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Objective: This study aimed to identify early biomarkers associated with the
progression from atherosclerosis (AS) to heart failure (HF) by integrating single-
cell RNA sequencing (scRNA-seq) and bulk transcriptomic data, and to explore
the potential underlying mechanisms.

Method: Transcriptomic datasets (GSE28829 andGSE57345) were obtained from
the Gene Expression Omnibus (GEO) database, and single-cell RNA sequencing
(scRNA-seq) data were downloaded from the Human Cell Landscape (HCL)
platform. Genes of interest were identified by integrating results from
weighted gene co-expression network analysis (WGCNA), differentially
expressed genes (DEGs) analysis, and cell-type-specific expression patterns.
Three machine learning algorithms (LASSO, Random Forest, and SVM-RFE)
were employed to screen for robust candidate biomarkers. External validation
was performed using three independent datasets: GSE53274, GSE5406,
and GSE59867.

Result: ScRNA-seq data screened for 2828 cardiac-related genes. WGCNA
identified 918 genes highly associated with AS. In addition, the limma package
identified 9675 DEGs associated with HF progression. A total of 119 overlapping
genes were obtained by intersecting the results from the above three analyses.
Based on these 119 overlapping genes, three machine learning algorithms
(LASSO, Random Forest, and SVM-RFE) were applied to datasets
GSE28829 and GSE57345, and consistently identified CD48 as a robust
signature gene, with an area under the curve (AUC) greater than 0.7. External
validation confirmed CD48 as a potential biomarker for the progression from
AS to HF.

Conclusion: CD48 was identified as a potential early biomarker for the transition
from AS to HF, which may offer new insights for risk stratification and early
intervention in disease progression.
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1 Introduction

Atherosclerosis (AS) is a chronic, progressive disease
characterized by low-grade inflammation of the arterial wall. Its
core mechanism involves the subendothelial deposition of plasma
apolipoprotein B (apoB)-containing lipids, which triggers immune-
inflammatory responses and leads to the gradual formation of
atherosclerotic plaques. These plaques can cause luminal
narrowing or even occlusion of the affected arteries (Bäck et al.,
2019). Once diagnosed, patients typically require long-term lipid-
lowering and anticoagulant therapy, resulting in a significant
reduction in quality of life.

More critically, AS serves as a fundamental pathological basis for a
wide range of cardiovascular diseases. The rupture of unstable plaques
and the subsequent formation of acute thrombi are central mechanisms
in acute coronary syndromes (ACS), ischemic stroke, and peripheral
arterial disease (Schaar et al., 2004; Brown et al., 2017; Fan et al., 2019).
Among them, coronary artery disease (CAD) is a major cause of heart
failure (HF). Studies indicate that approximately 36% of patients with
acute myocardial infarction (AMI) develop chronic HF within
7–8 years following the initial event (Mosterd and Hoes, 2007),
highlighting the importance of the AS → CAD → HF progression
pathway. Additionally, shared risk factors such as smoking, diabetes,
and obesity may exacerbate endothelial dysfunction and further
accelerate the progression from CAD to HF (Ng et al., 2014).
Although current treatments—including statins and
PCSK9 inhibitors—have improved outcomes, substantial residual
risk remains, particularly due to the lack of early biomarkers for
identifying patients at risk of progression from AS to HF.

A variety of biomarkers have been used for the diagnosis and
risk stratification of atherosclerosis (AS) and heart failure (HF). For
example, lipoprotein-associated phospholipase A2 (Lp-PLA2)
(Panta et al., 2022), high-sensitivity C-reactive protein (hs-CRP)
(Ridker, 2016), and imaging-based markers (e.g., coronary calcium
scoring) (Khan et al., 2023) have been widely applied in the
assessment of AS. For HF, N-terminal pro-brain natriuretic
peptide (NT-proBNP) is regarded as the gold-standard biomarker
for diagnosis (Leto et al., 2016), while soluble suppression of
tumorigenicity-2 (sST2) has been shown to help predict adverse
outcomes (Mueller and Dieplinger, 2016). However, these
biomarkers are generally disease-specific, targeting either AS or
HF, and fail to capture the dynamic molecular changes occurring
during the transition from AS to HF. For instance, although Lp-
PLA2 effectively reflects AS burden, it has limited value in predicting
HF risk; conversely, NT-proBNP is highly specific for HF diagnosis
but cannot predict the progression to HF in AS patients.

In this study, we constructed a molecular landscape covering the
progression from AS to HF using publicly available data from the
Human Cell Landscape (HCL) platform and the Gene Expression
Omnibus (GEO) database. Differentially expressed genes (DEGs)
were identified between HF samples and healthy controls, and key
genes highly correlated with AS were screened using weighted gene
co-expression network analysis (WGCNA). We then intersected the
cardiac-related genes obtained from single-cell sequencing (SCS),
the AS-related genes from WGCNA, and the DEGs associated with
HF. Subsequently, machine learning algorithms were applied to
identify potential early biomarkers that may predict the progression
from AS to HF.

