mitochondrial fragmentation (Blanco et al., 2004; Ansari
et al., 2022). Mitochondrial dysfunction is also associated with OA
(Blanco et al., 2004). Mitophagy is a process that selectively removes
damaged or dysfunctional mitochondria through autophagy,
thereby maintaining mitochondrial quality control and
homeostasis. It has been reported that HIF-1α can alleviate cell
apoptosis and senescence in chondrocytes under hypoxic conditions
through mitophagy, thereby ameliorating cartilage degeneration in
surgically induced OAmouse models (Hu et al., 2020). Additionally,
curcumin exerts chondroprotective effects in osteoarthritis by
promoting AMPK/PINK1/Parkin-mediated mitophagy (Jin et al.,
2022). Therefore, genes related to mitochondrial dynamics and
autophagy may serve as biomarkers for OA patients.

In summary, based on the single-cell and bulk transcriptome
analyses, we have explored the potential of mitochondrial dynamics
and autophagy as biomarkers for OA patients and their underlying
molecular mechanisms, providing new insights for the early clinical
diagnosis and treatment of OA patients.

2 Materials and methods

2.1 Data collection

OA-related transcriptome datasets (GSE57218 and GSE117999)
and the single-cell RNA sequencing (scRNA-seq) dataset
(GSE152805) (GPL20301) were downloaded from the Gene

Expression Omnibus (GEO) database (http://www.ncbi.nlm.nih.
gov/geo/). The GSE57218 dataset (GPL6947), containing
7 control and 33 OA cartilage tissue samples, was considered the
training set (Ramos et al., 2014). The GSE117999 dataset
(GPL20844), consisting of 12 OA and 12 control cartilage tissue
samples, was considered the validation set. Detailed information on
the samples in the training and validation sets is presented in
Supplementary Table S1. The GSE152805 dataset included three
OA cartilage tissue samples for scRNA-seq. A total of
23 mitochondrial dynamics-related genes (MD-RGs) were
obtained from the published literature (Zhang et al., 2024). In
total, 29 mitophagy-related genes (MP-RGs) were acquired from
the Reactome database (Yang et al., 2022).

2.2 Single-cell analysis

Seurat objects from the scRNA-seq data were created using the
Seurat package (version 4.1.0) (Tan et al., 2023). In the
GSE152805 dataset, cells with fewer than 200 detected genes and
genes expressed in fewer than three cells were filtered out.
Subsequently, cells meeting the following criteria were retained: (1)
the number of detected features (nFeature_RNA) was greater than
1,000 and less than 5,000; (2) total RNA counts (nCount_RNA) were
below 30,000; and (3) the proportion of mitochondrial gene
expression was less than 5%. Following data normalization using
the NormalizeData function in the Seurat package, the
FindVariableFeatures method was employed to select high-variable
genes. Subsequently, principal component analysis (PCA) was
performed, and the p-value of each principal component (PC) was
calculated using the JackStraw function in the Seurat package. The
significance of PCs was assessed using the ScoreJackStraw function,
and PCs with statistically significant differences (p < 0.05) were
selected for subsequent analysis. The scree plot of PCs was drafted
using the ElbowPlot function in the Seurat package. Subsequently,
unsupervised cluster analysis of cells was performed using the
FindNeighbors and FindClusters functions of the Seurat package
to identify cell clusters with a resolution of 0.3. Furthermore, cell
clusters were annotated using the SingleR package (version 1.831)
(Zhang et al., 2022), with the HumanPrimaryCellAtlasData from the
celldex package used as the reference gene set, and cell subpopulations
were subsequently identified.Moreover,marker genes for the different
cell subpopulations were identified using the FindAllMarkers function
in the Seurat package, and the scRNA-seq of differentially expressed
genes (scRNA-seq DEGs) were selected using the Wilcoxon test, with
a threshold of |log2fold change (FC)| > 0.25.

