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Background: Aortic dissection, particularly acute type A aortic dissection
(ATAAD), is a life-threatening cardiovascular emergency with alarmingly high
mortality rates globally. Despite advancements in imaging techniques like
computed tomography angiography (CTA), delayed diagnosis and incomplete
understanding of molecular mechanisms persist, contributing to poor outcomes.
Recent studies highlight the role of immune dysregulation, vascular smooth
muscle cell (VSMC) apoptosis, and metabolic-epigenetic interactions in AD
pathogenesis, underscoring the need for novel biomarkers and
therapeutic targets.

Objective: This study aims to identify critical genes and molecular pathways
associated with ATAAD, develop a multi-omics diagnostic model, and evaluate
potential therapeutic interventions to improve clinical outcomes.

Methods: Transcriptome datasets from the Gene Expression Omnibus (GEO)
database were analyzed using differential expression analysis, weighted gene co-
expression network analysis (WGCNA), and machine learning algorithms (SVM,
Random Forest, LASSO regression). Functional enrichment and
immunoinfiltration analyses were performed to explore biological pathways
and immune cell interactions. External dataset validation and PCR testing of
clinical samples (n = 9) were conducted to confirm gene expression differences.
A nomogram diagnostic model was constructed and evaluated for
predictive accuracy.

Results: Six core genes were identified: Ccl2, Cdh8, Hk2, Tph1, Npy1r, and
Slc24a4, with four (Ccl2, Hk2, Tph1, and Npy1r) showing significant differential
expression in clinical validation. Functional enrichment revealed associations with
immune cell migration, vascular development regulation, extracellular matrix
pathways, and the PI3K-Akt signaling pathway. Immunoinfiltration analysis
demonstrated increased infiltration of B cell precursors, resting NK cells, and
M2 macrophages in ATAAD tissues, negatively correlating with core gene
expression. The nomogram model exhibited high diagnostic precision
(AUC=0.935, 95% CI: 0.908–0.963), supported by calibration and decision
curve analyses.

Conclusion: This study identifies key molecular markers and pathways in ATAAD
pathogenesis, emphasizing the role of immune dysregulation and extracellular
matrix remodeling. The multi-omics diagnostic model provides a novel tool for

OPEN ACCESS

EDITED BY

Georgia Damoraki,
National and Kapodistrian University of Athens,
Greece

REVIEWED BY

Gawel Solowski,
Bingöl University, Türkiye
Spyros Foutadakis,
Biomedical Research Foundation of the
Academy of Athens (BRFAA), Greece

*CORRESPONDENCE

Qun Xue,
13962800698@163.com

Weizhang Xiao,
xwz191201@163.com

†These authors have contributed equally to
this work

RECEIVED 04 March 2025
ACCEPTED 01 April 2025
PUBLISHED 24 April 2025

CITATION

Pan Y, Yu Z, Qian X, Zhang X, Xue Q and Xiao W
(2025) Key gene screening and diagnostic
model establishment for acute type a
aortic dissection.
Front. Genet. 16:1586880.
doi: 10.3389/fgene.2025.1586880

COPYRIGHT

© 2025 Pan, Yu, Qian, Zhang, Xue and Xiao. This
is an open-access article distributed under the
terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic practice.
No use, distribution or reproduction is
permitted which does not comply with these
terms.

Frontiers in Genetics frontiersin.org01

TYPE Original Research
PUBLISHED 24 April 2025
DOI 10.3389/fgene.2025.1586880

https://www.frontiersin.org/articles/10.3389/fgene.2025.1586880/full
https://www.frontiersin.org/articles/10.3389/fgene.2025.1586880/full
https://www.frontiersin.org/articles/10.3389/fgene.2025.1586880/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2025.1586880&domain=pdf&date_stamp=2025-04-24
mailto:13962800698@163.com
mailto:13962800698@163.com
mailto:xwz191201@163.com
mailto:xwz191201@163.com
https://doi.org/10.3389/fgene.2025.1586880
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2025.1586880


early screening, potentially reducing mortality through timely intervention. These
findings advance the understanding of aortic dissection mechanisms and offer
actionable targets for future research and clinical applications.
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dissection