2 Methods

2.1 Study design

By integrating differential expression analysis, WGCNA, single-
cell transcriptomic data, and multiple machine learning approaches,
this study aimed to systematically explore the key molecular
mechanisms involved in the transition from atherosclerosis to
heart failure. Figure 1 shows the flowchart of the study design
and data processing. Datasets were retrieved from the GEO database
(https://www.ncbi.nlm.nih.gov/geo/).

Gene expression profiling data GSE28829 (platform: GPL570 [HG-
U133_Plus_2] Affymetrix Human Genome U133 Plus 2.0 Array) and
GSE57345 (platform: GPL11532 [HuGene-1_1-st] Affymetrix Human
Gene 1.1 ST Array [transcript (gene) version]) were obtained using the
GEOquery package. After extracting the raw data, the background was
calibrated, normalized, and log-transformed using the affy package (v
4.1.2). The limma package identifies DEGs in the GSE57345 dataset,
with the filtering criteria of P < 0.05 and |Log (Fold change)| > 1. Genes
with Log(Fold change) > 1 and p-value <0.05 were categorized as
upregulated genes, while genes with Log(Fold change) < −1 and
p-value <0.05 were categorized as downregulated genes, and we use
volcano plots and venn diagrams to represent differentially expressed
genes. The GSE28829 dataset includes transcriptomic data of human
arterial tissues representing the progression of atherosclerotic lesions
from early to advanced stages, making it suitable for constructing a
temporal expression profile of AS progression (Döring et al., 2012).
GSE57345, one of the largest expression datasets of adult myocardial
tissues in heart failure to date, provides time-series data capturing the
transition from compensatory hypertrophy to HF, thereby facilitating
the identification of myocardial molecular features during the AS-HF
progression (Liu et al., 2015). The combination of these two datasets fills
the knowledge gap from vascular lesions to cardiac remodeling,
representing two critical stages—AS and HF—and thereby supports
the identification of cross-stage biomarkers in this study. For external
validation, we have chosen GSE53274 (platform: GPL570 [HG-U133_
Plus_2] Affymetrix Human Genome U133 Plus 2.0 Array) and
GSE5406 (GPL96 [HG-U133A] Affymetrix Human Genome U133A
Array). Since blood samples are easier to obtain, we also adopted the
whole blood dataset (GSE59867) for external validation. Due to
different platforms, batch correction is used for distinct datasets. The
detailed informations of the datasets are shown in Table 1.

Abbreviations: AS, Atherosclerosis; HF, Heart failure; SCS, Single-cell
sequencing; HCL, Landscape online platform; GEO, Gene expression
omnibus; DEGs, Differentially expressed genes; WGCNA, Weighted gene
co-expression network analysis; AS, Atherosclerosis; HF, heart failure; GO,
Gene ontology analysis; KEGG, Kyoto Encyclopedia of the Genome; DO,
Disease ontology; LASSO, Least Absolute Shrinkage and Selection Operator;
SVM-RFE, Support Vector Machine-Recursive Feature Elimination; RF,
Random Forest; ROC, Receiver Operating Characteristic; AUC, Area under
the curve; apoB, Apolipoprotein B; CAD, Coronary artery disease; TOM,
Topological overlap matrix; ME, Module eigengenes.
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The integration of single-cell transcriptomic data from the Human
Cell Landscape (HCL) enables the resolution of cell type-specific
expression patterns within the cardiac microenvironment, thereby
avoiding signal dilution caused by tissue heterogeneity. For the

single-cell sequencing (SCS) data, Han et al. (2020) performed a
platform (Human Cell Landscape) including single cell sequencing
on each organ/tissue sample of the Chinese Han population, which
provided valuable data for revealing the complex cell types in each

TABLE 1 The clinical information of included GEO datasets.

GEO
dataset

Sample type Sample size Role Platform

Disease group Control group

GSE28829 Atherosclerotic carotid
artery segments

Advanced (thin or thick fibrous
cap atheroma) lesions

16 Early ((pathological) intimal thickening
and intimal xanthoma)

13 Test dataset GPL 6244

GSE57345 Cardiac tissue ISCH patients and DCM patients 177 Individuals with normal hearts 136 Test dataset GPL 17077

GSE53274 Atherosclerotic lesions Restenotic lesion 5 Primary lesion 4 Validation
dataset

GPL 570

GSE5406 Human myocardium tissue Patients undergoing advanced
systolic heart failure

196 Nonfailing controls 16 Validation
dataset

GPL 96

GSE59867 Peripheral blood STEMI patients progress into HF 32 STEMI patients without HF 30 Validation
dataset

GPL 6244

FIGURE 1
The flowchart of the study design and data processing.

Frontiers in Genetics frontiersin.org03

Ni et al. 10.3389/fgene.2025.1587274

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2025.1587274


organ/tissue. Human Cell Landscape (HCL) was used to investigate the
expression profiles of candidate gene markers in human normal adult
cardiac tissue from SCS results (Zhang et al., 2022). First, the high-
dimensional data were nonlinearly downscaled using the T-SNE
algorithm to separate different cell clusters; second, the candidate
gene markers in each cell cluster were identified using the
“FindAllMarkers” package, with the screening thresholds for
candidate gene markers: P < 0.05; and third, the expression of
candidate gene markers in each cell cluster was used as background.