2.3 Differential expression analysis

The limma package (version 3.54.0) (Li et al., 2022) was used to
identify bulk differentially expressed genes (bulk DEGs) between the
OA and control groups in the GSE57218 dataset, with conditions of
adj.p < 0.05 (FDR correction was used) and |log2FC| > 0.5. A volcano
map of bulk DEGs was generated using the ggplot2 package, and
the top 10 up- and downregulated bulk DEGs (based on log2FC)
were displayed in a heatmap, which was created using the
ComplexHeatmap package (version 2.15.1) (Gu, 2022).
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2.4 Weighted gene co-expression
network analysis

The MD-RGs and MP-RGs scores of samples in the
GSE57218 dataset were calculated using the single-sample gene
set enrichment analysis (ssGSEA) algorithm in the GSVA
package (version 1.42.0) (Hänzelmann et al., 2013). Then, the
difference in the MD-RGs and MP-RGs ssGSEA scores was
compared between the OA and control groups using the
Wilcoxon test (p < 0.05). To identify genes related to the
ssGSEA scores of MD-RGs and MP-RGs, weighted gene co-
expression network analysis (WGCNA) was performed using the
WGCNA package (version 1.70–3) (Langfelder and Horvath, 2008).
First, samples in the GSE57218 dataset were clustered to determine
whether any outlier samples needed to be removed. Subsequently, a
soft threshold (β) selection was performed to construct a co-
expression network by selecting a scale-free R2 value greater than
0.9 and a mean connectivity value close to 0, ensuring that the
constructed network corresponded more closely to a scale-free
topology. The dynamic tree cutting algorithm was employed to
partition modules, with a minimum requirement of 300 genes per
module. Finally, the ssGSEA scores were integrated with the
WGCNA module eigengenes, and the Pearson correlation
between the modules and the phenotypic traits (MD-RGs and
MP-RGs) was calculated using the cor function (|cor| > 0.3; p <
0.05). Genes in key modules were identified as the key module genes.

2.5 Identification and analysis of
candidate genes

Candidate genes were obtained by taking the intersection of
scRNA-seq DEGs, bulk DEGs, and key module genes. The results
were visualized using a Venn diagram, which was created using the
VennDiagram package (version 1.7.1) (Chen and Boutros, 2011).
Furthermore, biological functions and pathways involved with the
candidate genes were explored by Gene Ontology (GO) and Kyoto
Encyclopedia of Genes and Genomes (KEGG) enrichment analyses.
The above enrichment analyses were processed using the
clusterProfiler package (version 4.2.2) (Yu et al., 2012) with p < 0.05.

2.6 Identification of hub genes

Based on candidate genes, least absolute shrinkage and
selection operator (LASSO) (conducted a 10-fold cross-
validation) and XGBoost (the importance of genes is quantified
using the gain indicator) machine-learning algorithms were
applied using the glmnet package (version 4.1–2) (Shi et al.,
2023) and XGBoost package (version 1.6.2.1) (Kui et al., 2022)
to identify signature genes. Then, the intersections of signature
genes identified using two machine-learning algorithms were
identified as the candidate hub genes. Furthermore, the
expression of candidate hub genes was compared between the
OA and control groups using the Wilcoxon test (p < 0.05). The
genes that showed significant differences between the OA and
control groups, with consistent expression trends in the
GSE57218 and GSE117999 datasets, were identified as hub genes.

2.7 Construction of the nomogram

According to hub genes, a nomogram was established to predict
the risk of OA using the rms package (version 6.5.0) (Pan et al.,
2021). The receiver operating characteristic (ROC) curve was
generated using the pROC package (version 1.18.0) (Robin et al.,
2011) to explore the ability of the nomogram to distinguish between
OA and control samples. Decision curve analysis (DCA) was
performed to further evaluate the efficacy of the nomogram.

2.8 Functional analysis of hub genes

According to the expression of hub genes, OA samples in the
GSE57218 dataset were divided into high and low expression groups.
Gene set enrichment analysis (GSEA) was performed to find pathways
using the clusterProfiler package. The reference gene set was
c2.cp.kegg.v7.5.1.symbols.gmt, and the enriched threshold was
| normalized enrichment score (NES)| > 1, NOM P < 0.05, and q <
0.25. GeneMANIA (https://genemania.org/) was used to identify genes
that were functionally related to hub genes, and a gene–gene interaction
(GGI) network was constructed. To explore tissue-specific expression of
hub genes, BioGPS (http://biogps.org/) was utilized to predict the
expression of hub genes in various tissues (species: human).

