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Objective: This study aims to investigate the expression patterns, molecular
mechanisms, and clinical significance of DICER1 in breast cancer (BRCA),
providing new biomarkers and therapeutic targets for prognosis assessment
and personalized treatment of breast cancer.

Methods: By integrating RNA-seq data, clinical data, and tumor mutation burden
(TMB) data fromThe Cancer Genome Atlas (TCGA) database, as well as single-cell
transcriptomic data from the Gene Expression Omnibus (GEO) database, we
analyzed the expression characteristics of DICER1 in breast cancer. Weighted
gene co-expression network analysis (WGCNA) was used to identify gene
modules associated with the breast cancer phenotype, and gene set
enrichment analysis (GSEA) was performed to explore their biological
functions. Cellular experiments were conducted to verify the effects of
DICER1 on the proliferation, migration, and invasion of breast cancer cells. A
nomogram model was constructed based on clinical data to evaluate its
prognostic value. Additionally, the effects of DICER1 expression levels on drug
sensitivity and the tumor immune microenvironment were analyzed.

Results: The expression of DICER1 in breast cancer tissues was significantly lower
than that in normal tissues, and was significantly correlated with tumor stage, T
stage, and TMB levels. The expression level of DICER1 was an independent
prognostic factor for breast cancer patients. The nomogram model based on
DICER1 expression and clinical features demonstrated good discriminative ability
in predicting patient survival probability. Drug sensitivity analysis revealed that the
high-expression group of DICER1 exhibited higher sensitivity to multiple drugs.
Immune microenvironment analysis indicated that the low-expression group of
DICER1 had higher immune-suppressive features and immune exclusion scores,
suggesting potential resistance to immunotherapy. Single-cell transcriptomic
analysis revealed heterogeneous expression of DICER1 in breast cancer cell
populations and its potential role in cell-cell communication.

Conclusion: DICER1 plays an important regulatory role in breast cancer, with its
expression level closely related to tumor progression, the immune
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microenvironment, and drug sensitivity. DICER1 has the potential to become an
important biomarker for prognosis assessment in breast cancer and may provide
new targets for future immunotherapy and targeted therapy.
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1 Introduction

Breast cancer (BRCA) is one of the most common malignant
tumors among women globally, with persistently high incidence and
mortality rates that pose a significant threat to women’s health (Roy
et al., 2023; Michaels et al., 2023). Despite substantial progress in the
diagnosis and treatment of breast cancer in recent years, its highly
heterogeneous nature and complex molecular mechanisms result in
considerable variations in prognosis (Phung et al., 2019; Hill et al.,
2018). Therefore, exploring the molecular mechanisms underlying
breast cancer and identifying new biomarkers and therapeutic
targets are of great significance for improving patient outcomes
and facilitating personalized treatment. Among the various
molecular pathways involved in breast cancer, the RNA
interference pathway has emerged as a promising area of focus
due to its critical role in regulating gene expression and its potential
to influence tumor development and progression. This study
specifically examines the RNA interference pathway regulators,
particularly DICER1, to uncover its potential as a novel
biomarker and therapeutic target in breast cancer (Zhang et al.,
2024; Juul et al., 2010; Fang et al., 2022).

The DICER1 gene is a key enzyme in the RNA interference
pathway, responsible for processing precursor microRNAs (pre-
miRNAs) into mature miRNAs, thereby regulating gene expression.
In recent years, studies have revealed that DICER1 plays an
important role in various cancers. For instance, study reported a
17-year-old female patient who had undergone surgery for a mixed
SLCT and juvenile granulosa cell tumor at the age of 14, and was
later diagnosed with a high-grade sarcoma with rhabdoid
differentiation due to pelvic mass recurrence, with the presence
of a DICER1 mutation confirmed once again (Shero et al., 2024).
Additionally, a literature review summarized several cases involving
SLCT and ERMS (embryonal rhabdomyosarcoma) associated with
DICER1 syndrome, emphasizing the importance of multimodal
treatment approaches, including extensive surgical resection,
various chemotherapy regimens, and adjuvant therapies tailored
to individual patients (Riascos et al., 2024). However, the specific
functions and mechanisms of DICER1 in breast cancer remain to be
fully elucidated. Zhang et al. demonstrated that amplification of the
MIR191/425 locus is associated with poor survival in breast cancer
patients. This miRNA cluster downregulates DICER1 expression by
targeting the 3′untranslated region of DICER1 mRNA, thereby
affecting global miRNA biogenesis and promoting the
proliferation, survival, migration, and invasion of breast cancer
cells (Zhang et al., 2018). Moreover, miRNAs from the let-7
family, acting as downstream effectors of the miR-191/425-
DICER1 axis, partially counteract the oncogenic effects mediated
by miR-191/425. Another study investigated the germline mutations
of DICER1 in Chinese patients with familial breast cancer. Although

several novel variants were identified, no direct association between
these variants and the disease was found, suggesting that
DICER1 germline mutations are either rare or absent in Chinese
patients with familial breast cancer (Cao et al., 2014).

In recent years, the application ofmulti-omics analysis technologies
has provided new insights into breast cancer research. By integrating
genomic, transcriptomic, and epigenomic data, researchers can more
comprehensively reveal the regulatory networks of DICER1 in breast
cancer and its clinical significance. Moreover, the application of single-
cell sequencing and spatial transcriptomics has further elucidated the
heterogeneous expression of DICER1 in breast cancer cell populations
and its role in immune cell communication. In clinical applications, the
expression level of DICER1 has been shown to be significantly
correlated with the prognosis of breast cancer patients. Studies
have indicated that patients with low DICER1 expression often
have poorer survival rates, and its expression level can serve as an
independent prognostic biomarker. Additionally, by constructing
nomogram models based on DICER1 expression and clinical
indicators, researchers can more accurately predict patient
outcomes, providing a basis for personalized treatment. In
summary, the expression patterns, molecular mechanisms, and
clinical significance of DICER1 in breast cancer have become a
current research hotspot. Through multi-omics integration and
clinical validation, DICER1 not only holds promise as an
important biomarker for prognostic assessment in breast cancer
but may also provide new ideas for immunotherapy and targeted
therapy. However, further large-scale clinical studies are needed to
verify its clinical application value and to explore the potential roles of
DICER1-related molecules in breast cancer treatment.

