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The hypoxia-ischemia (H-I) diseases share some common mechanisms which
may help to delay the diseases’ processing. However, the shared features are still
unclear due to the lack of large scale high-quality multi - omics data that
specifically target the same disease, population, and tissues/cells. In this study,
we developed a novel risk assessment method to analyze four H–I diseases
including eclampsia/preeclampsia (PE), pulmonary arterial hypertension (PAH),
high-altitude polycythemia (HAPC), and ischemic stroke (IS). A combined new
evaluation score was designed to integrate evaluation information from
genomics, transcriptomics, proteomics, and metabolomics in previous
researches. Genes were then divided into different groups according to their
risk assessment score. The most significant group (direct biomarkers) contained
genes with direct evidence of association to H-I disease: PIEZO2 and HPGD
(shared), TSIX and SAA1 (PAH - specific), GSTM1, DNTT, and IGKC (HAPC -
specific), LEP, SERPINA3, and ARHGEF4 (PE - specific), CD3D, ITK, and RPL18A
(IS - specific). The groups ‘Intermediate crucial biomarkers’ contained genes
played important roles in H-I disease related biological processes: CXCL8
(shared), HBG2, GRIN2A, and FGFBP1 (PAH - specific), FAM111B (HAPC -
specific), C12orf39 and SLAMF1 (PE - specific). The genes lacking disease-
association evidence but with similar characteristics with the above two
groups were considered as ‘potential minor-effect biomarkers’: are SRRM2 -
AS1 (shared), ATP8A1 (PAH - specific), RXFP1 and HJURP (HAPC - specific),
HIST1H1T (PE - specific). With the development of biological experiments,
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these intermediate crucial and potential minor-effect biomarkers may be proved to
be direct biomarkers in the future. Therefore, these biomarkers may serve as an
entry point for subsequent research and are of great significance.
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1 Introduction

Hypoxic-ischemic (H-I) diseases arise from diverse etiologies
and can be categorized into four primary types based on their core
pathophysiological characteristics including environment exposure,
special physiological stage, and cerebrovascular/cardiovascular
conditions. Of which, environment-related disorders, such as
high-altitude polycythemia (HAPC), are directly linked to specific
environmental factors like hypoxic exposure. Similarly,
physiological-stage-related conditions exemplified by eclampsia/
preeclampsia (PE) are closely associated with physiological
changes during particular life stages, such as pregnancy.
Cerebrovascular H-I disorder-including several diseases such as
ischemic stroke (IS), hypoxic-ischemic encephalopathy (HIE),
and cerebral small vessel disease (CSVD), primarily involve
impaired cerebral perfusion or local hypoxia. Cardiovascular H-I
disorders, such as pulmonary arterial hypertension (PAH) and
myocardial infarction (MI), are characterized by systemic or
regional circulatory dysfunction that leads to tissue ischemia and
hypoxia. These classifications reflect distinct mechanisms through
which hypoxia and ischemia manifest across different organ systems
and contexts. All these can lead to severe injuries such as cerebral
palsy, brain damage, and even death since it may trigger massive
cellular malfunction and cell death (Zhang Z. et al., 2018).

Many researches focused on the common mechanisms of these
H-I diseases and found subtle causal relationships among them.
Perinatal hypoxia, which was one of the key points of eclampsia, was
shown to increase susceptibility to high-altitude polycythemia and
attendant pulmonary vascular dysfunction (Julian et al., 2015).
Besides, since preeclampsia is a pregnancy-specific disorder
resulting in hypertension and multiorgan dysfunction, it was
shown to be associated with a 2-fold increased risk in stroke as
indicated by a meta-analysis based on 22 studies
covering >6.4 million women (Zamudio, 2007). The development
of PAH was speculated to be related to polycythemia vera in case
reports (Nand and Orfei, 1994; Tachibana et al., 2017). It is possible
that the heart and pulmonary vasculature are affected by
myeloproliferative process more commonly than is realized.
Besides, pulmonary hypertension is a known complication of
myeloproliferative neoplasms (MPN) with estimated prevalence
as high as 50%. Patients with polycythemia vera (PV) report a
wide spectrum of symptoms that significantly overlap with those
reported by patients with PAH. Yet, it is not known how PAH affects
outcomes and survival in patients with PV(Gazda et al., 2024).
Stroke is a major non-cardiac morbidity in patients with pulmonary
hypertension as indicated by meta-analysis based on 14 studies
including 32,523 participants (Shah et al., 2019). Ischemic stroke is
considered as a presenting manifestation of polycythemia vera and
validated in a meta-analysis (Burattini et al., 2022).