2.2 Weighted gene co-expression
network analysis

Weighted Gene Co-expression Network Analysis (WGCNA) is an
unsupervised network modeling method that is well-suited for
identifying gene functional modules associated with specific
phenotypes in complex systemic diseases. First, the correlation
coefficients between gene pairs were calculated by Pearson’s
correlation coefficient using the “WGCNA” package. According to
the principle of scale-free network, a soft threshold (β = 16) was selected
to sequentially construct scale-free co-expression network, and the
neighbor-joining matrix was transformed into topological overlap
matrix (TOM). Then, average association hierarchical clustering was
performed based on TOM - based dissimilarity, and genes with similar
expression profiles were divided into modules with at least 60 genes in
each module, and each module was assigned a corresponding color. A
dynamic hybrid branch-cutting method was used to identify module
eigengenes (ME) on the TOM-based dendrogram. The gene
significance measure based on phenotypic traits was defined as the
absolute value of the correlation between gene i and the phenotypic trait
(T): GSi = |cor (i,T)|. Modules with |GSi| > 0.5 were used as key gene
modules in this study.

2.3 Enrichment analysis

Gene Ontology (GO), Kyoto Encyclopedia of Genes and
Genomes (KEGG) were performed using the R package
“clusterProfiler”. DO is an important annotation for translating
molecular discoveries from high-throughput data to clinical
relevance. Disease Ontology (DO) analysis was performed using
the “DOSE” package. DOSE is an R package that provides semantic
similarity calculations between DO terms and genes, enabling
biologists to explore similarities between disease and gene
function from a disease perspective. This enables biologists to
validate disease correlations in biological experiments and
discover disease associations from high-throughput biological
data (Yu et al., 2015). The top 30 data in terms of qvalue were
plotted as count bar charts and bubble plots of generatio.

2.4 Construction of protein-protein
interation (PPI) networks

The STRING database was used to construct PPI networks for
overlapping genes, which were visualized by Cytoscape software
(https://cytoscape.org). Then, to discover important modules and

genes, the PPI network was evaluated using the CytoHubba module
in Cytoscape.

2.5 Machine learning strategies for
screening biomarkers

Candidate biomarkers of HF progression in atherosclerotic
patients were identified by three machine learning algorithms:
random forest (RF), least absolute shrinkage and selection
operator (LASSO) regression, and support vector machine-
recursive feature elimination (SVM). The use of three machine
learning models in this study enables cross-validation, thereby
enhancing the robustness of biomarker selection. First, random
forest (RF) analysis is a decision tree-based machine learning
method that assesses the importance of variables mainly by
evaluating the importance of each variable (Alakwaa et al., 2018).
Feature selection was performed using the “randomForestSRC”
package. MDS and NMDS were preferred to reduce the high
dimensional data. Then, the importance of the candidate genes
was ranked using the random forest of survival algorithm (nrep =
1000, which means the number of iterations of the Monte Carlo
simulation is 1000), and the genes with relative importance greater
than 0.3 were identified as key genes. The top 30 genes ranked by
importance were used for mapping.

Second, feature genes are screened using the Least Absolute
Shrinkage and Selection Operator (LASSO), a machine learning
algorithm that screens out important variables and constructs
optimal classification models by applying an L1 penalty (lambda)
to set the coefficients of less important variables to zero. The degree
of LASSO regression complexity adjustment is controlled by the
parameter λ. The larger the value of λ, the greater the penalty for a
linear model with more variables, resulting in a final result with
fewer variables and more representative key genes (Zhang et al.,
2021). To determine the optimal value of λ, we then performed 10-
fold cross-validation and screened the most critical central genes by
passing the selected λ. LASSO analysis was performed using the
glmnet package.

Third, feature genes were screened using Support Vector
Machine-Recursive Feature Elimination (SVM). SVM analysis
is a widely used supervised machine learning technique to
identify the best core genes by removing the feature vectors
generated by SVM. We ran the SVM algorithm using the
“e1071”software package to identify feature genes through a 5-
fold cross-validation model.

3 Results

3.1 Acquisition of data from single-cell
sequencing

To comprehensively identify key genes potentially associated with
the transition from AS to HF in cardiac tissues, we first performed a
preliminary screening of differentially expressed genes (DEGs) across
various cell subpopulations using cardiac single-cell transcriptomic data
from the Human Cell Landscape (HCL) constructed by Han et al. The
SCS data were obtained from the HCL database and plotted (Figure 2
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for males and Figure 3 for females). First, the t-distributed stochastic
neighbor embedding (t-SNE) algorithm was used to nonlinearly
dimensionalize the high-dimensional data, and we successfully
classified 12 cell clusters (male, Figure 2A) and 11 cell clusters
(female, Figure 3A). We then identified candidate gene markers in
each cell cluster with screening thresholds for candidate gene markers:
p < 0.05 (Figures 2B, 3B). Figures 2C, 3C show the expression trends of
the top 50 candidate gene markers in different cell clusters. The larger
diameter and more orange-red color of the circle represents the more
significant expression of the gene. We organized the SCS data for males
and females separately to obtain the candidate gene markers in the two
data sets. If there were duplicated genes between two data sets, the genes
in the same cell type were selected as overlapping genes. Based on the
SCS data, we obtained a total of 2828 heart-related genes (1266 for adult
heart 1, 1562 for adult heart 2), and in addition, we analyzed these genes
for KEGG enrichment, and the results are shown in Figure 4. Through
t-SNE dimensionality reduction and clustering of cardiac samples, we
successfully identified multiple cell populations and extracted
significantly expressed candidate biomarkers, providing high-
resolution, tissue-specific gene resources for subsequent
association analyses.