1 Introduction

Aortic dissection (AD) is characterized by a rupture of the media
within the aortic wall due to bleeding, leading to the separation of
the wall’s layers and the formation of both a true lumen and a false
lumen, with or without communicating branches (Erbel et al., 2014).
Specifically, the ascending aorta falls under the classification of
Stanford type A (Nienaber and Clough, 2015). Acute type A
aortic dissection (ATAAD) represents a life-threatening
emergency. Research by Hirst et al. in the 1950s revealed that
untreated ATAAD patients faced a mortality rate of 21% within
the first 24 h after symptom onset, rising to approximately 37%
within 48 h (Harris et al., 2022). While prompt surgical intervention
markedly enhances survival rates in ATAAD cases, the surgical
mortality remains considerable (Daily et al., 1970). Even in
experienced cardiac centers, the surgical mortality rate for
ATAAD ranges between 10% and 35% (Nienaber and Clough,
2015). A recent retrospective study conducted by Eremia, I.A.
et al. Showed that for patients with type A aortic dissection, the
1-year survival rate of the surgical group was 87.5%, while the 1-year
survival rate of the conservative management cohort was 30%
(Eremia et al., 2025). Consequently, early identification and
timely intervention are crucial in managing aortic dissection. The
most common symptom of ATAAD is the abrupt onset of severe
chest or back pain. Chest pain in more common in patients with type
A dissection (79%) compared to type B dissection (63%), whereas
back pain is more frequent in type B dissection patients (43% vs 64%,
respectively) (Hagan et al., 2000). Although the primary symptoms
have remained largely unchanged, diagnostic methods are
continually evolving (Zhu et al., 2020). For patients with
suspected aortic dissection, imaging diagnosis is the primary
approach, as it can swiftly confirm or exclude the diagnosis,
classify the extent of the dissection, and assess the urgency of the
situation (Ince and Nienaber, 2007). Currently, blood tests play a
secondary role in the evaluation of patients suspected of having
aortic dissection (Gawinecka et al., 2017). Toru Suzuki et al. found
that D-dimer, commonly used to diagnose pulmonary embolism,
can also aid in the diagnosis of aortic dissection. The critical
threshold of 500 ng/mL, typically employed to exclude
pulmonary embolism, is similarly applicable for ruling out aortic
dissection within the first 24 h of symptoms onset (Suzuki et al.,
2009). Through proteomics analysis, Zhao et al. found that the
diagnostic model of type B aortic dissection based on five different
proteins (IL-6, GDF-15, CD58, LY9 and SIGLEC-7) as biomarkers
has good performance (Zhao et al., 2025). Pu et al. found that
PANoptosis-related genes (Gadd45b, Cdkn1a, and Sod2) in vascular
smooth muscle play a crucial role in aortic dissection (Pu et al.,
2025). However, there is still a lack of research on biomarkers point
at type A aortic dissection that can be used for auxiliary diagnosis.

This study aimed to investigate the changes in gene
expression associated with the pathophysiology of ATAAD
and to develop potential new diagnostic biomarkers. We
meticulously analyzed two gene expression datasets from the
Gene Expression Omnibus (GEO) and identified differentially
expressed genes (DEGs) from ascending aorta samples. Basic
modules related to ATAAD were established, and DEGs were
further refined using support vector machine recursive feature
elimination (SVM-RFE), random forest (RF), and least absolute
shrinkage and selection operator (LASSO) algorithms.
Subsequently, we developed and validated a predictive model
for clinical ATAAD diagnosis based on hub genes. The diagnostic
utility of the four hub genes and the nomogram model was
thoroughly validated using receiver operating characteristic
(ROC) curves. The identification of these four central genes
and the accompanying morphological maps significantly
enhances the diagnosis of ATAAD in high-risk patients,
thereby contributing to a deeper understanding of the etiology
of ATAAD.

2 Materials and methods

2.1 Data acquisition and processing

The gene expression datasets GSE153434 (Zhou et al., 2020),
GSE147026 (Zhou et al., 2021), and GSE52093 (Pan et al., 2014),
pertaining to type A aortic dissection, were obtained from the GEO
database (https://www.ncbi.nlm.nih.gov/geo/). Specifically,
GSE153434 comprises 10 normal samples and 10 samples from
patient with ATAAD, while GSE147026 includes 4 normal samples
and 4 ATAAD samples. These datasets exhibit robust quality
control, featuring complete matrices and comprehensive clinical
information. The detection data are publicly available and accessible,
and include matrix information that can be normalized effectively.
Standard gene expression normalization and log2 conversion were
applied to the RNA-seq data. Subsequently, the limma and combat
packages in R software were employed for further data
normalization. For validation purposes, GSE52093 was utilized,
containing 5 normal control samples and 7 ATAAD samples.
The research flow chart is presented in Figure 1.