2 Methods

2.1 Data acquisition and sample collection

In this study, we collected bulk RNA-seq data, clinical data
(including gender, age, and stage), and tumor mutation burden
(TMB) data from 113 normal samples and 1,113 tumor samples
from The Cancer Genome Atlas (TCGA) database (https://www.
cancer.gov/ccg/research/genome-sequencing/tcga) (Weinstein et al.,
2013). Patients with primary BRCA samples of single cell RNA
sequencing (scRNA - seq) gene expression data from comprehensive
database (GSE248288 dataset (Tan et al., 2024)), contains four
BRCA samples (https://www.ncbi.nlm.nih.gov/geo/). We used the
GEO dataset GSE131769 (296 tumor samples) for external
validation of the column chart model. Additionally, the
expression profiles of DICER1 across various cancers were
retrieved from the pancancer expression database TIMER2.0
(http://timer.cistrome.org/).
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Breast cancer cases initially diagnosed at the Fourth Hospital of
Hebei Medical University were included in this study. Patients who
had previously undergone surgery, systemic therapy, or
radiotherapy were excluded. All patients provided written
informed consent for clinical specimen collection (ethical
approval number: 2024KY009). Post-operative specimens were
fixed in formalin and embedded in paraffin, or preserved in
tissue RNA preservative. Two pathologists assessed the
pathological sections, and 98 breast cancer specimens were
chosen for DICER1 protein expression analysis in cancer tissue.
Based on whether tissue samples were immediately preserved in
RNA preservative after removal, 39 normal breast tissue and
48 breast cancer specimens were selected for detecting
DICER1 mRNA levels in both cancerous and normal breast tissue.

2.2 Experimental methods

2.2.1 Cell culture
MDA-MB-231 (CC0301, Cellcook, China) and Hs578t

(CC0313, Cellcook, China) cell lines were grown in DMEM
containing 10% fetal bovine serum (FBS). Cells were incubated at
37°C under 5% CO2, and the medium was refreshed every 2–3 days
to maintain viability.

2.2.2 Generation of DICER1-Overexpressing
cell lines

Lentiviral vectors for DICER1 overexpression (LPP-H0470-
Lv105-A00, H0470) and a control vector (LPP-NEG-Lv105-A00,
NEG) were produced by GeneCopoeia (Guangzhou, China). Stable
cell lines with DICER1 overexpression (OE-DICER1) and matched
controls (Control) were generated via lentiviral transduction. Post-
puromycin selection, RNA and protein were isolated to assess
DICER1 expression levels.

2.2.3 CCK-8 assay
Two distinct cell lines were plated in 96-well plates, each well

containing 1 × 103 cells. Cell proliferation was assessed at intervals of
0, 24, 48, 72, and 96 h by introducing 10 μL of CCK-8 solution into
each well, followed by incubation at 37°C for 60 min. Absorbance
readings at 450 nm were subsequently taken using a microplate
reader (BioTek, Vermont, USA).

2.2.4 Transwell migration and invasion assays
Transwell experiments were conducted using chambers with a

diameter of 6.5 mm and pores of 8 μm (Corning, USA). In the
invasion test, 1× 105 cells were placed on the upper compartment
coated with Matrigel, while the lower compartment contained
DMEM enriched with 20% FBS. Following a 24-h incubation,
cells were fixed, dyed, and imaged under a microscope (Leica,
Wetzlar, Germany), with quantification carried out using ImageJ
(version 1.53q). The migration test followed identical procedures,
except the upper compartment lacked the Matrigel coating.

2.2.5 Protein analysis by western blot
Whole-cell lysates were prepared using Protein lysate

supplemented with a protease inhibitor (20101ES60, Yeasen,
China). Proteins were resolved using SDS‒PAGE and transferred

to PVDF membranes (Millipore, Billerica, MA, USA). The
membranes were probed with primary antibodies targeting
DICER1 (F-10, Santa, US, 1:500), β-actin (81115-1-RR,
Proteintech, China, 1:5,000). HRP-linked secondary antibodies
(S0001, S0002, Affinity, China, 1:10,000) were applied for signal
detection, and protein bands were visualized using enhanced
chemiluminescence reagents (GBOX EXTENDED, Syngene,
United Kingdom).

2.2.6 Real-Time quantitative reverse transcription
polymerase chain reaction (RT‒qPCR)

Total RNA was extracted from cells or tissues using TRIzol
reagent (Invitrogen) following the manufacturer’s protocol. cDNA
was synthesized with the RevertAid First Strand cDNA Synthesis Kit
(K1622, Thermo Scientific, US). The expression levels of DICER1,
were measured by RT‒qPCR using GoTaq® qPCR Master Mix
(A6001, Promega, US), with GAPDH serving as the reference
gene. Amplification was performed on an Applied Biosystems
StepOnePlus™ Real-Time PCR System (Applied Biosystems, US).
Relative mRNA expression was determined using the 2̂‒ΔΔCt
method. The primer sequences are detailed in
Supplementary Table S1.