3.2 Identification of gene modules strongly
associated with AS

To identify functional modules highly associated with AS, we
performed WGCNA on the GSE28829 dataset. Compared with

traditional differential expression analysis, WGCNA better captures
the regulatory relationships among genes under complex disease
conditions, making it more suitable for uncovering key modules
tightly linked to the disease-related network structure. Gene modules
strongly associated with AS were identified by WGCNA analysis of the
GSE28829 dataset. During the construction of co-expression network,
the most acceptable soft threshold β = 16 was chosen based on scale
independence and average connectivity (Figures 5A,B).

Average association hierarchical clustering was performed based
on TOM dissimilarity, and genes with similar expression profiles
were classified into the same module, and a total of 12 co-expression
modules of genes related to AS were obtained, which were indicated
by different colors (Figures 5C,D). Figure 5D shows the GSi values of
different modules, and the modules with |GSi|>0.5 were considered
as key gene modules in this study. We found five color modules,
including MEtan, MEpink, MEbrown, MEgreen, and MEyellow, all
of which had |GSi| > 0.5; however, the |GSi| of MEbrownmodule was
the largest, suggesting that MEbrown might be a key gene module
(918 genes; cor = 0.65; P = 2.5e- 111). Therefore, based on the
correlation coefficients and P values, we selected MEbrown as the
key gene module for the next analysis (Figures 5D,E).

3.3 Selection of overlapping genes
associated with HF progression

The limma package was utilized to identify 9675 DEGs from the
GSE57345 dataset, of which 4446 were upregulated and 5229 were

FIGURE 2
The cardiac-related gene markers (SCS data) for male from HCL database. (A) The SCS data was divided into 12 cell clusters. (B) The expression
differences of all cardiac-related genes from HCL database (volcano diagram). (C) Expression trends of the top 50 candidate gene markers in different
cell clusters.
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downregulated (Figure 5F). To identify key driver genes involved in
the transition from AS to HF, we integrated heart-expressed genes
filtered from single-cell transcriptomic data, AS-associated hub
genes identified by WGCNA, and HF-related DEGs from the
GSE57345 dataset. Candidate overlapping genes were selected
based on their intersection, ensuring strong biological relevance.
This strategy guarantees that the selected genes possess cell-type
specificity, disease association, and significant expression changes,
thereby enhancing the scientific rigor and representativeness of
subsequent modeling. Subsequently, 119 overlapping genes were
selected from the cardiac-related 2828 genes screened by SCS data,
918 genes associated with AS identified by WGCNA, and
9675 DEGs associated with HF detected by the limma
package (Figure 5G).

3.4 Functional enrichment analysis and PPI
network construction

To explore the functions of overlapping genes, GO, KEGG, and
DO enrichment analyses were carried out using the “clusterProfiler”
package and the “DOSE” package. GO analysis showed that
biological processes included Regulation_of_immune_system_
process, Immune_effector_process, Defense_response, Cell_
activation, and Response_to_biotic_stimulus. Molecular functions
include Protein containing complex binding, Identical protein
binding, Amide binding, Peptide binding, and Ccr1 chemokine
receptor binding. Cellular components included Secretory granule
membrane, Vacuole, Secretory granule, Vesicle membrane, Cell
surface (Figures 6A–C).

By using QuickGO, these terms have the same GO term (GO:
0002376; immune system process) was selected depend on Ancestor
Chart. Next, we analyzed the key genes in two datasets
(GSE28829 for AS and GSE57345 for HF) with three machine
learning methods (RF, LASSO, and SVM) after overlapping them
with this GO term (GO:0002376; immune system process) and
compared the differences key genes in GSE28829 were analyzed with
three machine learning methods (RF, LASSO, and SVM) after
overlapping them with this GO term (GO:0002376; immune
system process) and compared the differences. 0002376; immune
system process) after overlapping, the common genes screened by
the three machine learning were GRB2, TNFSF13, LGALS9, SASH3,
PAFAH1B1, LSM14A, CCL7, OPTN, and CCL4 (Supplementary
Table S1); the key genes in GSE57345 genes overlapped with GO
term (GO:0002376; immune system process), the common genes

FIGURE 3
The cardiac-related genemarkers (SCS data) for female from the HCL database. (A) The SCS data was divided into 11 cell clusters. (B) The expression
differences of all cardiac-related genes from HCL database (volcano diagram). (C) Expression trends of the top 50 candidate gene markers in different
cell clusters.