2.2 Differential expression analysis

The limma software package in R software was utilized to
analyze the differential expression between ATAAD samples and
normal control samples (Chen et al., 2017). The truncation standard
was adjusted to p < 0.05, | log fold change (FC) | >2. The volcano
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plots and heatmaps are generated using the ggplots and pheatmap
software packages, respectively.

2.3 Enrichment analysis

To determine the biological relevance of genes and functions,
functional enrichment analysis of DEGs was performed. Gene
ontology (GO) is a database for annotating gene functions,
including molecular functions, biological pathways, and
cellular components. Additionally, the Kyoto Encyclopedia of
Genes and Genomes (KEGG) pathway database is employed to
analyze gene function and related advanced genomic functional
information. To gain deeper insights into the role of hub genes,

GO and KEGG analysis were performed using the clusterProfiler
and DOSE software packages (Ritchie et al., 2015). A p value
threshold of less than 0.05 is set as the cut-off standard, and the
results were presented in the form of bubble diagram and
heat diagram.

2.4 Analysis of weighted gene co-
expression networks

We batch-processed and integrated the datasets from
GSE153434 and GSE147026. The evaluation of trait-associated
modules was conducted using the WGCNA software package
(Weighted Gene Co-expression Network Analysis). Based on the

FIGURE 1
Study Workflow.
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expression profiles, we constructed a topological overlap matrix,
applying a soft threshold power of 5 and establishing a minimum
module size of 50 to refine the core modules. To guide the module
merging process, a height threshold of 0.5 was applied.
Subsequently, a Pearson correlation test was performed on the
modules, with a significance threshold set at p < 0.05. Finally,
DEGs were intersected with the genes from the WGCNA hub
module to identify potential candidate genes.

2.5 Analysis of protein-protein
interaction networks

The analysis of DEGs regarding protein-protein interactions
(PPIs) was performed using the STRING database (https://cn.
string-db.org/). This resource facilitates the identification of
connections among target proteins, including direct binding
interactions and the overlapping pathways regulating upstream
and downstream activities, thereby enabling the construction of
intricate PPI networks characterized by complex regulatory
dynamics (Liu et al., 2018). Interactions with a comprehensive
score exceeding 0.4 were considered statistically relevant.
Cytoscape (http://www.cytoscape.org) served as the tool for
visualizing the PPI network.

2.6 Prediction of drug candidates

The Connectivity Map (https://clue.io) serves as an online
resource for assessing the correlations between gene expression
profiles indicative of disease and those modulated by various
compounds. This tool facilitates a deeper understanding of drug
mechanisms and aids in the discovery of novel therapeutic agents.
Consequently, the DEGs were submitted to the CMap database to
predict small molecule drugs that might offer potential treatment
options for ATAAD.

2.7 Machine learnings

Machine learning methods, specifically LASSO regression
(Vasquez et al., 2016), random forest (Paul et al., 2018) and
SVM algorithm (Noble, 2006), can be employed to identify key
genes of ATAAD. Following an initially filtering of differentially
expressed genes, the glmnet package, randomForest package and
e1071 package were utilized to screen out overlapping
critical genes.

2.8 Analysis of immune cell infiltration

To investigate the variety of immune cells in ATAAD tissues,
single sample gene set enrichment analysis (ssGSEA) (Chen et al.,
2022) and IOBR package were used for the immune infiltration
analysis. This analysis allowed us to compare the infiltration
patterns of 22 immune cell types between normal and ATAAD
samples. The immune cell types we identified encompassed B cell
progenitor cells, B cell memory cells, plasma cells, T cell CD8+,

T cell CD4+ progenitor cells, T cell CD4+ resting memory cells,
T cell CD4+ activated memory cells, T cell follicular helper cells,
T cell regulatory (Treg) cells, T cell γδ, NK cell resting cells, NK
cell activated cells, monocytes, macrophages M0, macrophages
M1, macrophages M2, dendritic cell resting cells, dendritic cell
activated cells. Mast cell resting cells, mast cell activated cells,
eosinophils, and neutrophils.

2.9 The correlation between key genes and
infiltrating immune cells

To explore the association between the identified key genes and
the infiltrating immune cells, the gene expression data set of
ATAAD was analyzed by Spearman correlation analysis using
corrplot R package.

2.10 Confirmation of essential gene
expression in the validation dataset

The mRNA levels of the identified crucial genes were confirmed
within the GSE52093 validation dataset. p < 0.05 was regarded as
statistically significant.

