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Background: Serrated colorectal cancer (SCC) is a rare and aggressive subtype of
colorectal cancer. Identifying SCC is crucial due to its high mortality rate and
limited therapeutic options. Traditional methods to identify BRAF hotspot
mutations and MLH1 methylation are insufficient in clinical practice. This study
aims to explore the WNT pathway alterations in the CRC and to develop a WNT-
derived subtyping model to identify SCC patients by using multi-OMICs data.

Methods: We included multi-omics data of 1751 colorectal cancer patients from
the TCGA and GEO databases, and single-cell transcriptome data of 33 normal
and cancer tissues from the SMC study cohort. The comprehensive study process
incorporated unsupervised clustering, enrichment analysis, and
statistical analysis.

Results: In this study, we investigated WNT pathway alterations in SCC by
integrating both bulk and single-cell data into the multi-OMICs framework.
The SCC subtype demonstrated significant WNT pathway heterogeneity and a
more stable genomic structure. These findings support the development of a
WNT-derived subtyping model that accurately identifies SCC patients across
different CRC cohorts. In addition, the SCC subtype also presented a distinct
immune microenvironment characterized by CD8+ T cell exhaustion. Finally, we
utilized drug perturbation data to explore the potential drug targets for this severe
cancer subtype.

Conclusion: We developed a WNT-derived subtyping method to identify SCC
from canonical CRC, which enhances the molecular understanding of this severe
cancer subtype and provides potential therapeutic strategies. Our findings
suggest that SCC patients may benefit from the HSP90 inhibitor NVP-AUY922,
highlighting its potential as a targeted therapy.
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1 Introduction

Colorectal cancer (CRC) is the third most common and the
second most deadly type of cancer worldwide (Sung et al., 2021;
Tong et al., 2023). CRC is a heterogeneous oncological disease that
develops through two major molecular pathways (Fessler and
Medema, 2016; Wang et al., 2021). The conventional
adenocarcinoma (CA) pathway is initiated by biallelic
inactivation of the APC, and it progresses to cancer through
mutations in KRAS and TP53. In contrast, mutations in the APC
are uncommon in the serrated colorectal cancer (SCC) pathway,
which is initiated by activating mutations in BRAF or KRAS and
usually progresses to malignancy through a plethora of epigenetic
alterations, microsatellite instability and MLH1 hypermethylation
(Fennell et al., 2020; Borowsky et al., 2018; Rustgi, 2013). Due to the
molecular homogeneity of CIMP-high, BRAF-mutant CRCs and
serrated colorectal cancer (JE et al., 2015), many studies have used
CIMP status and BRAF mutation as molecular markers to identify
serrated colorectal cancer (Mesteri et al., 2014; Kriegl et al., 2011;
Bleijenberg et al., 2022). However, this method has limitations, such
as patients with serrated lesions of the CMS4 phenotype showing
BRAF wild-type (Fessler and Medema, 2016; Mouillet-Richard
et al., 2024).

WNT pathway gene mutations and expression significantly
differ between the two oncogenic pathways. In serrated colorectal
cancer, WNT pathway gene mutations are common, but most of the
APC genes are wild-type and have low activation of the WNT
pathway. In contrast, the situation is reversed in conventional
adenocarcinomas (Fennell et al., 2020; Borowsky et al., 2018;
Murakami et al., 2015).

In this study, using a multi-omics clustering method, we
demonstrated that the genomic and transcriptomic components
of WNT signaling pathway play crucial roles in driving molecular
heterogeneity in CRC. Among these, a uniqueWNT subtype showed
characteristics consistent with SCC, including a high prevalence of
BRAF mutations, MLH1 methylation, and microsatellite instability.
Furthermore, we found a new set of SCC signatures and validated
their predictive accuracy and applicability. Additionally, we
comprehensively characterized the clinical, molecular, biological,
and immune microenvironment characteristics of serrated
colorectal cancer. Moreover, we propose a computational model
to predict that patients may benefit from HSP inhibitor NVP-
AUY922. Our research aims to enhance biological understanding
and guide clinical management.

2 Methods

2.1 Data source

Multi-OMICs data, including mRNA expression (Illumina
HiSeq RNASeqV2), DNA methylation (HM27 and
HM450 merge), somatic mutation (MAF files) and somatic copy
number variation (CNV GISTIC 2.0), and clinical information of
patients with CRCwere downloaded from TCGA (PanCancer Atlas)
in the cbioprotol database (https://www.cbioportal.org/).

The GEO database (http://www.ncbi.nlm.nih.gov/geo/) was
searched for available colorectal cancer datasets for further

validation. This study included four independent datasets from
the GPL570 platform: GSE38832 (n = 122), GSE39582 (n = 566),
GSE17536 (n = 177) and GSE14333 (n = 290). The GSE4045 dataset
(serrated colorectal cancer: 8 cases, conventional adenocarcinomas:
29 cases, GPL96 platform), GSE116305 dataset (serrated colorectal
cancer: 15 cases, GPL4133 platform), and GSE36758 dataset
(serrated colorectal cancer: 11 cases, conventional
adenocarcinomas: 15 cases, GPL4133 platform) were also
included in the study.