FIGURE 4
KEGG analysis of cardiac-related genes defined from SCS data.
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FIGURE 5
Selection of genemodules associatedwith AS thoughWGCNA andDEGs associatedwith HF by limma. (A,B) Soft thresholding power (β) selection via
scale independence and average connectivity. (C) Gene modules associated with AS were shown in different colors below the cluster dendrogram. (D)
The heatmap displays the |GS| values formodules of different colors. The larger the |GS| of amodule, the stronger it is suggested to be associated with AS.
(E) The correlation of MEbrown and AS. (F) The volcano map depicted the DEGs in HF. (G) The venn identified the overlaping genes from cardiac-
related genes, genes associated with AS, and DEGs in HF.

FIGURE 6
Functional enrichment analysis of overlaping genes. (A–C) GO analysis of overlaping genes. (D) KEGG analysis of overlaping genes.
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identified by the three machine learning screens were VSIG4,
FCER1G, IFIT3, IFI44L, CCL5, CTSK, MCOLN1, HIF1A,
CXCL12, GBP5, CD14, OAS1, JAM3, HLA.DPB1, CD48,
PRKCD, DYSF, NAGK, KCNQ1, ORAI1, and IFITM1
(Supplementary Table S2).

KEGG analysis showed that overlapping genes were involved in
Complement and coagulation cascades, Viral myocarditis, Systemic
lupus erythematosus, and, Asthma (Figure 6D). DO enrichment
analysis showed that the expression of overlapping genes was
associated with the development of bacterial infectious disease,
primary bacterial infectious disease, nephritis, primary
immunodeficiency disease, and human immunodeficiency virus
infectious disease (Figure 7).

Next, 119 overlapping genes were analyzed for PPI by String, a
PPI network with 118 gene nodes and 914 edges was constructed
(Figure 8A). The 119 overlapping genes were then analyzed using
the CytoHubba module of Cytoscape software, and the top 30 gene
interactions were obtained based on the degree (Figure 8B).

3.5 Screening biomarkers using machine
learning strategies and external validation

To further identify representative candidate biomarkers from
the 119 overlapping genes, we employed three machine learning
algorithms—RF, LASSO, and SVM—to perform feature gene
selection, thereby enhancing the stability of feature selection
through cross-validation. First, the 119 overlapping genes were
fed into three different machine learning models (RF, LASSO,
and SVM) for analysis to obtain the feature genes in
GSE28829 dataset.

The “randomForest” package was used to run RF to model the
119 overlapping. After MDS and NMDS dimensionality reduction,

the random forest model was able to accurately identify the feature
genes (Figures 9A,B). The 119 overlapping genes were then ranked
according to the gene importance score (Figure 9C), and we took the
top 30 genes (Supplementary Table S3) as candidate genes for the
next round of analysis.

The characterization genes were also identified using LASSO
regression. The 119 overlapping genes were entered into the LASSO
regression with a lambda.min value of 0.063 and a lambda.1se value
of 0.236. The results of LASSO regression showed that among the
119 overlapping genes, 7 genes (Supplementary Table S3) had the
least binomial bias (Figures 9D,E), so these 7 genes were included in
the next analysis.

The SVM algorithm was run using the “e1071”package.
Through 5-fold cross-validation, the SVM method identified top
thirty genes (Supplementary Table S3), indicating that these top
thirty genes had the lowest error in detecting the AS and the highest
accuracy after 100-fold cross-validation (Figures 9F–H), and were
selected to be included in the subsequent analysis.

The candidate genes from GSE28829 were detected by the three
methods (RF, n = 30; LASSO, n = 23; SVM, n = 30) were visualized as
Venn plot (Figure 9I).

Subsequently, we also used the same method above to acquire
the feature genes from GSE57345. The candidate genes were
visualized as Venn plot as well (Figures 10A–I; Supplementary
Table S4). Finally, C3, CCL4, and CD48 were identified as three
overlapping genes for GSE28829 and GSE57345 (Figure 10J).

For the external validation, the GSE53274 dataset exhibits AUCs
of 0.9 for CCL4 and 0.8 for CD48, as illustrated in Figures 11A–C,
both of them were higher than 0.75. The AUCs of CD48 in the
GSE5406 dataset and GSE59867 dataset are 0.758 and 0.706,
respectively (Figures 11D–F; Figures 11G–I). CD48 demonstrated
stable and relatively high predictive performance across multiple
datasets (AUC >0.75), indicating its potential as a robust biomarker

FIGURE 7
Do analysis of overlaping genes.
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FIGURE 8
PPI network construction and node gene selection. (A) The PPI network showed the total interactions of 119 overlaping genes. (B) The top 30 node
genes were identified based on the CytoHubba module of the Cytoscape software.

FIGURE 9
Selection of candidate biomarkers of in GSE28829 (AS patients) with RF, LASSO and SVM approaches. (A) MDS and (B) NMDS dimensionality
reduction. (C) Ranking of gene importance score. (D) Determination the optimal value of λ and (E) Lambda.min value and a lambda.1se value. (F–H) SVM
was applied to screen biomarkers based on the top 30 node genes. (I) The intersection of three machine learning algorithms was obtained with a venn.
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with broad applicability and clinical translational value in the
progression from AS to heart failure HF.