2.9 Immune infiltration analysis

To explore the correlation of hub genes and immune cells, the
enrichment scores of 28 types of immune cells in the training set
were calculated using the ssGSEA algorithm (Bindea et al., 2013).
Subsequently, the Wilcoxon test was employed to compare the
differences between immune cell enrichment scores between the
OA and control groups (p < 0.05). After that, correlations between
immune cells and between immune cells and hub genes were
analyzed using the corrplot package (version 0.92) (Liu et al., 2022).

2.10 Regulatory network and drug
prediction analyses

MicroRNA (miRNA)-targeting hub genes were predicted using the
miRDB (https://mirdb.org/) and TargetScan databases (https://www.
targetscan.org/vert_80/). The intersections of miRNAs derived from two
databases were selected as key miRNAs. Then, long non-coding RNAs
(lncRNAs) targeting key miRNAs were obtained from the starBase
database (http://starbase.sysu.edu.cn/). To find potential drugs for the
treatment of OA, Comparative Toxicogenomics Database (CTD, http://
ctdbase.org) analysis was carried out. The lncRNA–miRNA–mRNA
regulatory network and the drug–hub gene network were constructed
using Cytoscape software (version 3.8.2) (Yue et al., 2021).

2.11 Cell communication and
pseudo-time analysis

Cell communication of cell subpopulations was evaluated using
the CellChat package (version 1.6.1) (Fang et al., 2022). After
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creating the CellChat object, importing objects to the ligand–-
receptor database (CellChatDB.human), and performing
preprocessing, the cell communication network was inferred. A
bubble diagram was drafted to show the communication
probability of ligand–receptor pair regulation from some cell
groups to other cell groups. To identify key cells in the
GSE152805 dataset, the expression of hub genes across cells was
analyzed, and cells exhibiting high and widespread expression of the
hub genes were defined as key cells. Cell trajectory differentiation of
key cells was analyzed using the monocle package (version 1.0.0)
(Zhai et al., 2020). In addition, the expression of hub genes in key
cells differentiation was explored. Subsequently, enrichment of
transcription factors (TFs) was evaluated using single-cell
regulatory network inference and clustering (SCENIC, https://
github.com/aertslab/SCENIC) based on single-cell data.

2.12 Reverse transcription-quantitative
polymerase chain reaction

To investigate the expression levels of hub genes, an RT-
qPCR experiment was performed. Initially, total RNA was
extracted from the tissue samples using TRIzol reagent
(Ambion, Austin, USA), followed by determination of RNA
concentration. Subsequently, cDNA synthesis was carried out
via reverse transcription using the SweScript First-Strand cDNA
Synthesis Kit (ServiceBio, Wuhan, China). Finally, quantitative
analysis was performed using the Universal Blue SYBR Green
qPCR Master Mix (ServiceBio, Wuhan, China), and the gene’s
relative expression level was calculated using the 2–△△Ct method,
with GAPDH used as an internal reference. Additionally, the
primer sequences for the relevant genes are shown in
Supplementary Table S2.

2.13 Statistical analysis

R software (version 4.2.2) was used to process and analyze data.
Statistical significance between the two groups was assessed using the
Wilcoxon rank-sum test. A p-value < 0.05 was considered statistically
significant. The overall analysis process of this study is shown in Figure 1.

3 Results

3.1 Single-cell profiling revealed OA-related
immune and endothelial subpopulations

After quality control of the scRNA-seq data from GSE152805,
10,032 cells and 19,050 genes remained following filtering
(Supplementary Figure S1). Out of 2,000 highly variable genes, the p-
value of the top 50 PCs was far less than 0.05. Then, the first 20 PCs were
chosen for subsequent analysis through PCA (Figures 2A–C). As shown
in Figure 2D, 11 cell clusters were obtained through uniform manifold
approximation and projection (UMAP) cluster analysis. Subsequently,
6 cell subpopulations were annotated based on 11 cell clusters
(chondrocytes, endothelial cells, macrophages, monocytes, T cells, and
tissue stem cells) (Figure 2E). A total of 1,860 scRNA-seq DEGs were
further selected among different cell subpopulations, and the expression
of marker genes that relied on |log2FC| of each cell subpopulation was
determined (Figure 2F).