2.11 Construction of diagnostic model

The predictive ability of the nomogram model was assessed
using a calibration curve. Additionally, decision curve analysis
(DCA) was used to evaluate the practical applicability of the
model. For the ROC curve, we utilized the pROC software
package, and the area under the curve (AUC) was calculated to
gauge the diagnostic accuracy of both the hub gene and the
nomogram model.

2.12 scRNA-seq analysis

Through single cell sequencing analysis, the distribution of four
key genes in each cell cluster was explored, and the difference in
expression between the disease group and the control group
was verified.

2.13 Specimen collection and real-time
fluorescence quantitative PCR

The criteria for selecting aortic dissection cases were as follows:
individuals must be older than 18 years and diagnosed as aortic
dissection by aortic CTA angiography, subsequently undergoing
aortic artificial vascular replacement. Normal aortic tissue was
obtained from patients undergoing coronary artery bypass
grafting. The study was conducted according to the Helsinki
Declaration. All research protocols and experiments were
approved by the Ethics Committee of the Affiliated Hospital of
Nantong University, and all participants signed the
informed consent.
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Total RNA was extracted from aortic wall tissue using Trizol
reagent (ACCURATE BIOTECHNOLOGY Company), and
mRNA was reverse transcribed using Vazyme’s HiScript II Q
RTsuperpMix for qPCR (+ gDNA wiper) kit (R223-01). The
ChamQ SYBR qPCR premix kit (Q311-02) was used to perform
RT-qPCR with β-Actin as the internal reference gene. The
detailed primer sequence of this study is shown in Table 1.
The relative expression of the gene was calculated using the 2-
△△Ct method (Livak and Schmittgen, 2001). p < 0.05 was
considered statistically significant.

2.14 Statistical analysis

The data were analyzed utilizing R software (version
4.4.3,https://www.r-project.org). Statistically significant differences
between groups were determined using Wilcoxon test. Differences
were considered statistically significant at p < 0.05.

3 Results

3.1 Differentially expressed gene
identification

Firstly, we analyzed differential expression using two microarray
datasets: GSE153434 and GSE147026. Supplementary Figure S1
displays the expression matrix both before and after
normalization. We identified a total of 676 DEGs in the
combined expression matrix, as illustrated in Figure 2.

3.2 Functional analysis

GO analysis revealed 306 biological processes (BP), 33 cellular
components (CC) and 44 molecular functions (MF), as shown in
Supplementary Table 1. Figure 3A highlights the top 10 GO terms
for each category. Notably, the DEGs are significantly enriched in
processes such as cell junction assembly, chemotaxis, motility,
leukocyte migration, collagen-rich extracellular matrix, regulation
of vascular development, regulation of angiogenesis, regulation of
membrane potential, and axonogenesis. A heatmap illustrating the
correlation between DEGs and the top 50 GO terms is presented in
Figure 3B. According to KEGG analysis, DEGs were enriched in
pathways such as neuroactive ligand-receptor interaction, cytokine-
cytokine receptor interaction, the PI3K-Akt signaling pathway,
calcium signaling pathway, focal adhesion, cytoskeleton in muscle
cells, chemokine signaling pathway, transcriptional misregulation in
cancer, interaction between viral proteins and cytokines and
cytokine receptors, and rheumatoid arthritis, as shown in
Figure 3C. In addition, Figure 3D displays the association
network of the top five KEGG pathways with the DEGs.

TABLE 1 Detailed Primer sequences of this study.

Hk2 Forward Primer (5’→3′) TGCCACCAGACTAAACTAGACG

Reverse Primer (5’→3′) CCCGTGCCCACAATGAGAC

Tph1 Forward Primer (5’→3′) ACGTCGAAAGTATTTTGCGGA

Reverse Primer (5’→3′) ACGGTTCCCCAGGTCTTAATC

Ccl2 Forward Primer (5’→3′) CAGCCAGATGCAATCAATGCC

Reverse Primer (5’→3′) TGGAATCCTGAACCCACTTCT

Cdh8 Forward Primer (5’→3′) AGCGGAAATGCTCTTGGATCT

Reverse Primer (5’→3′) GCGGTTCAAAATTCGCTGTTCT

FIGURE 2
DEG screening between ATAAD and healthy control. (A) Volcano graphic visualizing DEGs of ATAAD and normal samples. (B)Heatmap of DEGs
among normal and ATAAD samples.
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3.3 Overlap between aortic dissection-
related module genes and differentially
expressed genes

A scale-free network with a soft threshold of 5 (R2 = 0.91) is
constructed and shown in Figure 4A. Following this, we
determined the module characteristic genes, calculated the
aggregate gene expression level of each module, and grouped
them according to their correlation. 13 modules were identified,
as illustrated in Figure 4B. Among these, 3 modules were found to
be associated with ATAAD: brown (correlation coefficient = 0.82,
p < 0.0001), black (correlation coefficient = 0.47, P = 0.01), and
turquoise (correlation coefficient = −0.8, p < 0.0001). For further
investigation, a total of 908 ATAAD-related genes identified in
the three modules were retained, as shown in Figure 4C. Finally,

225 genes were identified to overlap, as presented in
Figures 4D, E.