2.2.7 Immunohistochemistry (IHC)
Paraffin-embedded tissue sections were deparaffinized in xylene

and rehydrated with a series of graded alcohols. Antigen retrieval
was performed by heating the sections in citrate buffer (pH 6.0) or
EDTA buffer (pH 8.0) via a pressure cooker. Endogenous peroxidase
activity was quenched with 3% hydrogen peroxide for 20 min,
followed by blocking with 5% BSA or serum to reduce
nonspecific binding. The sections were then incubated with
primary antibodies (1:50) specific to the DICER1 proteins
overnight at 4°C. The next day, after washing with PBS, the
sections were incubated with a biotinylated secondary antibody
via a PV9000 kit (ZSGB-BIO, Beijing, China) according to the
manufacturer’s instructions. The signal was visualized using
diaminobenzidine (DAB) substrate, resulting in a brown
precipitate at the antigen sites. Finally, the sections were
counterstained with hematoxylin to visualize the cell nuclei.

2.3 Differential expression analysis and
tumor mutation burden analysis

In this study, patients with BRCA from TCGA-BRCA cohort
were stratified into high and low expression groups based on the
expression levels of DICER1. Differential expression analysis was
performed on the RNA-seq data of the two groups using the limma
algorithm (Ritchie et al., 2015), and 832 differentially expressed
genes (DEGs) were identified with criteria of |logFC| > 0.5 and
adjusted P-value <0.05 (Supplementary Table S1). The tumor
mutation burden (TMB) data for the TCGA-BRCA cohort were
obtained from the UCSC Xena database (Goldman et al., 2020).
Mutation analysis and mutation landscape visualization were
conducted using the “maftools” package in R software
(Mayakonda et al., 2018). Gene set enrichment analysis (GSEA)
was performed based on the “c5. bp.v7.1. symbols” gene set from the
Human MSigDB Collections database (Liberzon et al., 2011),
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implemented using the “GSVA” package in R software
(Hänzelmann et al., 2013).

2.4 Weighted gene co-expression
network analysis

The gene expression data of the TCGA-BRCA cohort were
preprocessed in this study. Data underwent missing value checks,
and outliers were identified by clustering analysis of samples. A
weighted gene co-expression network was constructed by calculating
the adjacency matrix and selecting the optimal soft threshold (β)
based on scale-free topology criteria. Modules were identified using
the dynamic tree-cutting algorithm and further optimized by
merging highly similar modules. The minimum number of genes
in each module was set to 30. The relationship between modules and
traits was assessed by calculating the correlation between module
eigengenes and clinical features (BRCA status). Gene significance
(GS) and module membership (MM) values were calculated to
identify key genes within each module. Visualization charts,
including sample dendrograms, heatmaps, and scatter plots, were
generated to display the analysis results. The final outputs included
the correlation matrix between modules and traits, GS and MM
values, and a list of key genes, which were saved for further analysis.

2.5 Immune analysis

The differences in tumor microenvironment (TME) immune
cell types, immune suppression features, immune exclusion features,
and immunotherapy biomarkers between high and low-risk groups
were analyzed using the “IOBR” package in R software (Zeng et al.,
2021). Single-sample GSEA (ssGSEA) analysis was performed on the
high and low expression groups using the “GSVA” package in R
software to deconvolute the abundance of various immune cell
infiltrations and immune function scores in tissues. Finally, the
TCIA scores of BRCA samples in the high and low expression
groups were obtained from The Cancer Imaging Archive (TCIA)
database (Clark et al., 2013) to analyze the differences in
immunotherapy response between the two groups of patients.

2.6 Independent prognostic analysis

Univariate and multivariate Cox regression analyses were
conducted to identify independent prognostic factors from the
clinical features of BRCA and the molecular expression of
DICER1. Subsequently, a nomogram model was constructed
using prognostic genes and independent prognostic factors,
calibration curves were plotted, and ROC analysis was performed
using the “rms” package in R software.

2.7 Drug sensitivity and immune
microenvironment analysis

Drug sensitivity analysis was performed on the high and low
expression groups using the “oncoPredict” package in R software

(Author anonymous, 2012) and the GDSC2 database. Drugs with
significant differences in IC50 values between the two groups were
screened, with a P-value threshold of 0.0000000001. At the same time,
we selected the top four drugs identified through the drug sensitivity
analysis for molecular docking with DICER1 to evaluate the binding
affinity between DICER1 and these anticancer drugs, further
supporting the potential of DICER1 as a therapeutic target. The
3D structures of small-molecule compounds were obtained from
the PubChem database, and protein structure data of genes were
retrieved from the Protein Data Bank (PDB). Finally, drug molecular
docking analysis was conducted using the CB-Dock2 online analysis
platform (https://cadd.labshare.cn/cb-dock2/php/index.php).

2.8 Single-cell RNA-Seq data analysis

The “Seurat” package (Butler et al., 2018) was used to process
single-cell RNA-seq data in this study. Raw count data were loaded
into Seurat objects, and quality control (QC) was performed based
on the number of detected genes (nFeature_RNA), total number of
molecules per cell (nCount_RNA), and proportion of mitochondrial
genes (percent.mt). Cells meeting the following criteria were
retained: nCount_RNA between 1,000 and 100,000, nFeature_
RNA between 200 and 7,500, and percent. mt not exceeding
20%. The filtered data were normalized using the LogNormalize
method and scaled. Dimensionality reduction was performed by
principal component analysis (PCA), and batch effects were
corrected using the Harmony algorithm (Korsunsky et al., 2019),
followed by clustering analysis using the Louvain algorithm. Cell
types were annotated using the SingleR package (Aran et al., 2019).

Cell-cell communication was further analyzed using the “CellChat”
package (Jin et al., 2021). Immune cells with high-risk features were
filtered from the Seurat object, and expression matrices and cell type
annotations were extracted to create CellChat objects. Potential ligand-
receptor interactions were defined using the CellChatDB.human
database, and the analysis was limited to “secretion signaling”
interactions. Expression data were preprocessed to identify
overexpressed genes and interactions, which were then mapped to the
human protein-protein interaction (PPI) network. Communication
probabilities were calculated to infer cell-cell communication
networks, and interactions supported by at least 3 cells were filtered
out. The number andweight of cell-cell communication interactionswere
displayed using circular plots, and specific cell type communicationswere
shown using bubble plots. Network centrality scores were calculated to
identify major signaling roles of cell types and visualized using heatmaps.