Single-cell transcriptome data (10× genomic sequencing, SMC)
were acquired at Synapse (https://www.synapse.org/#!Synapse:
syn26844071/) (Joanito et al., 2022).

To compile the annotation table of the WNT pathway genes, we
gathered genes from reputable scientific sources, including KEGG
(Entry ID: hsa04310) and review articles. After eliminating duplicate
genes, a total of 154 WNT genes were included for subsequent
analysis (Supplementary Table S1).

Furthermore, 46 colorectal cancer cell lines with gene expression
data and 264 drug half-maximal inhibitory concentration (IC50)
data were obtained from the GDSC database (https://www.
cancerrxgene.org/) for drug sensitivity analysis.

2.2 Data preprocessing

TCGA data preprocessing. The expression level of mRNAs was
calculated using the log2 (normalised count +1). Select gene
promoter region and enhancer region data as DNA methylation
levels. All negative values in the DNA methylation and the mRNA
expression were considered to be missing values (NA), and using
DMwR2 package in the k-nearest neighbor method to fill missing
values. For somatic mutation data, after removing synonymous
mutations, a binary mutation profile was employed to indicate
the presence or absence of a gene mutation. Somatic copy
number variant data processed and coded by GISTIC 2.0 were
selected (Mermel et al., 2011).

GEO data preprocessing. The gene expression data were
normalized independently for each dataset using the affy
package. Subsequently, the individual datasets were consolidated
into a unified GEO dataset, and batch effects were eliminated
through the utilisation of the removeBatchEffect function within
the limma package.

Single-cell transcriptome data preprocessing. Low-quality
cells were removed if they had less than 200 expressed genes
or over 25% unique molecular identifiers (UMIs) from the
mitochondrial genome. We removed genes detected in less
than 3 cells. Afterwards, all bipartite groups in each sample
were removed by using the DoubletFinder package. Batch
effects between samples were eliminated using the
RunHarmony function, as accessible via the Harmony
package. The cell components were annotated using a
combination of manual and automated annotation (scHCL
package). Single-cell transcriptomic data from 54,593 cells
were included in this study. The clustering of diverse cell
types was performed using the Seurat package. Data
normalization was conducted using the NormalizeData
function, with the default scaling parameter of 10,000 and log
normalization method. FindVariableGenes function was
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employed to identify 2,000 genes exhibiting the greatest variance.
The data were subsequently standardised using the ScaleData
function. Following the principal component analysis of the
highly variable genes, the top 30 principal components and a
resolution of 0.2 were selected for the subsequent cluster analysis
and visual dimensionality reduction by UMAP for dimension
reduction. To identify the marker genes of each cluster, the
FindAllMarkers and FindMarkers function was employed. The
gene expression levels were presented using the FeaturePlot or
VlnPlot functions. The clusters were then labelled using known
classical marker genes (epithelial cells: KRT18, KRT8 and
EPCAM; endothelial cells: PECAM1; B cells: MZB1, JCHAIN
and CD79A; T cells: CD3D; myeloid cells: LYZ, FCGR3A and
CD68; fibroblasts: DCN, COL1A1, COL1A2 and C1R; mast cells:
CPA3) (Zhou et al., 2023; Ma et al., 2023; Pelka et al., 2021;
Khaliq et al., 2022). Finally, finer subclusters were further
identified by repeating the above operations. The
AddModuleScore function was utilized to calculate the SCC
gene set score and WNT pathway activity in epithelial cells.

After data preprocessing, 518 CRC patients with matched
data of mRNA expression, somatic mutation, CNV and DNA
methylation data were selected for subsequent analyses. A total of
1233 CRC patients from GEO datasets were included in this
study. scRNA-seq profiles from 54,593 cells were included in
this study.

2.3 Cluster analysis of WNT gene mRNA
expression and somatic mutation using
TCGA dataset

Based on the WNT gene mRNA expression and somatic
mutation, four widely applied clustering methods (consensus
clustering, NMF clustering, K-means clustering with PCA or
tSNE dimensionality reduction) were conducted, respectively.
The optimal number of clusters was determined through the use
of consensus map, average silhouette width and cophenetic
scores based on NMF clustering analysis. NMF clustering
with 50 iterations of Lee’s method was conducted using the
NMF package. The K-means method was employed for
consensus clustering in the ConsensusClusterPlus package,
with 1,000 replications to ensure the stability and
consistency of the clustering results. Since the somatic
mutation is binary, we set the binary distance when
clustering on the somatic mutation.

Subsequently, integrative clustering analysis was employed to
identify CRC subtypes using the iClusterBayes, a Bayesian
integrative clustering method designed for the analysis of
multi-omics data, implemented in the iClusterPlus package.
This involved the analysis of WNT gene mRNA expression
and somatic mutation. To ensure consistent and easily
reproducible results, MCMC sampling parameters were set
(n.burnin = 18,000, n. draw = 12,000). The optimal number of
clusters was determined through the use of Bayesian Information
Criterion (BIC) and deviation ratio plots between 2 ~ 9 clusters.
The optimal k value was where the curve of BIC and deviation
ratio levels off, with the optimal number of clusters determined
as k+1.