3.2 Bulk DEGs associated with OA were
screened out

Through differential expression analysis, 1,124 bulk DEGs
(509 upregulated and 615 downregulated genes) were screened

FIGURE 1
Analysis flowchart.
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FIGURE 2
Single-cell sequencing analysis of osteoarthritis cartilage tissues. (A) Acquisition of highly variable genes. (B) Selection of meaningful PCs. (C)
Principal component and standard deviation distribution plot. (D) UMAP plots of cartilage-associated cells colored by cluster. (E) Annotation of different
cell clusters. (F) Expression levels of marker genes in various cell clusters.
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out between the OA and control groups (Figures 3A, B). In the OA
group, the ssGSEA score of MD-RGs and MP-RGs was significantly
lower than that in the control groups (Figures 3C, D).

3.3 SLC38A1 and STX11 emerge as
mitochondrial hub genes via
integrative analysis

Cluster analysis was performed on all samples in the
GSE57218 dataset, and no outlier sample was found. Thus, all
samples were used for subsequent analysis (Supplementary Figure
S2). By setting R2 = 0.9 as the threshold, a soft threshold of 4 was
selected, and data with mean connectivity close to 0 were filtered out
(Figure 4A). Consequently, 9 co-expression modules were obtained
through similarity analysis and by setting a minimum of 300 genes
for each gene module (Figure 4B). Notably, as shown in Figure 4C,

MEblue and MEturquoise modules, respectively, exhibited a strong
positive (cor = 0.78 and 0.76; p < 0.05) and negative correlation
(cor = −0.65 and −0.69, p < 0.05) with MD-RGs and MP-RGs
ssGSEA scores, respectively. By combining 2,866 genes in the
MEturquoise module and 2,420 genes in the MEblue module,
5,286 key module genes were finally acquired.

3.4 SLC38A1 and STX11 were selected as
hub genes

Intersections of 1,860 scRNA-seq DEGs, 1,124 bulk DEGs, and
5,286 key module genes yielded 12 candidate genes (Figure 5A).
Enrichment analysis of candidate genes showed that 236 GO terms
and 7 KEGG pathways were enriched. Regulation of leukocyte-
mediated cytotoxicity, solute: sodium symporter activity, and
phagocytic vesicle membrane-related functions were GO terms

FIGURE 3
Bulk RNA sequencing analysis of osteoarthritis and control cartilage tissues. (A) Volcano plot of differentially expressed genes in bulk RNA-seq. (B)
Circle heatmap of differentially expressed genes. (C) Comparison of mitochondrial dynamics_single-sample gene set enrichment analysis (MD_ssGSEA)
scores between the OA and control groups. (D) Comparison of mitophagy_ssGSEA (MP_ssGSEA) scores between the OA and control groups. *p <
0.05 and **p < 0.01.
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significantly enriched by the candidate genes (Figure 5B). For KEGG
pathways, viral myocarditis, type-I diabetes mellitus, SNARE
interactions in vesicular transport, cell adhesion molecules, etc.,
were the main pathways (Figure 5C). In total, eight signature genes
(SLC7A8, SOD3, STX11, TSHZ1, NPTX2, SLC38A1, EFHD1, and
ARID5B) were selected by LASSO analysis when lambda was
0.0232298 (Figure 5D). Through XGBoost analysis, six signature
genes, namely, SOD3, SLC7A8, NPTX2, SLC38A1, NPDC1, and
STX11, were selected as gene features (Figure 5E). The
intersection of eight signature genes in LASSO analysis and six
signature genes in XGBoost analysis yielded five candidate hub
genes, including SLC7A8, SOD3, and STX11 (Figure 5F). Expression
analysis of candidate hub genes showed that SLC38A1 and STX11
were obviously less expressed in the OA group in the GSE57218 and
GSE117999 datasets (Figure 5G). Therefore, SLC38A1 and STX11
were identified as hub genes for further analysis.

3.5 Functional analysis of hub genes

Based on the hub genes, a nomogram was constructed to predict
the risk of OA (Figure 6A). The area under the curve (AUC) value of

the ROC curve was 0.944, which demonstrated that the nomogram
had a good ability to diagnose OA and control samples (Figure 6B).
Furthermore, DCA showed that the nomogram and hub genes had a
higher net benefit than the extreme curve and single factor
(Figure 6C). To find biological functions involved in hub genes,
GSEA was performed. The results showed that the ECM–receptor
interaction was consistently among the top five enriched pathways
based on enrichment scores of the hub genes (Figures 6D, E).
Through GeneMANIA, we identified 20 genes that are
functionally related to hub genes. A GGI network was
constructed, showing interactions such as GLUL–SLC38A1,
GLS2–SLC38A1, and GLS–SLC38A1. This analysis revealed that
hub genes were involved in multiple vital biological processes,
including amino acid transport, carboxylic acid transport, and
regulation of neurotransmitter levels (Figure 6F).