3.4 Identification of the interconnection
network between protein diseases

The PPI network was developed using STRING database to
identify gene cluster modules that surpassed a comprehensive score
threshold of 0.4. This network was then visualized with Cytoscape.
The hub genes were ranked according to the Betweenness algorithm
through the cytoCNA plug-in and subsequently visualized using
Cytoscape, as illustrated in Figure 5A. This network comprises
96 nodes and 823 edges, with further details available in
Supplementary Table S2.

FIGURE 3
Functional DEG enrichment. (A)GO Analytics Bubble Chart (Top 5 in each category). (B) Heatmap of the relationship between GO and differentially
expressed genes. (C) KEGG analysis lollipop plot. (D) Network diagram of the relationship between KEGG pathway and differentially expressed genes.
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3.5 Prediction of drugs for the treatment of
type a aortic dissection

The differentially expressed genes in ATAAD were
analyzed through the CMap database to predict potential
small molecule compounds that could offer therapeuticy
benefits for ATAAD. Compounds exhibiting a negative
correlation may hold the potential to alleviate the symptoms
associated with ATAAD. The top 50 small molecule drugs

(all connectivity scores exceeding 0.7) are presented
in Figure 5B.

3.6 Identification of key genes

To discover the characteristics of genes, 225 candidate genes
were analyzed by SVM-RFE, RF, and LASSO methodologies.
Utilizing SVM, we pinpointed 28 genes with an impressive

FIGURE 4
Identification of critical modules by WGCNA. (A) Scale-free fit index and mean connectivity for different soft-thresholding powers. (B) Topological
overlap dissimilarity aggregation of DEGs clusters. (C)Module-feature correlations Each row represents amodule list, whereas each column represents a
clinical characteristic. The first line of each cell includes the associated correlation, while the second line gives the P-value. (D) Venn diagram for
overlapped genes. (E) The overlapping genes were sorted by logFC, with red representing upregulated genes and blue representing downregulated
genes in aortic dissection.
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accuracy of 0.97, as illustrated in Figures 6A, B. Through the
application of random forest approach, 11 characteristic genes
were filtered, as depicted in Figure 6C. Furthermore, the LASSO
regression method revealed 9 gene characteristics, detailed in
Figures 6D, E. By examining the overlap among the results
obtained from these three techniques, we determined six hub
genes: Ccl2, Cdh8, Hk2, Npy1r, Tph1, and Slc24a4, which were
represented in Figure 6F. When compared with the control
group, the levels of Ccl2, Cdh8, Hk2, and Slc24a4 were
significantly lower in ATAAD samples, whereas Npy1r and Tph1
exhibited notable increases, as shown in Figure 9A. The correlation
analysis indicated a strong relationship among these six genes, as
illustrated in Figure 9B.

3.7 Analysis of the relationship between hub
genes and immune cell infiltration

To investigate the infiltration pattern of immune cells, we
utilized IOBR2, with the immune cell distribution in each
sample illustrated in Figure 7A. In ATAAD samples, we
observed a significant higher prevalence of B cell precursors,
resting NK cells, activated NK cells, M0 macrophages, and
M2 macrophages compared to normal samples, as illustrated
in Figure 7B. Furthermore, we computed the relationship
between the expression levels of hub genes and the
infiltration of immune cells. The findings indicated that a
substantial majority of the immune cells exhibited a
significant negative correlation with hub gene expression, as
demonstrated in Figure 7C. These results imply that
inflammatory factors might play a crucial role in the

initiation and progression of ATAAD, while hub genes could
potentially serve as novel regulators in immune responses.

3.8 Gene set enrichment of hub genes

To further reveal the potential role of Ccl2, Cdh8, Hk2, Npy1r,
Tph1 and Slc24a4, we performed a single gene GSEA analysis, as
shown in Figure 8.