2.4 Identification of signature genes for
CRC subtypes

The limma package was employed to perform differential
expression analyses between tumour samples and normal
samples, as well as each subtype and other subtypes. This was
done to identify the signature genes of each subtype in the
TCGA dataset. The following criteria were employed to identify
the signature genes: (i) A comparison was conducted between each
subtype and other tumour samples (all P < 0.05 and log2|fold
change| > 1). Due to the numerous upregulated genes in W3 and
W4, numerous downregulated genes in W2, we adjusted the criteria
for the three subtypes (P < 0.05, W2: log2|fold change| > 0.3; W3:
log2|fold change| > 1.4; W4: log2|fold change| > 1.1). (ii) A
comparison was conducted between tumour samples and normal
samples (all P < 0.05 and log2|fold change| > 2). (iii) The signature
genes were unique in the CRC subtypes.

The pROC package was also used for calculating the multi-class
area under curve (AUC) to ensure the geneset’s plausibility.

2.5 Enrichment analysis

518 TCGA tumor samples were identified by CMS classification
(CMS1 = 89, CMS2 = 154, CMS3 = 87, CMS4 = 181, NA = 81) using
the CMScaller package (Eide et al., 2017). The WNT signaling
pathway gene set (Supplementary Table S1) was enriched by the
GSVA package, and the result of the enrichment was used as the
activity of theWNT pathway. We used the same method to calculate
the GSVA scores of the existing serrated carcinoma-associated gene
sets (Joanito et al., 2022; Laiho et al., 2007; Chen et al., 2021) and the
SCC signatures in this study (Supplementary Table S2). Biological
process enrichment analysis was performed by the clusterProfiler
package, and the annotated gene sets were obtained from the
MSigDB database (https://www.gsea-msigdb.org/gsea/msigdb/).

2.6 Molecular subtyping validation based on
GEO dataset

The nearest template prediction (NTP, Gene Pattern) algorithm
(Hoshida, 2010) was employed to classify CRC patients in the GEO
datasets via the subtype signature genes from the TCGA dataset.
Furthermore, subclass mapping analysis (SubMap, Gene Pattern)
(Hoshida et al., 2007), an algorithm for assessing the similarity of
molecular subtypes between independent datasets based on gene
expression profiles, was employed to ascertain whether the subtypes
identified in the TCGA and GEO datasets presented a significant
degree of similarity.

2.7 Copy number variation estimation

The InferCNV package was employed to ascertain the copy
number variations (CNVs) in epithelial cells, with reference to
transcriptome profiles (inferCNV of the Trinity CTAT Project,
https://github.com/broadinstitute/inferCNV). The Epithelial cells
in normal samples were used as reference cells for CNV
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estimation. The copy number variation status of each epithelial cell
was mapped between −1 and one for normalization and then the
sum of squares was calculated as the copy number variation value to
characterize the genomic stability of the epithelial cells.

2.8 Immune infiltration analysis

To understand the immune infiltration of colorectal cancer
subtypes, we performed immune infiltration analysis using RNA-
Seq expression matrix to predict the relative abundance of
immune cell infiltration by using the xCell package (Aran
et al., 2017).

2.9 Estimation of drug response in
clinical samples

Predicting responsiveness to immune checkpoint inhibitors
(ICBs) in CRC patients using TIDE (Jiang et al., 2018) (http://
tide.dfci.harvard.edu/). Using the oncoPredict package, drug
(chemotherapy or targeted drug) IC50, were predicted for CRC
patients (Iorio et al., 2016; Maeser et al., 2021).

2.10 Connectivity map analysis

Connectivity map (CMap) analysis was conducted to ascertain
the potential therapeutic efficacy of drug candidates in SCC. The
initial step was to conduct a differential expression analysis on
tumour and normal samples. Subsequently, the 300 genes exhibiting
the most pronounced fold change (150 upregulated genes and
150 downregulated genes, P < 0.05) were submitted to the CMap
website (https://clue.io/query) (Lamb et al., 2006; Subramanian et al.
, 2017).

2.11 Statistical analysis

All statistical analyses were performed using the R software
(version 4.2.1). The associations between the CRC subtypes or
SCC signatures scores high and low groups (separated by
median) and survival were assessed by Kaplan–Meier survival
analyses. The categorical data were analyzed by chi-square test or
Fisher exact test. Differences in continuous data between
multiple groups were determined by Kruskal–Wallis rank sum
test. A two-tailed P value < 0.05 was regarded as statistical
significance (ns: P = not significant; *: P < 0.05; **: P < 0.01;
***: P < 0.001; **** *: P < 0.0001).