To evaluate the expression of DICER1 and its association with
cell phenotypes, the area under the curve (AUC) score of gene sets
was calculated using the “AUCell” package (Aibar et al., 2017). The
processed Seurat object was loaded, and the AUC score for each cell
was calculated using the AddModuleScore function. Cells were
classified into “high-expression cell clusters” and “low-expression
cell clusters” based on the median AUC score. To identify enriched
pathways associated with high and low expression cell clusters,
GSEA analysis was performed using the “fgsea” package.
Differential expression analysis was conducted between groups
using the FindMarkers function, and the resulting gene markers
were sorted by log2 fold change and used as input for GSEA.
Enrichment analysis was performed using KEGG pathways from
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the MSigDB database. The top 20 enriched pathways were displayed
using bar plots, highlighting pathways with significant enrichment
scores (p < 0.05).

2.9 Statistical analysis

For the experimental part, statistical evaluations were conducted
using GraphPad Prism 10.1.2. Immunohistochemistry (IHC) images
were processed using Image-Pro Plus (IPP) 6.0, with mean optical
density (MOD) derived by dividing integrated optical density (IOD)
by the positively stained region. Results are reported as means ±
standard deviations (SDs). Differences between two groups were
analyzed using a two-tailed t-test, assuming the data met the test’s
prerequisites. A p-value below 0.05 was considered statistically

significant. For the analysis part, t-tests were used to compare the
differences in DICER1 expression between different clinical groups.
The Wilcoxon rank-sum test was employed to compare differences
between high and low expression groups. Spearman correlation
coefficients were used to assess the correlations between data. All
statistical analyses were performed using R software version 4.1.0.

3 Results

3.1 Experimental validation and
bioinformatics analysis of DICER1

Figure 1 presents the technical roadmap of this study. Total
RNA was extracted from normal breast tissues and breast cancer

FIGURE 1
Flowchart of study design and experimental procedures.
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tissues, and DICER1 expression was detected via RT-qPCR. The
results indicated that DICER1 expression was significantly lower in
tumor tissues compared to normal tissues (P < 0.05, Figure 2A). The
expression levels of DICER1 mRNA varied among different breast
cancer cell lines, with MDA-MAB-231 and HS578t showing the
lowest expression of DICER1 mRNA (Figure 2B). Subsequently, two
stable DICER1-overexpressing breast cancer cell lines (MDA-MB-
231 and Hs578t) were constructed using lentivirus. Western blot
(WB) and RT-qPCR confirmed successful overexpression of
DICER1 (P < 0.05, Figures 2C,D). Transwell chamber assays
revealed that DICER1 overexpression significantly inhibited the
migration and invasion abilities of breast cancer cells (P < 0.05,
Figure 2E). CCK-8 proliferation assays demonstrated that DICER1
overexpression markedly suppressed the proliferative capacity of
breast cancer cells (P < 0.05, Figure 2F). Immunohistochemical
(IHC) analysis further confirmed the downregulation of DICER1
protein expression in breast cancer tissues compared to normal
breast tissues (P < 0.05, Figure 2G). Table 1 presents the correlation
between clinical characteristics and DICER1 expression in 98 breast
cancer patients. DICER1 expression was categorized into low and

high groups. The clinical features examined included age, tumor
size, postoperative lymph node metastasis status, AJCC tumor
staging, molecular typing, and menstrual status. Statistically
significant associations were found between DICER1 expression
and tumor size (P = 0.002), AJCC tumor staging (P = 0.043), and
molecular typing (P = 0.028). No significant correlations were
observed between DICER1 expression and age (P = 0.121),
postoperative lymph node metastasis status (P = 0.794), or
menstrual status (P = 0.209). Notably, in terms of molecular
typing, the distribution of luminal A, luminal B, HER2 - positive,
and TNBC subtypes differed significantly between the low and high
DICER1 expression groups.

Bioinformatics analysis of DICER1 expression in the TCGA-
BRCA cohort revealed significant differences in DICER1 expression
between normal and tumor tissues, as well as across different tumor
stages (Stage I-IV) and T stages (T1-T4). In the TCGA-BRCA
cohort, DICER1 expression was significantly downregulated in
tumor tissues compared to normal tissues (Figure 3A). We
analyzed the difference of DICER1 expression among different
breast cancer subtypes based on the UALCAN database. The

FIGURE 2
Overexpression of DICER1 inhibits tumor cell proliferation, migration, and invasion in TNBC cells. (A) Comparison of DICER1 gene expression levels
between breast cancer tissues and adjacent normal tissues. Samples included 39 normal tissues and 48 breast cancer tissues. (B) DICER1 mRNA
expression levels in different breast cancer cell lines. (C,D) Lentivirus was used to construct DICER1-overexpressing cell lines, and overexpression
efficiency was verified by Western blot and RT–qPCR. (E) Transwell chamber assays demonstrated that DICER1 overexpression inhibited the
migration and invasion abilities of breast cancer cells (MDA-MB-231 and Hs578t). (F) CCK-8 proliferation assays showed that DICER1 overexpression
suppressed the proliferation of breast cancer cells (MDA-MB-231 and Hs578t). (G) Immunohistochemistry revealed lower expression of DICER1 in breast
cancer tissues compared to normal breast tissues. Data are presented as mean ± SD, n = 3. Significance was determined by two-tailed unpaired t-test;
*P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001.
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results indicate that there are significant differences in the expression
of DICER1 between subtypes such as HER2Pos and Luminal. Detailed
information can be found in Supplementary Material 1. Additionally,
DICER1 expression exhibited significant differences across various
tumor stages (Figure 3B) and T stages (Figure 3C) (P < 0.05). We
presented the expression differences of DICER1 between various
tumors and their corresponding normal tissues (Figure 3D).
Further analysis showed that tumor mutation burden (TMB)
differed significantly between high and low DICER1 expression
groups (Figure 3E), with a negative correlation between DICER1
expression levels and TMB (Figure 3F; R = –0.18, P = 9.4e-08). The
TMB landscape plots (Figures 3G, H) revealed distinct mutation
profiles between the high and low DICER1 expression groups, with
certain mutation types occurring more frequently in the low

expression group. These results suggest that DICER1 may function
as a tumor suppressor by modulating TMB and thereby influencing
genomic stability in various cancers.