4 Discussion

AS is a slowly progressive form of aortitis and is a leading cause
of death worldwide (Fardoun et al., 2017).

Vascular embolism caused by advanced unstable plaque
detachment increases the chance of HF and is highly life-
threatening (Kong et al., 2022). AS is a multistep pathologic
process involving multiple factors, and the search for specific key
genes and pathways to predict its progression to heart failure is
critical for early treatment of patients. Previous studies have
explored pivotal genes associated with AS (Wen et al., 2023; Sun
and Li, 2023), respectively; however, no study has explored the
mechanisms underlying the progression of HF in patients with
AS at the genetic level. To our knowledge, this is the first study to
perform four rounds of biomarker screening using a
comprehensive suite of computational methods to identify a
candidate gene for early detection of HF progression in AS

patients, aiming to provide novel insights for patient
management.

Scholars now believe that the basis of atherosclerosis pathology
progresses from lipid accumulation to local and systemic
inflammation (Lu and Daugherty, 2015). Atherosclerosis is driven
by lipid accumulation in the arterial wall, inflammation, and
vascular damage. As the disease progresses, some plaques tend
toward an unstable phenotype with more severe inflammation.
Eventually, the plaque ruptures and an occlusive thrombus forms
when blood comes into contact with the plaque contents, which
induces myocardial infarction and ultimately leads to cardiomyocyte
death, impaired cardiac function and heart failure. In this study, we
identified a total of 119 overlapping genes in the two diseases, and
GO and KEGG pathway enrichment analyses showed that these
genes were significantly enriched in inflammatory and immune
pathways, including Immune response, Inflammatory response,
and Innate immune response, which are collectively involved in
arterial AS and HF onset and progression. Cellular necrosis and
macrophage infiltration have been shown to be key features of
plaque vulnerability (Dohi et al., 2013; Hansson et al., 2015).
Inhibiting macrophage proliferation and infiltration inhibits

FIGURE 10
Selection of candidate biomarkers of in GSE57345 (HF patients) with RF, LASSO and SVM approaches. (A) MDS and (B) NMDS dimensionality
reduction. (C) Ranking of gene importance score. (D) Determination the optimal value of λ and (E) Lambda.min value and a lambda.1se value. (F–H) SVM
was applied to screen biomarkers based on the top 30 node genes. (I) The intersection of threemachine learning algorithms was obtainedwith a venn. (J)
The AUC obtained from ROC of two genes.

Frontiers in Genetics frontiersin.org10

Ni et al. 10.3389/fgene.2025.1587274

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2025.1587274


atherosclerotic plaque formation, reduces local inflammation and
decreases the necrotic core area, thereby improving plaque stability
and preventing progression to malignancy (Yamada et al., 2018;
Chen et al., 2017).

In the last decade, science has made significant progress,
especially with the rapid development of bioinformatics and
machine learning strategies. Single-cell sequencing (SCS), a new
technology for high-throughput sequencing of genomes,
transcriptomes, and epigenomes at the single-cell level, plays an
important role in the treatment of cardiovascular diseases. Secondly,
limma analysis and WGCNA are used to screen gene clusters for
connected and overlapping genes in AS and HF. Machine learning

algorithms have a wide range of applications in biomedicine and
have shown excellent efficiency in clinical trials (Zhou et al., 2022; Fu
et al., 2018). However, few studies have integrated these several
approaches to investigate the role of mRNAs in patients with
atherosclerosis regarding the progression of HF. We integrated
these analytical tools, including PPI network analysis and
nomogram assessment, to identify a robust biomarker, CD48, for
predicting HF progression in AS patients.

CD48, a member of the immunoglobulin superfamily (IgSF),
belongs to the CD2 subfamily of signaling lymphocyte activation
molecules (SLAMs). It is a glycosylphosphatidylinositol (GPI)-
anchored protein predominantly expressed on the membrane