3 Results

3.1 WNT pathway genes characterize CRC
patients into five unique subtypes

To answer the question of whether the CRC heterogeneity is
shaped from WNT pathway alterations, we conducted a multi-

OMICs analysis of CRC patients (n = 518) from TCGA
database, including 154 WNT pathway genes (63 upstream
genes and 91 downstream genes, Figure 1A; Supplementary
Table S1). On this dataset, cluster rank for the WNT-pathway
gene expression (WNT-mRNA) and the WNT-pathway gene
mutations (WNT-mutation) were first computed to guide the
patient clustering (WNT-mRNA cluster rank: 3; WNT-
mutation cluster rank: 2, Supplementary Figures S1,S2). The
results of independently clustering by WNT-mRNA and WNT-
mutation were significantly overlapped with each other (all P <
0.001, Supplementary Figure S3A; Supplementary Table S3).
This finding suggests a strong association between the genomic
and transcriptomic dysregulation of the WNT signaling
pathway components in defining molecular subtypes of CRC
(NMF clustering, P < 0.001; Consensus clustering, P = 0.1789;
K-means clustering with PCA or tSNE dimensionality
reduction, p < 0.01, Supplementary Figure S3B;
Supplementary Table S3).

Subsequently, we conducted the cross-clustering analysis by
both WNT-mRNA and WNT-mutation data to identify the
molecular clusters of CRC. The BIC and deviance ratio plots
showed that five clusters (W1, n = 84; W2, n = 114; W3, n = 104;
W4, n = 148; W5, n = 68) stood for the optimal solution
(Figure 1B; Supplementary Figures S4A,S5A). More biological
values were added by the chi-square test that revealed the
consistency between the five integrative clusters and the stand-
alone clustering results (all P < 0.001, Supplementary Figure S5C;
Supplementary Table S3), further demonstrating the
contribution of WNT signaling pathway to the molecular
heterogeneities of CRC patients. Moreover, we found that
mutation in WNT downstream genes and differential
expression of WNT upstream genes were the major factors
driving the CRC clustering (all posterior probabilities >0.9),
indicating the WNT pathway activities are regulated mainly by
upstream transcriptome regulations and downstream gene
mutations (Figure 1B; Supplementary Figures S4B,S5A).
Notably, the APC gene is the key suppressor gene in the WNT
pathway, and its normal activation inhibits the pathway
activation (6). We detected the highest mutation frequency
(73%) in the APC gene among the five cancer clusters, but the
APC wild-type was significantly enriched in W3 cluster (P <
0.001). Meanwhile, mutations in WNT pathway genes are
prevalent in W3 cluster, which often occurs during the
transformation of serrated colorectal polyps to malignant
tumors (Fennell et al., 2020; Borowsky et al., 2018).

In addition, we compared the pathological characteristics and
survival prognostic status of five CRC clusters. We found that the
W3 cluster was significantly associated with tumor type and colon
site (all P < 0.001, Figure 1C). Mucinous adenocarcinoma is mainly
concentrated in theW3 cluster, which is more likely to be detected in
the right colon. Kaplan-Meier survival analysis revealed that among
the five subtypes, W3 cluster had the worst prognosis in terms of OS
and DSS in the first 50 months, whereas better prognosis in terms of
DFS and PFS were observed (Supplementary Figure S5B). These
results demonstrated that the heterogeneities in the WNT signaling
genes have reshaped a W3 subtype with distinct molecular
alterations, setting it apart from other subtypes in many
clinical aspects.
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3.2 Identify the serrated colorectal cancer
subtype by the WNT cluster 3

The molecular contribution of CIMP-H and BRAF-mutant to
APC mutant-free cancer initiation of serrated type CRC has been
widely discussed (JE et al., 2015). Strikingly, we found that the BRAF
mutant was significantly enriched in APC-wild-type W3,
accompanied by significant enrichment of CIMP-H (all P <
0.001, Figure 2A). In addition, mutations of mismatch repair
proteins (MSH6, MLH1, MSH2, and PMS2) and methylation of
CDKN2A were coordinated in the same cluster (Figure 2A). These
findings revealed the robust characteristics of serrated lesions found
in W3 cluster. Notably, the W3 cluster exhibited the BRAF-mutated
CMS1 phenotype and the KRAS-mutated CMS4 phenotype, but the
CMS2 phenotype was absent (Figure 2A). Previous study has shown
that BRAF-mutated CMS1 phenotype and the KRAS-mutated
CMS4 phenotype are the predominant phenotypes in SCC,
whereas the CMS2 phenotype is almost exclusively present in
CA, exhibiting activation of the WNT pathway (Fessler and
Medema, 2016). These findings suggest that our approach is
corroborated by CMS studies and compensates for the earlier
shortcomings of identifying serrated lesions based on
independent molecular features (CIMP-H or BRAF mutation). In
addition, we calculated several SCC signature scores by using the
SCC differential expressed genes from published studies (Joanito

et al., 2022; Laiho et al., 2007; Chen et al., 2021), which all were
significantly higher in W3 compared with the other clusters (all P <
0.001, Supplementary Figure S6; Supplementary Table S2). All the
results proved the successful classification of the SCC subtype from
CRC using our WNT cluster 3 (W3) model.