3.2 WGCNA analysis and module functional
annotation in high- and low-
expression groups

We divided patients into high and low expression groups based
on the expression of DICER1. Based on the adjusted p-value less
than 0.05, we identified the differentially expressed genes of
832 between the high and low expression groups of DICER1
(Supplementary Material 2). Subsequently, we constructed a gene

TABLE 1 Correlation between clinical characteristics and DICER1 expression.

Clinical characteristics Total DICER1 P

Low High

Total 98 49 49

Age 0.121

≤45 16 (16.33%) 10 (20.41%) 6 (12.25%)

45–60 38 (38.78%) 22 (44.90%) 16 (32.65%)

≥60 44 (44.89%) 17 (34.69%) 27 (55.10%)

Tumor size 0.002

T1 37 (37.76%) 12 (24.49%) 25 (51.02%)

T2 57 (58.16%) 36 (73.47%) 21 (42.86%)

T3 3 (3.06%) 0 (0%) 3 (6.12%)

T4 1 (1.02%) 1 (2.04%) 0 (0%)

Postoperative lymph node metastasis status 0.794

N0 69 (70.41%) 33 (67.35%) 36 (73.47%)

N1 25 (25.51%) 13 (26.53%) 12 (24.49%)

N2 3 (3.06%) 2 (4.08%) 1 (2.04%)

N3 1 (1.02%) 1 (2.04%) 0 (0%)

AJCC tumor staging 0.043

I 22 (22.45%) 7 (14.29%) 15 (30.61%)

II 73 (74.49%) 39 (79.59%) 34 (69.39%)

III 3 (3.06%) 3 (6.12%) 0 (0%)

molecular typing

luminal A 29 (29.59%) 9 (18.37%) 20 (40.82%) 0.028

luminal B 34 (34.69%) 18 (36.73%) 16 (32.65%)

HER2 positive 12 (12.25%) 7 (14.29%) 5 (10.20%)

TNBC 23 (23.47%) 15 (30.61%) 8 (16.33%)

menstrual status 0.209

premenopausal 36 (36.73%) 21 (42.86%) 15 (30.61%)

postmenopausal 62 (63.27%) 28 (57.14%) 34 (69.39%)

Frontiers in Genetics frontiersin.org07

Zhang et al. 10.3389/fgene.2025.1586287

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2025.1586287


FIGURE 3
Pan-cancer expression analysis of DICER1. (A) Boxplot showing the expression differences of DICER1 between the control and BRCA groups in the
TCGA-BRCA cohort. (B) Expression differences of DICER1 across different tumor stages. (C) Expression differences of DICER1 across different T stages.
(D) Differences in TMB between high and low DICER1 expression groups. (E) Scatterplot of the correlation between DICER1 expression and TMB in high
and low expression groups. (F–H) TMB landscapes of high and low DICER1 expression groups, respectively. *P < 0.05, **P < 0.01, ***P < 0.001.
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co-expression network by performing Weighted Gene Co-
expression Network Analysis (WGCNA) and identified gene
modules that are highly correlated with the BRCA phenotype.
Based on the scale-free topology model fitting and average
connectivity analysis, the optimal soft-thresholding power was
determined to be 6 (Figure 4A). Genes were hierarchically
clustered using the Topological Overlap Matrix (TOM)
dissimilarity measure, and modules were assigned distinct colors
(Figure 4B). A total of four modules were identified using the
dynamic tree-cutting method. We further explored the
relationship between these modules and the BRCA phenotype.
The correlation coefficients between module eigengenes (ME)
and BRCA are shown in Figure 4C. Notably, the brown module
exhibited a strong positive correlation with BRCA (correlation
coefficient = 0.43, p = 2 × 10−55). To elucidate the differences in
biological functions between the high- and low-expression groups,
we performed GSEA using the KEGG database. The results revealed
several significantly enriched pathways (Figures 4D–G), primarily
involved in energy metabolism and cellular respiration. These
pathways also implicated immune-related processes and potential
functions in nucleotide metabolism. We further explored the

functional annotation of genes within the brown module based
on the Metascape database (Figure 4H). Genes in this module were
significantly enriched in GO terms such as negative regulation of
innate immune response and ribonucleoprotein complex biogenesis,
suggesting their potential roles in immune regulation and RNA
processing. Other modules also showed significant associations with
various biological processes, including cell cycle regulation, DNA
metabolism, and mitochondrial function.

3.3 Independent prognostic analysis

Independent prognostic factors were identified through
univariate and multivariate Cox regression analyses. In the
univariate analysis, age, Stage, T, M, and N were all significantly
associated with survival outcomes (Figure 5A). Specifically, the
hazard ratios (HR) for age, stage, T, and N were 1.036 (95% CI:
1.021–1.050), 2.154 (95% CI: 1.704–2.722), 1.530 (95% CI:
1.235–1.895), and 1.620 (95% CI: 1.352–1.941), respectively, with
all p-values less than 0.001. For M, the HR was 1.571 (95% CI:
0.948–2.605) with a p-value of 0.080. In the multivariate analysis,

FIGURE 4
WGCNA analysis comparing key genemodules between high and low expression groups and functional enrichment analysis of different groups and
key gene modules. (A) Selection of soft threshold power based on scale-free topology fitting (signed R2) and average connectivity. (B) Dendrogram of
gene clustering using hierarchical clustering (average linkage method) based on the dissimilarity of the topological overlap matrix (TOM). (C)Heatmap of
the correlation between module eigengenes (ME) and traits (normal and tumor). (D–G) Significant pathways identified by GSEA analysis between
high and low expression groups (oxidative phosphorylation, autoimmune thyroid disease, pyrimidine metabolism, and TGF-β signaling pathway). (H)
Metascape analysis results of the brown module.
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FIGURE 5
Independent prognostic analysis results. (A,B) Identification of independent prognostic factors based on univariate and multivariate Cox regression
analyses, respectively. (C) Construction of a clinical nomogram model based on age, tumor stage, and DICER1 expression. (D) Calibration curve of the
nomogram model. (E) ROC curves for predicting patient 3-year, 5-year, and 10-year survival using the nomogram model.