3.9 External data set validation

Furthermore, we downloaded the data set GSE52093 from the
GEO database for external validation of the six hub genes we had
identified. Our analysis revealed significant differences in the
expression levels of Ccl2, Cdh8, Hk2, and Tph1 between ATAAD
patients and healthy individuals, as shown in Figure 9C. In addition,
the ROC curves of six hub genes in this dataset are shown
in Figure 9D.

3.10 Development and assessment of
diagnostic model

To enhance the sample size, we integrated four data sets:
GSE153434, GSE147026, GSE52093, and GSE98770 (Kimura
et al., 2017), resulting in a comprehensive dataset of
51 normalized samples. A diagnostic nomogram was created
utilizing Ccl2, Cdh8, Hk2, and Tph1, as illustrated in Figure 10A.
As an example, we applied the nomogram to the aortic dissection

FIGURE 5
PPI and cMAP. (A) Protein-protein interaction network diagram (analyzed online through the STRING website). (B) Predict potential small molecule
drugs through cMAP and create a heatmap.
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case GSM4412480 from GSE147026, generating a nomogram curve
for this particular case. The predicted risk of dissection was found to
be 89.5%, as depicted in Figure 10B. The area under the curve (AUC)
of the nomogram achieved an impressive value of 0.935, with a 95%
confidence interval (CI) ranging from [0.908 to 0.963], as presented
in Figure 10C. The calibration curve indicates minimal variance
between the observed and predicted risks, demonstrating that the
nomogram model effectively predicts ATAAD, as shown in

Figure 10D. Notably, our diagnostic models exhibited a high
degree of accuracy in risk prediction for ATAAD.

3.11 Single cell sequencing analysis

The single-cell sequencing data GSE213740 (Zhang et al.,
2023)was downloaded from the GEO database, and quality

FIGURE 6
Hub gene identification. (A) 28 gene signatures were identified by SVM-RFE analysis with an accuracy of 0.97. (B) Error of 0.0304. (C) Prediction
accuracy of the RF model. (D) Cross-validation to select the optimal tuning parameter log(Lambda) in LASSO regression analysis. (E) LASSO coefficient
profiles of candidate genes. (F) Venn diagram of four hub genes shared by the SVM-RFE, RF, and LASSO algorithms.
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control (screening criteria 200 < RNA-nfeatures <5,000, mt<
5%), batch merging were performed on the data set in R. Then,
we carried out dimensionality reduction and cluster analysis on
the sorted data, and drew the tSNE diagram, as shown in
Figure 11A. The distribution of four key genes in each cell
cluster is shown in Figure11B. The expression differences of
the four key genes in the AD group and the control group are
shown in Figure 12. It can be seen that Ccl2 is the most
widely distributed, and there is a significant difference in
expression between the AD group and the control group. In

the AD group, the expression of Ccl2 in macrophages was higher
than that in the control group, and the expression in
chondrocytes and vascular endothelial cells was lower than
that in the control group. Similarly, the expression of Hk2 in
AD was also significantly higher than that in the control
group. This suggests that the formation and development of
AD is closely related to the inflammatory response. The
expression of Tph1 in neurons/glial cells was the most
different, and the expression of Cdh8 was not
significantly different.

FIGURE 7
Immune cell distribution in ATAAD. (A) Stacking diagram of immune cells. (B)Differences in infiltrated immune. (C)Correlation analysis between hub
genes and immune cells.
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3.12 Specimen collection and real-time
fluorescence quantitative PCR

A total of 9 clinical samples were included in this study:
6 samples from AD patients and 3 samples from patients
undergoing aortic coronary artery bypass grafting as
normal control group to further verify the expression of
differential genes. As illustrated in Figure 13, there were
significant differences in the expression levels of Ccl2, Hk2,
Cdh8 and Tph1 between the healthy controls and
patients with AD.

4 Discussion

ATAAD is a critical disease characterized by high mortality
rates, and the prognosis of affected patients is significantly
influenced by time-dependent factors. Therefore, timely and
accurate diagnosis is crucial for determining patient outcomes
(Kimura et al., 2017; Zhang et al., 2023; Rylski et al., 2023;
Matthews et al., 2021). This study highlights the development of
four hub genes that hold promise as innovative diagnostic tools for
ATAAD. Initially, we screened DEGs with significant expression
differences and relatively high expression levels in both ATAAD

FIGURE 8
GSEA analysis of hub genes. Top 5 GSEA enrichment in the high and low expression. (A) Ccl2. (B) Cdh8. (C) Hk2. (D) Npy1r. (E) Slc24a4. (F) Tph1.
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patients and healthy controls. Subsequently, WGCNA was
employed to analyze three gene modules that exhibited strong
correlations with ATAAD, narrowing down the list from
676 DEGs to 225. We then applied three machine learning
methods-support vector machine (SVM), random forest (RF),
and LASSO regression-to further identify six hub genes whose
expression levels are closely associated with ATAAD: Ccl2, Cdh8,
Hk2, Npy1r, Slc24a4, and Tph1. These machine learning techniques
facilitated the selection of genes that most significantly contribute to
the predictive accuracy of our models.