To investigate alterations in the WNT pathway in SCC
subtypes, we evaluated WNT pathway activity, focusing on
alterations in key WNT pathway genes. We found that the
WNT pathway was activated in the SCC subtype relative to
normal tissues, as evidenced by the upregulation of WNT
ligands (WNT2 and WNT3) and the transcription factor
LEF1, and the downregulation of repressor genes (SFRP1 and
SFRP5). However, compared with other subtypes, the WNT
pathway was relatively repressed in the SCC subtype, which
showed upregulation of repressor genes APC2 and
downregulation of transcription factor TCF7 (Figures 2B,C;
Supplementary Figure S7). The above results suggest that the
WNT pathway activities is higher in SCC than the normal tissue,
but lower than the other CRC samples. To characterize the
genomic alterations of SCC subtypes, a comparison of somatic
copy number variations was conducted among the five subtypes.
Overall, the number of chromosomal aberrations in the SCC
subtype was significantly lower than other subtypes at both the
arm and focal levels, suggesting that the genomic structure of the
SCC subtype is stable (Figure 2D).

FIGURE 1
Identification of CRC subtypes using WNT pathway gene expression profiles and mutation profiles. (A) Overview of methods for developing WNT-
derived subtyping and identifying SCC signatures. (B) Heatmaps show gene expression and mutation patterns of the CRC subtypes identified by
integrative clustering analysis forWNT pathway. The distribution ofWNT pathway score, CMS phenotype, cancer stage, APC status, microsatellite stability
status, and CpG island methylation status in each subtype is shown (all features posterior probability >0.9). (C) Circle plot of clinical features of CRC
subtypes in the TCGA dataset (COAD: colon adenocarcinoma; READ: rectum adenocarcinoma; MAC: mucinous adenocarcinoma of the colon
and rectum).
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FIGURE 2
Identification and characterization of SCC subtypes. (A)Heatmap show the status of SCC keymolecular features in CRC subtypes (mutation of genes
in the upper panel; methylation of genes in the lower panel). (B)Volcano plot of differentially expressed genes of theWNTpathway in SCC subtypes versus
normal tissues. (C) Volcano plot of differentially expressed genes of the WNT pathway in SCC subtypes versus other subtypes. (D) The CNV burden of
gains and losses, at both arm and focal, in the five CRC subtypes.
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3.3 W3 signature identifies SCC cases from
independent CRC cohorts

According to the OMICs analysis of the five WNT clusters, we
inferred that W3 corresponds to the serrated colorectal cancer
(SCC) subtype, while the others correspond to the conventional
adenocarcinoma (CA). To investigate the unique biological
processes of the SCC subtype, a supervised analysis (see the
“Methods” and Figure 1A) highlighted 231 WNT signature
genes, distributed as follows: 52 genes for W1, 38 genes for W2,
51 genes for W3, 40 genes for W4 and 50 genes for W5
(Supplementary Figure S8; Figures 3A,B; Supplementary Table
S4). Functional enrichment analysis of the 51 SCC-specific genes
using KEGG and GO terms revealed their association with immune
activation, cellular interactions and cell differentiation (Figures
3C,D). These findings are consistent with the biological features
of serrated polyps that originate from colon-to-gastric metaplasia
(Chen et al., 2021).

To assess the ability of our SCC gene signatures to accurately
identify the SCC subtype in cancer patients, we tested it across

independent CRC cohorts that collected from GEO database. We
used three datasets for this purpose: GSE4045 (SCC: 8 cases, CA:
29 cases, GPL96 platform), GSE116305 (SCC: 15 cases,
GPL4133 platform), and GSE36758 (SCC: 11 cases, CA: 15 cases,
GPL4133 platform). We integrated GSE116305 and
GSE36758 together and named it as GPL4133 dataset. The
results show that by using our W3 SCC signature, the SCC cases
can be successfully distinguished from the conventional
adenocarcinoma (CA) cases in all the three testing cohorts. We
then compared the prediction accuracy of our W3 gene signatures
with those from two other studies Joanito et al. (2022) and Chen
et al. (2021), as detailed in Supplementary Table S2). Our
W3 signatures achieved AUC values of 0.924 in the TCGA
training set, and 0.884 and 0.823 in the GEO validation sets,
which were higher compared to the other SCC gene sets
(Supplementary Figure S9; Figure 3E). These results suggest that
our SCC gene signatures are effective at identifying SCC, providing a
more accurate assessment of the risk associated with this subtype.

To verify the robustness of the typing results, we further
employed NTP algorithm to predict the WNT subtypes of

FIGURE 3
SCC subtype signatures and validation of molecular typing. (A) Venn diagram shows the numbers of unique and overlapping differentially expressed
upregulated genes when comparing each subtype to other tumour samples as well as each subtype to adjacent normal samples. (B) Heatmap of SCC
signatures in normal tissues, CA, and SCC. (C) Bubble plot of GO enrichment for SCC signatures. (D) Bubble plot of KEGG enrichment for SCC signatures.
(E) ROC curves show the AUC values of the SCC signatures gene set and other serrated-related gene sets in GEO verification sets. (F) SubMap
analysis show similarity between 5 WNT subtypes in TCGA and GEO datasets.
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FIGURE 4
Epithelial cell subclusters in CRC. (A) UMAP plot show 4 clusters for 11,695 tumor epithelial cells. (B) Feature plots present the SCC signatures
AddModuleScore for each tumor epithelial cells. (C) Bar plots show the proportion of APC-mutant patients versus APC wild-type patients in the 4 tumor
epithelial clusters. (D) Box line plot show the differences in WNT pathway activity between CA, SCC and transit amplifying cells. (E) Box line plot show
differences in genomic structural stability between CA, SCC and transit amplifying cells. (F) The correlation between CNV value and SCC signatures
AddModuleScore. (G)Dotplot plots illustrate 14 differentially expressed SCC signatures in the 4 tumor epithelial clusters. (H) Kaplan–Meier survival curves
show survival differences between groups with high and lowGSVA scores (grouping bymedian scores) for the 14 differentially expressed SCC signatures.
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patients from the integrated CRC dataset comprising four
independent cohorts, including GSE38832, GSE39582,
GSE17536 and GSE14333. The strong correlation between the
GEO and TCGA dataset subtypes, as demonstrated by SubMap
analysis, validates the existence of the W3 and the other 4 WNT
subtypes across independent cohorts and underscores the
generalizability of our study (Figure 3F).