FIGURE 11
The AUC of external validation. The AUCs of CLL4 (A, D, G), CD48 (B, E, H), and C3 (C, F, I) in GSE53274, GSE5406, and GSE59867, respectively.
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surfaces of antigen-presenting cells and T cells, particularly
lymphocytes, dendritic cells, and endothelial cells (McArdel et al.,
2016). Functionally, CD48 plays a crucial role in the T cell activation
cascade (Rudi et al., 2021). By interacting with its high-affinity
ligand CD2—a key molecule in T cell activation—CD48 promotes
T cell proliferation and facilitates intercellular communication
between T cells and other immune cells (Muhammad et al.,
2009). The CD48–CD2 interaction is pivotal in modulating the
magnitude and quality of immune responses (Del Porto et al., 1991).
Although no studies have yet definitively established a direct link
between CD48 and the pathogenesis of atherosclerosis (AS),
myocardial infarction (MI), or heart failure (HF), CD48’s role in
immune regulation suggests its potential involvement. Chronic
inflammation is widely recognized as a major driver of plaque
destabilization in advanced atherosclerosis (Ley et al., 2011).
Histopathological analyses of advanced human plaques reveal
dense immune cell infiltration, with T cells accounting for
approximately 50%–65% of infiltrating cells (Depuydt et al.,
2020). These T cell subsets secrete pro-inflammatory cytokines
that contribute to plaque vulnerability and rupture. Additionally,
senescent T cells have been shown to accumulate intracellular
cholesterol, further promoting vascular inflammation and
instability (Bazioti et al., 2023). A recent bioinformatics study
identified CD48 as a candidate diagnostic biomarker for acute
myocardial infarction (AMI), highlighting its potential utility in
early diagnosis and risk stratification (Jin et al., 2024). In this study,
we observed that CD48 exhibited stable expression patterns in both
diseased tissues and peripheral blood samples, suggesting that
CD48 may be involved in a common pathway linking aortic
stenosis (AS) to heart failure (HF) progression. However, further
experimental validation is required to confirm this association.
Notably, CD48 exists in two forms: membrane-bound (mCD48)
and soluble (sCD48) (McArdel et al., 2016). The soluble form can be
quantitatively measured in plasma or serum. Gangwar et al. reported
significantly elevated sCD48 levels in patients with mild asthma and
proposed a threshold of >1482 pg/mL as the optimal diagnostic
cutoff to distinguish asthma patients from healthy controls (G et al.,
2017). These findings indicate that sCD48 is detectably expressed in
peripheral blood, highlighting its potential as a feasible non-invasive
biomarker. Given the stable expression of sCD48 in peripheral blood
and its close association with immune responses, it holds promise as
an early warning biomarker for HF progression in AS patients.
sCD48 could be integrated into a multimodal diagnostic framework
that combines enzyme-linked immunosorbent assay (ELISA)-based
non-invasive sCD48 detection with conventional imaging
modalities—such as echocardiography for left ventricular ejection
fraction (LVEF) assessment—and biochemical markers, including
N-terminal pro–B-type natriuretic peptide (NT-proBNP), to
enhance risk stratification and disease monitoring.

Our Gene Ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) enrichment analyses revealed that differentially
expressed genes were primarily enriched in inflammatory responses,
T cell receptor signaling pathways, and other related processes,
which play pivotal roles in the progression from atherosclerosis to
heart failure. Previous studies have demonstrated that the rupture of
atherosclerotic plaques and subsequent myocardial remodeling are
characterized by chronic inflammation mediated by T lymphocytes
and concomitant reactive fibrosis (Anzai, 2018). Chronic

inflammatory states accelerate heart failure development by
promoting cardiomyocyte apoptosis, collagen deposition, and
ventricular remodeling. Thus, our enrichment results provide
multi-omics level support for the critical role of immune-
inflammatory networks in AS-to-HF transition.

Using the HCL database, we demonstrated significant
differences in cardiac cell clusters between male and female
subjects based on SCS data. The t-SNE clustering further
indicated sex-specific variations in the composition of immune
cells and cardiomyocyte subtypes, suggesting potential sex
differences in the cardiovascular immune microenvironment.
Studies have reported that sex influences immune regulation
mechanisms in AS and HF. Female AS patients typically exhibit
stronger humoral immune responses (Fairweather, 2015), whereas
males show elevated T cell–mediated inflammatory activity (Klein
and Flanagan, 2016). This sex-specific immune response pattern
may indirectly affect CD48-mediated T cell activation and immune-
inflammatory signaling pathways. Moreover, the function and
phenotype of these immune cells are modulated by sex hormones
such as estrogen and testosterone (Trigunaite et al., 2015),
potentially leading to differential effects on CD48 expression and
function between sexes and further shaping the
immunopathological characteristics during AS-to-HF progression.

The results of this study could have deeper applications in both
basic and clinical research. For basic research: first, there is a need to
validate the expression of the identified genes in a combined model
of AS and HF. For example, a combined model of AS and HF can be
established by performing coronary artery ligation in ApoE−/− mice.
Later, at unused time points, heart tissue and peripheral blood are
collected and tested for expression of the two candidate genes.
Second, adeno-associated virus (AAV) was injected into the mice
to alter gene expression, and ultrasound, electrocardiography, and
biochemical tests were performed to assess whether the gene
expression changes affected the progression of HF in the
atherosclerotic mice; third, high-throughput sequencing was
performed on cardiac tissues and peripheral blood to gain a
deeper understanding of the intrinsic mechanisms of HF
progression. These experiments have not been performed in this
present study, and this is a research idea that we would like to
conduct in the future. Based on the above research tools, we hope to
identify and validate biomarkers of HF progression in
atherosclerotic patients, which will facilitate the implementation
of early interventions for atherosclerotic patients to avoid health
deterioration due to plaque rupture. For clinical research: After
clarifying the biomarkers of HF progression in atherosclerotic
patients and their intrinsic mechanisms, clinical studies can be
designed at a later stage to improve the application value. For
example, patients with AS are recruited, and based on the results
of imaging and biochemical tests, etc., participants are categorized
into two groups (low or high), and then samples are collected to
verify the results.