However, the common mechanisms among these diseases were
not clear, especially on H-I level. Previous studies have
demonstrated that the phosphatidylinositol-3 kinase (PI3K)/
protein kinase B (AKT) signaling pathway, which regulates a
wide range of cellular functions, is involved in the resistance
response to H-I through the activation of proteins associated
with survival and inactivation of apoptosis-associated proteins
(Zhang Z. et al., 2018). This indicated that further investigation
of biological functions in a systematic way may provide further
insights of the potential targets for treating diseases accompanied
by H-I.

We hypothesize that the observed variations among ischemic-
hypoxic diseases may be attributed to differences in vascular
perfusion patterns or circulatory mechanisms within the body.
To investigate this hypothesis, we selected the four representative
diseases mentioned above (PH, HPAC, IS, and PE) (Figure 1A) as
model conditions for comparative analysis.

Based on this, we constructed a new H-I disease profile by
integrating of multiple transcriptomic datasets. Novel scores were
designed for the risk assessment by incorporating intermediate and
result data from other omics. This study provides an important
theoretical basis for subsequent related research.

2 Materials and methods

This work was performed using the following pipeline shown
in Figure 1B.

2.1 Public H-I datasets

A total of 15 publicly available hypoxia-ischemia (H-I) datasets
were retrieved from the Gene Expression Omnibus (GEO) database
(Edgar et al., 2002). These datasets include 397 cases, representing
samples from four H-I disease groups, and 305 controls,
representing samples from the corresponding control groups. The
datasets encompass a wide range of experimental data, offering
valuable insights into the molecular profiles of H-I diseases. The
detailed characteristics of these datasets, including sample features
and disease classifications, can be found in Table 1. These datasets
provide a comprehensive resource for further investigation into the
molecular mechanisms underlying H-I diseases.

2.2 Data normalization and
statistical analyses

All the datasets were normalized using the following steps.
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(1) Feature filter: genes with expression values of zero/missing in
more than 75% of the samples were filtered to reduce the
impact of low expression levels or extensive missing data.

(2) Missing data imputation: all the left missing values were
imputed using zeros.

(3) Min-Max Normalization: each feature was normalized as follows:

Normalized Value � Value −Min

Max −Min

whereMin andMax denote the minimum and maximum values of
each column, respectively. This normalization method effectively
mitigates technical variability between samples, ensuring that the

FIGURE 1
Hypothetical disease-network relationships and the construction of a cross-omics analysis pipeline. (A) A proposed network showing the
interconnections among ischemic stroke, pulmonary hypertension, polycythemia, and eclampsia/preeclampsia (Created with BioGDP.com) (Jiang et al.,
2025). (B) The steps of the cross-omics analysis pipeline, including data acquisition, preprocessing, differential analysis, biomarker identification,
functional analysis, and cross-omics scoring.

FIGURE 2
Data distribution and feature processing in the disease datasets. (A) The chart illustrates the distribution of diseases across corresponding datasets.
The datasets for high-altitude polycythemia (HAPC) are labeled as HAPC-1 (GSE145802) and HAPC-2 (GSE29977), for ischemic stroke (IS) as IS-1
(GSE162955), IS-2 (GSE16561), and IS-3 (GSE202709), for pulmonary arterial hypertension (PAH) as PAH-1 (GSE168905) and PAH-2 (GSE254617), and for
eclampsia/preeclampsia (PE) as a combined dataset from GSE75010 along with seven other datasets. (B) Feature processing analysis across the
datasets. The stacked bar charts depict the proportions of original features, filtered features, and differentially expressed genes (DEGs) for each dataset,
including HAPC (HAPC-1 and HAPC-2), IS (IS-1, IS-2, IS-3), PAH (PAH-1 and PAH-2), and PE. These datasets underwent feature filtering and DEG
identification, with the processed data shown for each condition.
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expression data are comparable across different conditions and
facilitating accurate downstream analyses.

(4) Disease profile construction: the datasets of a same disease
were firstly merged by gene names, row-wise normalization
was then performed to standardize the data scale. Different
H-I disease datasets (without control) were merged using the
same way and batch effect correction was applied using R
package sva (Leek et al., 2012) (ComBat function). Outliers
with expression values outside the 10th to 90th percentile
range were excluded to enhance data quality and improve the
accuracy of subsequent analyses.

(5) Differentially expressed gene (DEG) analyses: the expression
differences between case and control groups for each gene
were analyzed using Wilcoxon Rank-Sum Test. P-values were
adjusted using false discovery rate (FDR). Fold change (FC)
for each gene was calculated as the ratio of the median and
mean expression level between case and control groups. In the
analysis process, individual datasets used the median for FC
calculation to reduce outlier sensitivity, while integrated
datasets employed the mean to improve statistical stability
across aggregated samples. All genes were categorized as
follows: 1) Upregulated DEGs: genes with FC > 1 and
FDR ≤0.05; 2) Downregulated DEGs: genes with FC <
1 and FDR ≤0.05; 3) Non-significant: genes with FC =
1 or FDR >0.05, indicating no significant expression
difference between the case and control groups.