3.6 Hub genes correlate with NK cell
infiltration in OA cartilage

Among 28 immune cell types, 10 types of immune cells had
significant differences between the OA and control groups,

FIGURE 4
WGCNA. (A) Selection of the optimal soft threshold (β) value. (B) Dendrogram of gene clusters. (C) Correlation between modules and MD-RGs and
MP-RGs.
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including activated CD4 T cells, activated dendritic cells, and
central memory CD4 T cells (Figure 7A). Correlation analysis
showed that activated B cells had the strongest negative
correlation with natural killer (NK) T cells (cor = −0.43; p <
0.05), while regulatory T cells had the strongest positive
correlation with macrophages (cor = 0.88; p < 0.05)
(Figure 7B). Moreover, hub genes had a negative correlation
with NK cells (cor < −0.3; p < 0.05), and SLC38A1 was positively
correlated with plasmacytoid dendritic cells (cor >0.3; p <
0.05) (Figure 7C).

3.7 Comprehensive regulatory network and
drug prediction of hub genes

To understand the regulatory relationship of hub genes, an
lncRNA–miRNA–mRNA regulatory network was constructed with
SLC38A1, 3 miRNAs, and 18 lncRNAs. In this network, all lncRNAs
regulated SLC38A1 through hsa-miR-23a-3p, hsa-miR-23b-3p, and
hsa-miR-23c (Figure 8A). Through computer simulation
assumptions, SLC38A1 predicted a total of 14 drugs, and STX11
predicted a total of 18 drugs. Among these drugs, methyl

FIGURE 5
Screening of candidate genes with machine learning analysis. (A) Intersection of scRNA-seq differentially expressed genes (scRNA-seq DEGs), bulk
DEGs, and key module genes. (B) GO enrichment of candidate genes. (C) KEGG pathway enrichment of candidate genes. (D) Lasso regression. (E)
XGBoost analysis. (F) Intersection of candidate genes in Lasso and XGBoost analysis. (G) Violin plot of relative expression levels of candidate genes in
GSE57218 and GSE117999 datasets. *p < 0.05, **p < 0.01, ***p < 0.001, and ****p < 0.0001.
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methanesulfonate was predicted by SLC38A1 and STX11, quercetin
was predicted by SLC38A1, and oxazolone was predicted by STX11
(Figure 8B). Furthermore, the top 10 tissues with the highest
expression scores for the two hub genes commonly included the
testis interstitium, ovary, dorsal root ganglion, ciliary ganglion, and
fetal lung (Figure 8C).

3.8 Endothelial cells, monocytes, and T cells
were identified as key cells

Through cell communication analysis, chondrocytes were
shown to have a strong correlation with other cell
subpopulations (Figure 9A). Following that, monocytes had the
strongest correlation with monocytes, and the ligand–receptor pairs
were IL-1B–IL-1R2 (Supplementary Figure S3). To select key cells,
the expression of hub genes was analyzed, and the results showed
that hub genes exhibited higher and widespread expression in
endothelial cells, monocytes, and T cells. Thus, these three cell
types were identified as key cells for subsequent analysis (Figure 9B).
There were five stages of differentiation for endothelial cells,
arranged from top to bottom (Supplementary Figure S4A). For
monocytes and T cells, there were eight and three differentiation
stages, respectively, arranged from left to right (Supplementary
Figure S4B, C). In endothelial cells, the expression of SLC38A1

initially increased in early differentiation stages and then decreased
before gradually increasing again. In contrast, STX11 showed a
gradual decrease initially, followed by a slight increase and a
subsequent rapid increase during differentiation. For monocytes,
SLC38A1 expression increased gradually throughout differentiation,
while STX11 initially increased slowly, followed by a plateau phase.
In T cells, SLC38A1 expression initially increased and then declined
rapidly, whereas STX11 showed a slow initial decrease, followed by a
gradual increase and a subsequent decline during differentiation
(Supplementary Figure S5). According to scRNA-seq data, 195 TFs
were screened out, and the top 30 TFs included TBX21, SPIB, and
MAF (Supplementary Figure S4D).