The inclusion of each gene was further validated through
statistical significance testing and prognostic correlation analysis,
enhancing the reliability of the multi-gene signature and its
biological relevance to the phenotypic outcomes of disease.
Finally, our study employed various methodologies to confirm
the feasibility of these six hub genes in diagnosing ATAAD.
Specifically, we utilized an external gene expression dataset
(GSE52093 from the GEO database) and real-time fluorescence
quantitative PCR for detection. The diagnostic potential of four
hub genes-Ccl2, Cdh8, Hk2, and Tph1-was supported by the
GSE52093 dataset, which demonstrated their correlation across
diverse patient cohorts. In contrast, Npy1r and Slc24a4 exhibited
no significant differences in expression. Real-time fluorescence

quantitative PCR provided quantitative validation for these
findings. The upregulation of Ccl2 and Hk2, coupled with the
downregulation of Tph1 and Cdh8 in ATAAD patients, further
supported our predictions. The differential expression of these hub
genes underscores their potential significance for enhancing clinical
diagnostic accuracy.

By integrating cross-validation of external datasets with real-
time fluorescence quantitative PCR, this study not only confirmed
the reliability of the key genes identified through bioinformatics
analysis and machine learning methods but also established the
clinical applicability of these four hub genes. By introducing these
genes, we initially proposed the feasibility of a non-invasive
diagnosis for ATAAD and laid the groundwork for further
molecular research on this critical condition.

In recent years, RNA sequencing (RNA-seq) has emerged as an
indispensable tool for investigating developmental processes and
exploring molecular disorders underlying various diseases (Thind
et al., 2021; Liu et al., 2021). Furthermore, the integration of
bioinformatics analysis and machine learning methods has
facilitated the exploration of key genes, potential mechanisms,
and therapeutic targets (Nguyen et al., 2022). Numerous studies
have focused on the identification of ATAAD-related key genes. For
instance, Zhang et al. identified six gene features associated with

FIGURE 9
Expression analysis of hub genes. (A) Internal validation: expression of six hub genes in ATAAD and control groups. (B) Correlation between hub
genes. (C) External validation (GSE52093): expression of six hub genes in ATAAD and control groups. (D) Diagnostic evaluation of hub genes. ROC curve
to evaluate prediction accuracy in GSE52093. **p < 0.01, and ***p < 0.001.
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RNA modification (Ythdc1, Wtap, Cfi, Adarb1, Adarb2, Tet3) that
may be utilized for the diagnosis and risk stratification of ATAAD
(Zhang et al., 2024). Li et al. identified eight immune-related genes
(Cxcr4, Lyn, Ccl19, Ccl3l3, Sell, F11r, Dpp4, and Vav3) as hub genes,
which represent potential biomarkers and therapeutic targets
associated with the immune response in ATAAD patients (Li
et al., 2022). Similarly, Huang et al. identified seven hub genes
related to immune infiltration: Abcg2, Fam20c, Ell2, Mthfd2,

Ankrd6, Glrx and Cdcp1, noting that the expression of four of
these genes (Abcg2, Fam20c, Mthfd2, and Cdcp1) is linked to
cardiovascular dysfunction (Huang et al., 2024). He et al. found
that BASP1 monocyte subsets play a catalytic role in the
formation of AAD and provide a new potential target for its
early intervention (He et al., 2025). In contrast to these studies,
our research employed a more extensive array of screening
methods, resulting in the identification of hub genes with

FIGURE 10
Nomogram model construction for ATAAD. (A) Nomogram to predict ATAAD risk. (B) Individual nomogram of an ATAAD patient. (C) ROC curve to
evaluate prediction accuracy. (D) Calibration curve evaluation for the diagnostic potential of the nomogram model.
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increased reliability. Furthermore, we constructed a diagnostic
model that can be initially utilized for the clinical diagnosis of
ATAAD. This model also predicts potential targeted small
molecule compounds, which may help prevent the onset of
ATAAD and alleviate its symptoms. Additionally, the
functional elucidation of key genes Ccl2, Hk2, Tph1, and Cdh8
provides valuable insights into the biological landscape of

ATAAD and underscores their potential involvement in the
disease’s pathogenesis.