Frontiers in Genetics frontiersin.org10

Zhang et al. 10.3389/fgene.2025.1586287

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2025.1586287


after adjusting for potential confounding factors, age and stage
remained significant independent prognostic factors (Figure 5B).
The HRs for age, stage, and DICER1 were 1.038 (95% CI:
1.023–1.052), 2.005 (95% CI: 1.322–3.040), respectively, with all
p-values less than 0.001.

Based on the independent prognostic factors identified in the
multivariate analysis, a clinical nomogrammodel was constructed to
predict patient survival probability (Figure 5C). The nomogram
incorporated age, Stage, and DICER1 as key variables. Each variable
was assigned a specific score, and the total score was used to estimate
survival probability. The calibration curve of the nomogram showed
good consistency between the predicted survival probabilities and
the actual observed survival outcomes at 3, 5, and 10 years
(Figure 5D). The predictive accuracy of the nomogram was
further evaluated using receiver operating characteristic (ROC)
curves (Figure 5E). The areas under the ROC curves (AUC) were
0.757 at 3 years, 0.722 at 5 years, and 0.671 at 10 years. These AUC
values indicated that the nomogram had moderate to good
discriminatory ability in predicting patient survival at different
time points. We used the GEO dataset GSE131769for external
validation of the nomo model (Supplementary Material S3).
The calibration curve analysis results and ROC analysis results
show that the nomogram model based on Age, Stage and
DICER1 has high accuracy in predicting the 5-year (AUC =
0.764) and 10-year (AUC = 0.624) survival rates of breast
cancer patients, which further indicates the generalization of
the nomogram model.

3.4 Differences in drug sensitivity and
immune landscape across groups

To further investigate the role of the DICER1 gene in breast
cancer, we conducted drug sensitivity analysis and molecular

docking analysis to explore the potential of DICER1 in predicting
drug response and serving as a potential therapeutic target. The
results of the drug sensitivity analysis showed significant differences
in the IC50 values of several anticancer drugs between high and low
DICER1 expression groups. We selected the top four drugs
Doramapimod2, JQ1, LY2109761, and Ro-3306 for presentation.
The IC50 values of these drugs were significantly associated with low
DICER1 expression (Figures 6A–D). Molecular docking analysis
further revealed the binding affinities between DICER1 and
Doramapimod2 (−9.8 kcal/mol), JQ1 (−7.9 kcal/mol), LY2109761
(−8.5 kcal/mol), and Ro-3306 (−8.1 kcal/mol), indicating strong
binding activities of these compounds with DICER1. These findings
suggest that DICER1 may serve as a potential drug target in breast
cancer (Figures 6E–H).

Comprehensive analysis of the tumormicroenvironment (TME)
revealed distinct immune signatures between high-risk and low-risk
groups. Specifically, high-risk patients exhibited higher infiltration
levels of T cells, B cells, and dendritic cells, along with significantly
elevated levels of Tregs and MDSCs, suggesting a more active yet
immunosuppressive immune microenvironment. Additionally, the
high-risk group had higher immune exclusion scores, characterized
by increased CAFs and TGF-β family members, lower T cell-
inflamed gene expression profiles, and higher immune
checkpoint expression levels, indicating potential resistance to
immunotherapy (Figures 7A–D). We also found significant
correlations between DICER1 gene expression and the infiltration
of various immune cells and immune function scores (Figures 7E,F),
highlighting its potential regulatory role in the tumor
microenvironment. The results of the Spearman analysis indicate
that DICER1 is significantly correlated with various immune cells or
immune functions, including Type II IFN Response, activated
dendritic cells (aDCs), dendritic cells (DCs), and inflammation-
promoting responses (Figure 7G). Finally, differential
immunotherapy response outcomes based on immune checkpoint

FIGURE 6
Drug sensitivity analysis andmolecular docking analysis based on DICER1 expression levels. (A–D) Boxplots of IC50 values for Doramapimod2, JQ1,
LY2109761, and Ro-3306 in high and low DICER1 expression groups. The IC50 values of each drug under different expression levels are shown, reflecting
the impact of DICER1 expression levels on drug sensitivity. (E–H) Molecular docking results of DICER1 with Doramapimod2, JQ1, LY2109761, and Ro-
3306. The binding affinity and bindingmodes of DICER1 with each compound are presented, revealing potential molecular interactionmechanisms.
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FIGURE 7
Immune infiltration landscape between high and low expression groups. (A–D) Differential analysis of immune cell types, immune suppression
features, immune exclusion features, and immune therapy biomarkers in the TME between high and low risk groups using the IOBR package. (E,F)
Differences in immune cell infiltration abundance and immune function scores between high and low expression groups. (G) Lollipop plot of the
correlation between DICER1 expression and immune cell infiltration abundance. “Correlation” indicates the correlation coefficient, and p-values
indicate statistical significance; the closer the correlation coefficient is to one or -1, the stronger the correlation. (H–K) Differential immune therapy
responses in high and low risk populations. (H) ips_ctla4_neg_pd1_neg group; (I) ips_ctla4_neg_pd1_pos group; (J) ips_ctla4_pos_pd1_neg group; (K)
ips_ctla4_pos_pd1_pos group. *P < 0.05, **P < 0.01, ***P < 0.001.
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FIGURE 8
Cell annotation of single-cell sequencing data and expression landscape of DICER1 in different cell types. (A) Distribution of multiple quality control
metrics after cell quality control. The x-axis represents cluster identity, and the y-axis shows the number of detected RNAmolecules (nFeature_RNA) and
counts (nCount_RNA) in each cell. The percentage of mitochondrial genes (percent.mt) is also annotated. (B) Heatmap showing the expression of key
marker genes associated with each cell type. The color scale indicates normalized gene expression levels, with higher values indicating stronger
expression. Cell types are listed on the y-axis, and corresponding marker genes are shown on the x-axis. (C) Cell clustering and identification based on
scRNA-seq data. Each dot represents a single cell, which is grouped into clusters according to its gene expression profile. Clusters are annotated as cell
types (e.g., T cells, B cells, fibroblasts, endothelial cells, epithelial cells, macrophages, tissue stem cells). (D,E) Interaction networks between different cell
types. Arrows indicate the direction of signaling from 1 cell type to another. The thickness of arrows represents the number/strength of interactions, and