3.9 Differential expression of SLC38A1 in the
OA and control groups

RT-qPCR is a molecular biology technique that is widely used in
clinical diagnostics and drug development tomeasure the expression
levels of specific genes in samples (Falini and Dillon, 2024). In this
study, RT-qPCR was utilized to assess the mRNA expression levels
of hub genes to investigate their potential differential expression in
OA samples. The results showed differential expression of SLC38A1
between the control and OA groups, with lower expression levels
detected in the OA group (p < 0.01) (Figure 10A). The result

FIGURE 6
Construction of a nomogram and functional analysis of hub genes. (A)A nomogram is used to predict the risk of OA. (B)Area under the curve value of
the ROC curve. (C) Model evaluation curves show that the model containing the two identified hub genes has a higher net benefit. (D) Gene set
enrichment analysis of the SLC38A1 gene. (E) Gene set enrichment analysis of the STX11 gene. (F) GGI network using GeneMANIA.
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consisted of the expression trend of SLC38A1 in the OA group in the
GSE57218 and GSE117999 datasets. However, the expression level
of STX11 in the OA group exhibited a decrease, but the change did
not reach statistical significance (p > 0.05) (Figure 10B). This might
be due to the small sample size used, and it will need to be confirmed
with a larger sample size in future studies.

4 Discussion

In this study, we aimed to unravel the intricate mechanisms
linking MD-RGs and MP-RGs in OA. The findings significantly
contribute to the understanding of the pathogenesis of OA at the
molecular level and offer new perspectives for its diagnosis
and treatment.

The pathways enriched by candidate genes—such as phagocytic
vesicle membrane, type-I diabetes mellitus, and cell adhesion
molecules—have been previously reported in the literature to be
associated with OA (Rios-Arce et al., 2022; Njoto et al., 2019; Cheng
et al., 2020; Chen et al., 2020). According to research,

TMEM230 promotes antigen processing, transport, and
presentation by regulating the membrane-bound organelles. It
also plays a crucial role in regulating the secretion of
metalloproteinase and heparanase, which are required for tissue
remodeling in OA and rheumatoid arthritis (RA) (Abeni et al.,
2024). Type-I diabetes mellitus may suppress the development of
post-traumatic osteoarthritis (Rios-Arce et al., 2022). Neural cell
adhesion molecule (NCAM) could inhibit hypertrophic
chondrocyte differentiation of mesenchymal stem cells by
suppressing ERK signaling, thereby reducing chondrocyte
hypertrophy in OA models. These findings suggest that the
potential utility of NCAM as a novel therapeutic target for OA
(Cheng et al., 2020).

We found that SLC38A1 was downregulated and that STX11
showed a downregulated expression trend in OA, which might serve
as potential biomarkers associated with mitochondrial dynamics
and mitophagy in OA through bioinformatics analysis. SLC38A1
(solute carrier family 38, member 1) is a sodium-coupled neutral
amino acid transporter, which is primarily responsible for the
transport of amino acids across the cell membrane. Although

FIGURE 7
Analysis of immune cell components in single-cell sequencing. (A) Cell fraction difference of 28 immune cell types between the OA and control
groups. (B) Correlation analysis of all immune cells. (C) Correlation between hub genes and all immune cells. *p < 0.05, **p < 0.01, and ***p < 0.001.
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there are currently no reports on the functional mechanism of the
SLC38A1 gene in osteoarthritis, many other members of the solute
carrier family have been reported to play a role in OA. For example,
capsiate inhibited the expression of HIF-1α by activating SLC2A1,
thereby reducing the progression of ferroptosis-related osteoarthritis
(Guan et al., 2023). Additionally, miR-19b-3p in exosomes from
osteoarthritic fibroblast-like synoviocytes enhanced chondrocyte
ferroptosis and damage in OA by sponging off SLC7A11 (Kong
et al., 2023). STX11 (Syntaxin 11) is mainly expressed in immune
cells, is involved in cytotoxic granule exocytosis, and is crucial for the
cytotoxic functions of CD8+ T cells and NK cells (D’Orlando et al.,
2013). In a bioinformatics study of rheumatoid arthritis and
osteoarthritis, STX11 was found to be highly enriched in