Although our study provided novel insights, there were some
limitations. First, the markers identified in this study were not fully
consistent with the results of the external validation, and we
speculate that this may be due to the following reasons: first, in
the analysis of transcriptome datasets, the number of genes is often
much larger than the number of samples, which may lead to
overfitting. Certainly, to minimize the risk of overfitting in this
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study, we applied k-fold cross-validation during model training (10-
fold cross-validation for LASSO; 5-fold cross-validation for SVM),
while the Random Forest (RF) model was subjected to
1,000 iterations of Monte Carlo simulations to enhance result
robustness; Second, different datasets may have used different
sequencing platforms and there are differences in data cleaning
and normalisation methods, and these methodological differences
may also lead to inconsistencies in the efficacy of markers across
datasets; Third, the population characteristics of the external
validation dataset are not exactly the same as the test dataset,
e.g., race, age, baseline disease status, Fourth, because
GSE59867 is a whole blood dataset, which differs from other
datasets in terms of tissue type, gene efficacy in blood samples
may not be as high as in plaques and cardiac tissue, which may be
related to disease progression. In future studies, we will provide
more fine-grained control over data acquisition and processing,
feature selection and model construction, and combine clinical
sample testing with biological experiments to ensure the
robustness of the markers.

Second, the differential gene screening threshold for single-cell
sequencing was set at P < 0.05, a more lenient threshold, which may
have implications for the results. On the one hand, the more relaxed
threshold may lead to an increase in false positives. Screened genes with
significant effect in the test set did not show effect in the external
validation. On the other hand, too many candidate genes may lead to
“clutter” in the results of functional enrichment analyses. We used a
relatively loose threshold in the initial screening to capture as many
candidate genes as possible, and then performed a second screening
using multiple analysis of variance methods, retaining only those genes
that performed stably across methods.

Third, because specific plaque tissues had to be used, the sample size
was small. Since only one microarray dataset was analyzed for one
disease and there was a lack of clinical information, this inevitably led to
bias and population bias. This study combined analyses of both tissue
and peripheral blood samples, thereby enhancing the translational
potential of our findings. However, significant differences may exist
between samples from different sources in terms of gene expression
profiles, cellular composition, and the pathological states they reflect.
For instance, peripheral blood samples predominantly represent
systemic inflammatory status, offering advantages in clinical
accessibility and dynamic monitoring, whereas tissue samples more
directly capture pathological and biological changes within local lesions.
Given that CD48 is expressed across various immune cell types, its
expression changes in peripheral blood may be influenced by systemic
immune activation, which could partially explain the somewhat lower
predictive performance observed in blood samples. In contrast,
CD48 expression in arterial or myocardial tissues is more likely to
be closely associated with the local immune microenvironment. Future
studies employing spatial transcriptomics or single-cell sequencing
could further elucidate the precise expression patterns and
functional roles of CD48 within specific cellular subpopulations and
tissuemicroenvironments, thereby enhancing the specificity and clinical
translational value of this biomarker.

Fourth, we applied only three different machine learning
algorithms to cross-select the identified genes. When analysing
transcriptome datasets, there are situations where the number of
genes is much higher than the number of samples, which can lead to
overfitting. Due to overfitting, the results of the internal test set may be

better, but the results of the external dataset validation are poor.
Therefore, we used LASSO, RF, and SVM to screen the genes.
Overfitting effect due to small sample size and high data
dimensionality in this study. When analysing transcriptome
datasets, it is common to have a much larger number of genes
than the number of samples, which can lead to overfitting. Due to
overfitting, the results of the internal test set may be better, but the
results of the external dataset validation are not satisfactory.
Therefore, we used LASSO, RF and SVM methods to screen genes.
Each algorithm has its own advantages, e.g., LASSO regression avoids
overfitting (Li and Sillanpää, 2012); SVM-RFE is able to retain
variables relevant to the outcome in datasets with fewer samples
(Huang et al., 2014). RF algorithm is good at managing high-
dimensional data and building predictive models (Blanchet et al.,
2020). However, in fact, there are many other methods, including
arithmetic mean, geometric mean and median, which have specific
advantages in feature selection (Li et al., 2022). More algorithms (such
as Elastic-Net, XGBoost, etc.) and integrated approaches should be
jointly used to identify feature genes in subsequent studies, and
external validation cohorts will be expanded to reduce the risk of
overfitting and enhance the stability of the model. We systematically
detailed the key parameters and cross-validation strategies of each
machine learning algorithm in the Methods section to enhance result
reliability and minimize the risk of overfitting.

Fifth, although we identified one biomarker for detecting the
progression of HF in patients with AS using the dataset, further
in vitro and in vivo experiments are necessary in the future to
elucidate the regulatory mechanisms of CD48. Sixth, AS has both
genetic and autoimmune etiologies, and its pathogenesis needs to be
further explored based on etiology.

In conclusion, this study has identified a potential biomarker,
CD48, using bioinformatics and machine learning algorithms,
which provides a model for detecting atherosclerosis patients
who have progressed to heart failure and also suggests potential
therapeutic targets. In summary, we anticipate that CD48 may serve
as a clinically relevant biomarker for predicting AS-to-HF
progression, enabling earlier intervention and potentially
improving long-term outcomes for patients with atherosclerosis.
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