(Continued )
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expression status further underscore the necessity for personalized
treatment strategies (Figures 7H–K).

3.5 Expression landscape of DICER1 in
different cell types

scRNA-seq data were subjected to quality control,
normalization, dimensionality reduction, and clustering analyses.
After quality control, the distribution of multiple metrics across
different cell clusters was shown, including the number of detected
RNA molecules, the number of features, and the percentage of
mitochondrial genes in each cell (Figure 8A). Figure 8B displays a
heatmap of key marker gene expression associated with each cell
type predicted by the singleR algorithm, highlighting the molecular
characteristics of T cells, B cells, fibroblasts, endothelial cells,
epithelial cells, macrophages, and tissue stem cells. After
annotation, 7 cell types were identified, including T cells, B cells,
fibroblasts, endothelial cells, epithelial cells, macrophages, and tissue
stem cells (Figure 8C).

Cell-cell communication analysis was performed to elucidate the
interaction network among different cell types (Figures 8D,E).
Figure 8F,G illustrate the interaction pathways of immune cells
(T cells, B cells, and macrophages) as receptors and ligands with
other cell populations. Notably, strong and significant
communication events were observed in the SPP1-CD44
signaling pathway between macrophages and T cells, and the
CXCL12-CXCR4 signaling pathway between fibroblasts and
B cells. In this study, all cells were further divided into high and
low DICER1 expression groups based on DICER1 expression levels,
and GSEA analysis was performed between the two groups
(Figure 8H). The enriched pathways included those related to cell
signaling, immune response, and metabolic processes.

4 Discussion

This study provides a comprehensive investigation into the
expression patterns, molecular mechanisms, and clinical
significance of DICER1 in BRCA. Through integrative multi-
omics analysis, cellular experiments, and clinical data validation,
we have elucidated the potential mechanisms of DICER1 in breast
cancer and offered novel insights for the prognostic evaluation and
personalized treatment of this disease.

We observed a negative correlation between DICER1 expression
levels and TMB, yet the exact mechanisms underlying this
relationship warrant further in-depth exploration. Although there
is currently no direct evidence of DICER1 mutations in breast
cancer, studies in other tumor types suggest that
DICER1 mutations may contribute to tumor development

through haploinsufficiency, which could potentially influence
TMB. For instance, in lung cancer research, it has been
demonstrated that Dicer1 functions as a haploinsufficient tumor
suppressor, with partial loss of Dicer1 promoting tumor
development (Kumar et al., 2009). Similarly, in the context of
DICER1 syndrome, germline DICER1 mutations have been
found to predispose individuals to a range of tumors, with the
tumors retaining one functional DICER1 allele, indicating a
haploinsufficiency mechanism (Slade et al., 2011). These findings
imply that DICER1 mutations, by disrupting miRNA biogenesis,
may lead to dysregulation of gene expression and potentially
increase the accumulation of other genetic alterations, thereby
affecting TMB. However, this hypothesis requires further
investigation, particularly in the context of breast cancer, to
elucidate the precise relationship between DICER1 and TMB.
Additionally, DICER1 is involved in miRNA processing, which
can affect DNA repair pathways and genomic stability. For
example, DICER1 has been shown to regulate the expression of
miRNAs that target DNA repair genes, potentially influencing TMB.
In embryonal tumor with multilayered rosettes, a rare but aggressive
brain tumor, DICER1 mutations are frequently observed (Lambo
et al., 2020). These mutations can lead to biased loading of mature
miRNAs, affecting downstream pathways and potentially disrupting
the expression of DNA repair genes. In rheumatoid arthritis,
DICER1 expression is reduced in fibroblast-like synoviocytes,
which is associated with increased inflammation and cellular
senescence. This reduction in DICER1 may lead to the
accumulation of cytotoxic non-coding RNAs, such as Alu RNAs,
which can activate the NLRP3 inflammasome and contribute to
chronic inflammation (De Cauwer et al., 2018).