3.4 Identification of SCC single cells from
scRNA datasets

To explore single-cell transcriptional alterations in CRC,
we generated scRNA-seq profiles from 10 normal samples and
23 colorectal cancer samples (6 cases APC wild-type) using 10×
genome sequencing data (Supplementary Figure S10). In this
study, we identified eight major epithelial cell clusters in
colorectal cancer, after re-clustering of 14,454 epithelial cells
(Supplementary Figure S11A). To distinguish tumor epithelial
cells from normal epithelial cells, we examined the difference
in epithelial cell distribution between tumor and normal
samples, and found that cells of clusters 0, 1, and 4 were
almost exclusively present in the tumor tissues. Combined
with the feature plot of markers for each epithelial cell sub-
cluster, further confirmed that the cells in clusters 0, 1, and
4 were tumor epithelial cell clusters (Supplementary
Figures S11A–C).

To further investigate the heterogeneity of different tumor
epithelial cells, we re-clustered the tumor epithelial cells to
generate four subclusters (Figure 4A). Among the four
subclusters, the tumor epithelial cells from the APC wild-
type samples were mainly in the 0 cluster, which presented
high SCC signature scores (Figures 4B,C). Therefore, we
defined the 0 cluster as an SCC epithelial cell cluster, and
the remaining clusters as CA epithelial cell clusters. To
investigate the WNT pathway activity and genomic stability
in these two types of tumor epithelial cells, the WNT pathway
AddModuleScore and copy number alteration (CNA) score
were calculated. It was found that the WNT pathway
AddModuleScore and CNA score of both types of tumor
epithelial cells were significantly higher than normal
epithelial cells, and the WNT pathway AddModuleScore and
CNA score of CA epithelial cells were significantly higher than
SCC epithelial cells, indicating the existence of WNT pathway
activation in SCC, but the degree of activation was limited; At
the same time, SCC epithelial cells have malignant potential,
but the genomic structure is relatively more stable, which
corresponds with previous results (Figure 2D; Figures 4D,E;
Supplementary Figure S7,S12).

In addition, SCC signatures were negatively correlated with the
CNA value in CRC tumor epithelial cells, suggesting that SCC
signatures have value in predicting genomic structural stability
(Figure 4F). Specifically, we found that 14 out of 51 SCC
signatures were specifically overexpressed in SCC epithelial cells,
and the GSVA score of the 14 SCC single-cell signature gene set was
correlated with patient survival (Figures 4G,H). Higher scores
predict poorer survival, indicating that the 14 SCC single-cell
signature gene set has prognostic value.

3.5 Serrated colorectal cancer present T cell
exhaustion and immunosuppressive tumor
microenvironment

Next, clustering and UMAP visualization were performed on the
T-cell components (Figure 5A). Based on known markers, 7 major
T cell types were identified (Figure 5C). Compared to normal and
CA samples, we found a reduced proportion of CD4+ naive T cells
and an improved proportion of regulatory T cells (Tregs) in SCC
samples (Figure 5B). To confirm these findings, we performed
immune infiltration analysis on the TCGA and GEO datasets.
This analysis revealed that the SCC subtypes showed immuno-
rejective properties, including the relative predominance of
regulatory T cells (Tregs) and M2 macrophages, as well as the
activation of immunosuppressive genes (CCL2, CSF1R, CXCL12,
ENTPD1, and LGALS1) (Figures 5H,I; Supplementary Figure S13).
These results suggest that SCC has a broader immunosuppressive
tumour microenvironment.

Due to CD8+ T cells are recognized to play a core role in anti-
tumor immunity, our research focused on alterations in CD8+

T cells. We re-clustered CD8+ T cells, and found that although
the proportion of CD8+ T cells was similar in normal samples and
SCC samples, GO analysis showed that the function of CD8+ T cells
was altered in SCC (Figure 5D). Meanwhile, a large number of CD8+

naive T cells were converted to CD8+ cytotoxicity T cells and CD8+

exhausted T cells, suggesting that the cytotoxicity produced by CD8+

T cells to exert anti-tumor immunity was accompanied by exhaust
(Figures 5E–G). The above results imply that the SCC may be
insensitive to ICBs. We then employed TIDE algorithm to evaluate
the potential responsiveness of the SCC subtype to ICBs. The results
revealed that the SCC subtype had the second highest degree of
tumor immune dysfunction and exclusion score (TIDE score) after
theW4 subtype (Figure 5J). This suggests that the SCC subtype has a
high immune escape ability and a poor response to immune
checkpoint inhibition therapy.