protein–protein interaction networks (Qiu et al., 2021).
Additionally, STX11 may modulate OA-associated inflammation
and OA progression by affecting the activity of macrophages, T cells,
and NK cells (D’Orlando et al., 2013; Offenhäuser et al., 2011;
Dabrazhynetskaya et al., 2012). Thus, STX11 may be vital in OA
pathogenesis via immune cell function and cytokine regulation,
further suggesting its potential relevance in OA and RA. Future
research should use knockdown or overexpression techniques in cell
models and gene agonists or inhibitors in animal models to further
clarify the specific molecular mechanisms of SLC38A1 and STX11 in
OA progression.

Single-cell analysis showed high SLC38A1 and STX11 expression
in monocytes and immune cells, and the proportion of NK cells was

FIGURE 8
Analysis of the lncRNA–miRNA–mRNA regulatory network and drugs prediction of two hub genes. (A) LncRNA–miRNA–mRNA regulatory network
of SLC38A1. (B) Predicted drugs for SLC38A1 and STX11. (C) Top 10 tissues with the highest expression scores for the two hub genes.
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found to be significantly higher in the OA group than in the control
group, according to immune infiltration analysis. Monocytes, when
exposed to various stimuli, express ligands for the immune receptor
found on NK cells. These ligands activate NK cells and enhance their
cytotoxicity (Getz et al., 2007). Additionally, both monocytes and
NK cells secrete cytokines that can influence each other’s functions.

Monocytes produce IL-15, which boosts NK cells’ cytotoxicity and
IFN-γ production (Cooper et al., 2001). In turn, IFN-γ fromNK cells
activates monocytes and enhances their antigen presentation ability
(Cooper et al., 2001). These immune cells’ interactions may
influence OA progression. Moreover, the correlation analysis of
SLC38A1 and STX11 with all immune cells showed a negative

FIGURE 9
Communication between different cell types. (A) Interaction number and strength between different cell clusters. (B) Violin plots of the expression
levels of two hub genes in various cell clusters.
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correlation with NK cells, further suggesting that SLC38A1 and
STX11 may influence the development of osteoarthritis through the
immune infiltration of NK cells.

The construction of the lncRNA–-miRNA–mRNA regulatory
network for SLC38A1 provided insights into the post-transcriptional
regulation of this hub gene. The prediction of drugs associated with
SLC38A1 and STX11, such as methyl methanesulfonate, quercetin,
and oxazolone, offers potential therapeutic targets for OA treatment.
Quercetin alleviates the progression of osteoarthritis by regulating
inflammatory cascades and chondrocyte apoptosis (Hu et al., 2019;
Wang et al., 2023), and SLC38A1 may serve as an intermediate
through which it exerts these effects. These predicted drugs could
potentially modulate the functions of the hub genes and, thus,
alleviate the pathological symptoms of OA.

However, there are limitations to this study, including limited
in vitro and in vivo validation of the functions of SLC38A1 and
STX11, the use of RT-qPCR to validate the expression of hub genes,
and the need for more versatile experiments, such as gene
knockout or overexpression in cell or animal models, to fully
understand their role in OA. Second, the small sample size of RT-
qPCR and scRNA-seq data, along with the lack of control samples
in the scRNA-seq dataset, may affect the accuracy of the result.
Only SLC38A1 showed significant differential expression in RT-
qPCR. In addition, STX11 did not reach statistical significance,
which might be due to the small sample size. However, the STX11
expression trend matched the bioinformatics results in the
GSE57218 and GSE117999 datasets, and it was widely expressed
in key cell subsets such as endothelial and mononuclear cells in
single-cell data, leading us to designate it as a hub gene.
Additionally, while the study primarily focused on the
relationship between mitochondrial-related genes and OA, other
contributing factors were not fully explored. Moreover, the
lncRNA–miRNA–mRNA regulatory network and drug
predictions were based on database predictions. The actual
regulatory roles need further exploration of their molecular
mechanisms through molecular experiments (such as siRNA
and mimic) and cellular models (such as drug induction).
Future studies should expand the scope to deepen our
understanding of OA and develop more comprehensive
diagnostic and therapeutic strategies.
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