This paper identified gene modules highly correlated with breast
cancer phenotypes and revealed their biological functions via GSEA.
The brown module showed a strong positive correlation with breast
cancer phenotypes, with its genes significantly enriched in pathways
related to immune regulation and RNA processing. This indicates
that DICER1 may influence breast cancer progression by
modulating the immune microenvironment and RNA
metabolism. Additionally, we explored the potential links
between breast cancer and three pathways: cell cycle, Alzheimer’s
disease, and mitochondrial translation initiation. Dysregulation of
the cell cycle is commonly associated with breast cancer,
characterized by abnormal accumulation of tumor cells (Kashyap
et al., 2021). Although Alzheimer’s disease and BRCA are distinct
diseases, recent studies have suggested a possible association
between them. APOE, a significant risk gene for AD, has been
found by Van et al. to potentially prevent chemotherapy-related
cognitive decline in elderly breast cancer survivors with the APOE
ε2 polymorphism (Van Dyk et al., 2021). In recent years,
mitochondrial translation initiation has been identified as closely
related to the occurrence, development, and therapeutic response of

FIGURE 8 (Continued)

colors indicate the significance of interactions. (F,G) Bubble plots of interaction pathways between immune cells (T cells, B cells, and macrophages)
as receptors or ligands with other cell populations. (H) GSEA analysis performed on high and low expression cell populations. Bar plots show the
normalized enrichment scores (NES) of various KEGG pathways, including those related to cell signaling, immune response, and metabolic processes.
The color of the bars indicates the significance of pathway enrichment (p-values), with darker colors indicating more significant enrichment.
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breast cancer, and it may become an important target for breast
cancer treatment (Fuentes-Retamal et al., 2020). Univariate and
multivariate Cox regression analyses indicated that
DICER1 expression is an independent prognostic factor for
breast cancer patient survival. The nomogram model constructed
based on DICER1 and clinical features demonstrated moderate to
good discrimination in predicting patient survival probabilities,
further confirming the potential of DICER1 as a
prognostic biomarker.

This study also revealed the impact of DICER1 expression levels
on drug sensitivity through drug sensitivity analysis and molecular
docking experiments. The high-DICER1 expression group exhibited
higher sensitivity to drugs such as AZD7762 and Bortezomib
(Figures 6A–D), which may be related to its potential roles in
cell cycle regulation and protein degradation. Moreover, immune
microenvironment analysis showed that the low-DICER1
expression group had higher immune suppression features and
immune exclusion scores (Figures 7A–C), suggesting potential
resistance to immunotherapy. These results highlight the complex
role of DICER1 in tumor immunity and provide new targets for
breast cancer immunotherapy. For example, AZD7762 is a potent
ATP-competitive checkpoint kinase inhibitor with potential
therapeutic effects in breast cancer, especially triple-negative
breast cancer (Zhu et al., 2021). Bortezomib (BTZ) can kill
tumor cells via the NF-κB signaling pathway, activate caspase-3
to inhibit cancer-associated fibroblast (CAF) activity, and enhance
CD8+ T cell function by modulating the expression of immune
stimulatory factors, thereby treating BRCA (Liu et al., 2023). It has
been found that SB216763 can severely inhibit phospholipid
synthesis in BRCA cancer cells (Phyu et al., 2019). WZ4003 is a
small-molecule inhibitor with high specificity for epidermal growth
factor receptor (EGFR). Recent studies have shown that
WZ4003 may play a role in the pathogenesis of breast cancer by
inhibiting the EGFR signaling pathway (Li et al., 2022).

This paper revealed the heterogeneous expression of DICER1 in
breast cancer cell populations and its potential role in intercellular
communication. Cell communication analysis showed significant
communication events in the SPP1-CD44 signaling pathway
between macrophages and T cells, and the CXCL12-CXCR4
signaling pathway between fibroblasts and B cells (Figures 8F,G).
These results suggest that DICER1 may influence the tumor
microenvironment by modulating intercellular communication.
Additionally, GSEA analysis of high- and low-expression groups
identified several significant pathways. For example, Guizhi Fuling
Decoction exerts anti-proliferative, pro-apoptotic, and anti-
angiogenic effects by modulating the PI3K and MAPK signaling
pathways, thereby inhibiting breast cancer (Dai et al., 2020). In
triple-negative breast cancer (TNBC), overexpression of
MAL2 promotes endocytosis, leading to resistance to novel
therapeutic agents. Studies have shown that TNBC patients with
high MAL2 expression have a poorer prognosis, with a significantly
lower 5-year survival rate (71.33% vs 89.59%, p = 0.0224),
independent of PD-1 expression levels and clinical pathological
features of the tumor (Borowczak et al., 2024).

Despite revealing the important role of DICER1 in breast cancer,
this study has some limitations. First, the sample size is limited, and
further large-scale clinical studies are needed to validate the
prognostic value and therapeutic potential of DICER1. Second,

the specific molecular mechanisms of DICER1 still need to be
elucidated through in vitro and in vivo experiments. Third,
experimental validation of immune-related phenotypes, such as
immune cell infiltration assays, is missing. Future studies should
include these assays to better understand the role of DICER1 in the
tumor microenvironment. Additionally, future studies can explore
the combined application of DICER1 with other molecular
biomarkers to improve the diagnosis and treatment of breast
cancer. In summary, through integrative multi-omics analysis
and clinical validation, this study elucidated the expression
patterns, molecular mechanisms, and clinical significance of
DICER1 in breast cancer. DICER1 not only has the potential to
become an important biomarker for prognostic evaluation of breast
cancer but may also provide new insights for immunotherapy and
targeted therapy. However, its clinical application value still needs
further validation, and future research should focus on its role in the
tumor microenvironment and potential therapeutic targets. Future
research should also aim to establish the causal relationship between
DICER1 and TMB through additional molecular biology
experiments, and validate the tumor-suppressive role of
DICER1 and its correlation with TMB in animal models and
clinical samples.

5 Conclusion

This study comprehensively investigated the expression profiles,
molecular mechanisms, and clinical significance of DICER1 in
breast cancer by integrating multi-omics analysis, cellular
experiments, and clinical data validation. DICER1 was found to
be downregulated in breast cancer tissues and closely correlated with
tumor stage, tumor mutational burden (TMB) levels, and immune
microenvironment features. By constructing a nomogrammodel, we
further confirmed the potential of DICER1 as an independent
prognostic biomarker. Moreover, the expression level of
DICER1 affects the sensitivity to multiple drugs and may
influence the tumor microenvironment through the modulation
of intercellular communication. Future studies should further
explore the mechanisms of DICER1 in breast cancer and validate
its potential application value in clinical therapy.
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