3.6 HSP is the potential therapeutic target
for SCC

To identify candidate drugs with higher sensitivity for SCC
subtypes, we first calculated the Spearman correlation between the
IC50 values of 264 targeted drugs and SCC signature scores in the
TCGA dataset. From this analysis, we selected 48 candidate drugs
that had a correlation coefficient of less than −0.5 and a correlation
P-value of less than 0.05 (Figure 6A; Supplementary Tables S5,S6).
Among them, we found a significant negative correlation between
the IC50 value of the HSP inhibitor NVP-AUY922 and SCC
signatures scores, suggesting that inhibiting the HSP pathway
may be crucial for treating SCC patients (Figure 6B).

Although SCC subtypes showed a higher drug sensitivity to
NVP-AUY922, above analyses alone could not support the
conclusion that HSP inhibitor had therapeutic effects in SCC.
Therefore, we conducted multiple perspective analyses to further
evaluate the potential of HSP inhibitor for treating SCC. First,
Connectivity MAP (CMap) analysis indicated that NVP-AUY922
(HSP inhibitor) had the highest CMap score ranking (−98.59),
suggesting that the gene expression pattern of NVP-AUY922 was
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opposite to the SCC-specific expression pattern (Supplementary
Tables S7,S8). In other words, NVP-AUY922 can reverse the SCC-
specific gene expression pattern to the normal tissue level, indicating
its potential therapeutic effect on SCC. Second, differential
expression analysis revealed abnormally high expression of NVP-
AUY922 targets (HSP90AA1 and HSP90AB1) in SCC, suggesting
that inhibition of NVP-AUY922 targets could lead to significant
therapeutic effects. Third, we performed comprehensive literature
search using PubMed to find the experimental and clinical evidence
supporting the use of NVP-AUY922 for treating CRC, further
indicating its potential clinical application for SCC (Figure 6C;
Supplementary Table S8). Collectively, robust in vitro and in
silico evidence suggests that targeting the HSP pathway is key to
treating SCC. Specifically, NVP-AUY922, which acts on HSP
targets, emerges as the most promising drug for treating SCC
patients due to its ability to inhibit the HSP pathway effectively.

In order to obtain more biological support, we conducted
biological process enrichment in SCC patients and examined heat
shock protein (HSP) pathway targets. We found SCC patients were
strongly enriched in heat shock proteins, and SCC signature scores
were significantly positively correlated with HSP pathway targets
(HSP90AA1 and HSP90AB1, Figures 6D,E). These results revealed
the presence of abnormal heat shock proteins in SCC patients,

highlighting the potential of NVP-AUYH22 in treating SCC by
inhibiting the HSP pathway.

4 Discussion

SCC is a unique subtype of colorectal cancer, and robust
identification of SCC will play an essential role in accelerating
the application of precision oncology (Roerink et al., 2018).
Distinct from previous independent molecular feature-based
classifications (Mesteri et al., 2014; Kriegl et al., 2011; Bleijenberg
et al., 2022), molecular subtypes focusing on WNT pathway
alterations compensate for the shortcomings of previous methods
and promote our understanding of the WNT pathway mechanism
underlying CRC. Herein, this study revealed that WNT signaling
pathway components at the transcriptional and mutation levels play
a crucial role in driving molecular heterogeneity in CRC. Next, we
identified and characterized subtypes of SCC in the TCGA dataset,
summarized multi-omics SCC gene signatures, and validated them
in independent GEO datasets, clearly demonstrating the robustness
of identifying SCC subtype through WNT pathway alterations. The
clinical characteristics, genomic characteristics, tumour immune
microenvironment and potential chemotherapeutic agents of the

FIGURE 5
Characterization of the immunemicroenvironment in SCC. (A) UMAP plot show the association of T cell clusters with each cell type defined. (B) Bar
plot show the percentage of each type of T cells in normal tissue, CA and SCC. (C) Heatmap show illustrated canonical markers of each T cells. (D) GO
enriched bubble plots show the differences in the biological processes of CD8+ T cells in normal tissue and SCC. (E) UMAP plot show the association of
CD8+ T cell clusters with each cell type defined. (F) Bar plot show the percentage of each type of CD8+ T cells in normal tissue, CA and SCC. (G)
Heatmap showe illustrated canonical markers of naïve, exhaustion, cytotoxicity function in CD8+ T cell. Relative abundance of immune-related cells, and
immune-related gene expression maps for CRC subtypes in the TCGA (H) and GEO (I). (J) TIDE scores of CRC subtypes in TCGA (up) and GEO (down).
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SCC subtype were further explored, and the SCC subtypes showed
extreme heterogeneity.