Understanding the effects of key genes in inflammatory CCL2,
also known as MCP-1, is crucial given its status as one of the earliest
discovered chemokines (He et al., 2025; Matsushima et al., 1989;
Yoshimura et al., 1989). CCL2 is a potent pro-inflammatory
cytokine that binds to its cognate receptor, CCR2 (Charo et al.,

FIGURE 11
tSNE diagram. (A) tSNE distribution map. (B) The distribution of four hub genes in various types of cells.
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1994). It exhibits robust chemotactic activity towards CCR2+

monocytes, macrophages, and CD4+ T cells (Carr et al., 1994).
Beyond its chemotactic functions, CCL2 also exerts a range of
immunomodulatory effects, including systemic inflammation,

angiogenesis, and organ fibrosis (Gschwandtner et al., 2019).
Previous studies have demonstrated that CCL2 expression is
elevated in infarcted myocardial tissue (Chen and Frangogiannis,
2021), promoting cardiac regeneration through the activation of

FIGURE 12
The distribution difference map of four key genes in various types of cells.
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STAT3 signaling, thereby highlighting its potential therapeutic role
in myocardial infarction (MI) and related heart failure (Wang et al.,
2024). Moreover, CCL2 is significant in cardiovascular disease,
which increases its applicability in the context of aortic dissection.

Hexokinase (Hk) serves as a rate-limiting enzyme in aerobic
glycolysis, catalyzing the conversion of glucose into the metabolic
intermediate glucose-6-phosphate (G-6-P) (Bian et al., 2022). In
mammals, four isoforms of the HK family have been identified:
HK1, HK2, HK3 and HK4 (Guo et al., 2023; He et al., 2023). HK1 is
ubiquitously expressed in all adult tissues, whereas HK2 is primarily
expressed in adult muscle and heart tissues, as well as in embryonic-
derived cells (Xu et al., 2018). Studies have provided evidence for the
impact of HK2 expression levels on cardiovascular diseases, such as
MI (Okuyama et al., 2015). Therefore, the role of HK2 in aortic
dissection warrants further investigation.

Cadherin-8 (encoded by Cdh8) is an integral membrane protein
crucial for calcium-dependent intercellular adhesion and has
recently been implicated in autism: (Kerschbamer et al., 2022;
Nita et al., 2021; Tu et al., 2021; Hurley et al., 2021). Tryptophan
hydroxylase 1 (encoded by Tph1) is a member of the aromatic amino
acid hydroxylase family. Extensive research has indicated that
mutations in this gene are associated with an increased risk of
various diseases and conditions, including schizophrenia, somatic
anxiety, anger-related traits, bipolar disorder, suicidal behavior, and
addiction (Karanović et al., 2016; Nielsen et al., 2020; Wigner et al.,
2018). However, its connection with cardiovascular disease remains
to be fully elucidated.

Gaining insights into the effects of these key genes on
inflammatory and immune response, as well as epigenetic
regulation, will enable a more comprehensive analysis of the
intricate interactions among various molecules. This, in turn,
could provide valuable insights for the development of small
molecule therapies targeting the corresponding pathways. The
establishment of an effective animal model not only helps us to
understand the interaction between molecules, but also can be used
for experimental verification. Unlike traditional animal models such
as rats, mice, and rabbits, a multicenter experiment demonstrated
that zebrafish is likely to play a key role in the clinical identification
of the pathogenicity of variants of unknown significance (VUS) in
ATAAD (Prendergast et al., 2025).

Nevertheless, our research has several limitations. Firstly, the
development and validation of ourmodel in this study are based on a
retrospective dataset obtained from GEO, which comprises a
relatively small number of clinical samples. This limitation may
lead to curve overfitting and potentially skew the research results.
Secondly, some datasets lack relevant clinical information, such as
patient symptoms, complications, hypertension status, genetic
factors, and other risk factors. Lastly, the functions of the four
hub genes, along with their upstream and downstream pathways in
ATAAD, require further verification, which will be the focus of our
future work.

5 Conclusion

Through the application of bioinformatics andmachine learning
methodologies, four characteristic genes - Cdh8, Ccl2, Hk2, and
Tph1 - have been preliminarily identified as having a close
association with ATAAD. A predictive chart for the clinical
diagnosis of ATAAD has been established. This nomogram can
serve as a tool for identifying high-risk patients with ATAAD in a
clinical setting.
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