The SCC subtype identified by the WNT pathway alteration was
significantly enriched in BRAF mutations, MLH1 methylation,
microsatellite instability, highly mutated mismatch repair protein
genes and APC wild-type, accompanied by low activity of the WNT
pathway and relatively high stability of the genome structure, which
are SCC features consistent with previous studies (Fennell et al.,
2020; Borowsky et al., 2018). Despite the low activation of the WNT
pathway in the SCC subtype, some aberrant activation still exists,
which results from differential downregulation expression of the
upstream suppressor genes (RNF43 and ZNRF3) in the WNT
pathway (Bond et al., 2016). In addition, we detected prevalent
mutations in genes downstream of the WNT pathway in the SCC
subtype, which is considered a hallmark of the transformation of
serrated polyps to malignant tumors (Fennell et al., 2020; Borowsky
et al., 2018). Our study emphasizes the critical role of WNT pathway
upstream gene expression and downstream gene mutations in SCC
progression.

The tumor immune microenvironment is closely related to the
occurrence, progression, and treatment of cancer (Li et al., 2021; Li
et al., 2024). Therefore, we analyzed the immune microenvironment

of patients with SCC at the bulk and single cell level, and found that
an exhaust of CD8+T cells and a more generalized
immunosuppressive tumour microenvironment in SCC despite
some immune activation. This finding was also corroborated in a
single-cell study, which demonstrated that although the
microenvironment of serrated carcinoma precursors is generally
immune-activated, some immunosuppressive cells (anti-
inflammatory macrophages, regulatory T cells, and fibroblasts,
among others) are also present in the early stages of tumors and
further accumulate (Zhou et al., 2023). Although
immunoinflammatory properties contribute to anti-tumor
immunotherapy, the extensive immunosuppressive tumour
microenvironment limits the efficacy of immunotherapy in SCC
patients (Rooney et al., 2015; McGranahan et al., 2016; Mariathasan
et al., 2018).

We found that SCC patients tended to receive help from NVP-
AUY922. NVP-AUY922, a heat shock protein 90 (HSP90) inhibitor,
enhances TRAIL induced apoptosis in colorectal cancer cells by
inhibiting the JAK2-STAT3 Mcl-1 signaling pathway, and can also
enhance the cytotoxic effects of various chemotherapy drugs in CRC
(Lee et al., 2015; Lee et al., 2017). Earlier studies have revealed that
the lack of sustained inhibition of HSP90 is key to anti-BRAF

FIGURE 6
Identify the most promising therapies agents for SCC patients based on multi-source evidence. (A) Scatter plot showing the Spearman correlation
between 264 drug IC50 and SCC signatures score (red dots represent drug candidate). (B) The spearman correlation between SCC signatures scores and
NVP-AUY922 IC50 value in TCGA patients. (C) Sankey plot displays CMap results for 21 out of 48 candidate drugs. (D) GSEA enrichment of heat shock
protein (HSP) in SCC patients. (E) The spearman correlation between SCC signatures scores and NVP-AUY922 targets (HSP90AA1 and HSP90AB1)
expression value in SCC patients.
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therapy insensitivity in BRAF-mutant tumours (Eroglu et al., 2024;
Paraiso et al., 2012). Consequently, SCC patients may be potential
candidates for evaluating the treatment efficacy of a combination of
BRAF and HSP90 inhibitors. While further studies and validation
experiments are needed, related drugs hold promise for developing
targeted therapies to treat SCC. In addition, multiple experiments
found that NVP-AUY922 played a critical role in various cancer
treatments. NVP-AUY922 inhibited the activity of non-small cell
lung cancer, and could enhance the sensitivity of clear cell renal cell
carcinoma to sunitinib (He et al., 2022; Chen et al., 2024). A phase I
clinical trial showed that NVP-AUY922 can effectively inhibit tumor
growth, angiogenesis, and metastasis in glioblastoma, melanoma,
and glioblastoma (Eccles et al., 2008). These evidences highlight the
enormous clinical potential of NVP-AUY922 in the
treatment of SCC.

Admittedly, this study has several limitations that need to be
acknowledged. First, the 5 WNT subtypes were potentially
biased, as we focused exclusively on WNT pathway gene
expression and mutation profiles, without integrating other
omics data that could influence pathway alterations in CRC,
such as CNVs and DNA methylation. To address this bias, it is
necessary to integrate other omics data, to develop a more
comprehensive SCC identification system. Second, incomplete
data cannot directly use our WNT-derived model. As in this
study, the WNT classification model is not directly applied on the
CRC cohorts collected from GEO since they do not have
mutation data, so we used the expression signature as an
alternative approach for testing. We expect that the testing
dataset with both gene mutation and expression data should
achieve an even better SCC classification by applying our full
WNT model. Additionally, studying SCC presents significant
challenges. Currently, there are no commercially available
human SCC cell lines for research, and there is a severe
shortage of tumor models, thus hindering experimental
validation of candidate drugs. The advantage of this study is
the initial screening of candidate drugs with great clinical
translational potential. In future research, it is expected to
validate candidate drugs through cell and animal experiments,
ultimately achieving clinical application, which will help improve
the treatment strategy for SCC.

5 Conclusion

In summary, we propose a robust and reliable clustering
recognition system for SCC via in-depth analysis of the WNT
pathway, which has considerable potential for applications in
CRC and will promote precision oncology.
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