2.3 Functional analyses

(1) Enrichment analyses: DEGs were subjected to functional
enrichment analyses using the clusterProfiler package (Yu

et al., 2012) to investigate Gene Ontology (GO) and Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathways
(Kanehisa and Goto, 2000). A p-value threshold
of ≤0.05 was applied to identify significantly enriched GO
terms and KEGG pathways, ensuring the statistical significance
of the selected functional categories and pathways.

(2) GO term clustering: simplifyGOFromMultipleLists function
from the simplifyEnrichment package (Gu and Hübschmann,
2023) was used to find clusters among significantly enriched
GO BP terms (p-adj cutoff of 0.05) using org. Hs.eg.db as the
annotation database. Clusters with p-adj less than
0.05 were kept.

2.4 Cross-omics evaluation risk scores

Six risk scores on different omics levels and one final score were
designed to evaluate the roles each gene performed in each disease
as follows.

2.4.1 ClinVar score (Gc)
This score is used to assess the potential significance of the

association between a gene and a disease, based on the number of
variants associated with each gene in the ClinVar database
(Landrum et al., 2014). The score is calculated by applying a
logarithmic transformation to the variant count (Score) followed
by min-max normalization. The formula is as follows:

Gc � log Score + 1( ) −min log Score + 1( )( )
max log Score + 1( )( ) −min log Score + 1( )( )

Where Score represents the number of variants in the gene. The
logarithmic transformation, log(Score + 1), is used to mitigate the

TABLE 1 Overview of publicly available high-throughput transcriptomic datasets used in this study.

Disease type GEO accession Cases Controls PMID

Pulmonary Arterial Hypertension (PAH) GSE254617 96 52 39167456

GSE168905 12 9 33764154

High-Altitude Erythrocytosis (HAPC) GSE29977 5 5 \

GSE145802 70 32 33677043

Ischemic Stroke (IS) GSE162955 6 6 \

GSE16561 39 24 20837969; 28446746; 29263821

GSE202709 12 4 37562178

Eclampsia/Preeclampsia (PE) GSE30186 6 6 22702245

GSE10588 17 26 19249095

GSE24129 8 8 21810232

GSE25906 23 37 21183218

GSE43942 5 7 23544093

GSE4707 10 4 16860862

GSE44711 8 8 23770704

GSE75010 80 77 27160201; 28962696; 29187609; 29507646; 30278173; 30312585
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impact of extreme values, while min-max normalization ensures
that the score falls within the range [0, 1]. Higher scores indicate a
greater number of gene variants, suggesting a stronger association
with the disease.

2.4.2 pLI score (Gp)
pLI Score (Gp) (Karczewski et al., 2020) is used to assess the

importance of a gene to organismal function, with values ranging
from [0, 1]. To ensure compatibility for subsequent
multidimensional integration while preserving the characteristics
of the original data, a logarithmic transformation combined with a
smoothing-based normalization method is applied. The formula is
as follows:

Gp � log pLI + ε( ) −min log pLI + ε( )( )
max log pLI + ε( )( ) −min log pLI + ε( )( )

Where pLI is the raw value, representing the gene’s importance
to biological function, and ε is a small constant (1e − 12) added to
prevent the calculation of log(0).

2.4.3 Transcriptome score (GT )
This score is used to assess the importance of a gene at the

transcriptome level, calculated as:

GT � 1 − p value

In the differential expression analysis for each disease, a p value
is calculated for each gene. By transforming the p value into GT

using the above formula, higher scores indicate greater statistical
significance and potential importance of the gene in the disease
context. This score provides a quantitative measure for prioritizing
genes based on their transcriptomic relevance.

2.4.4 Proteome Score (GP)
Proteome Score is used to assess the importance of a gene’s

corresponding protein in the protein-protein interaction network
(PPIN) from STRING (Szklarczyk et al., 2023). The score is based on
the degree of each protein in the interaction network, where the
degree represents the number of interactions a protein has with
other proteins. A higher degree indicates stronger connectivity
within the network, suggesting that the protein may play a more
crucial role in biological processes. The specific scoring formula is
as follows:

GP � log Di + 1( ) −min log Di + 1( )( )
max log Di + 1( )( ) −min log Di + 1( )( )

Di represents the degree of the i-th protein in the network,
indicating its interaction count. After applying a logarithmic
transformation to the degree values, min-max normalization is
used to scale all node degrees to the range [0, 1]. A higher score
indicates that the protein has stronger connectivity in the interaction
network and may play a key role in processes such as metabolism,
biological regulation, or signal transduction.

2.4.5 Metabolome Score (GM)
Metabolome Score (GM) is used to assess the importance of a

gene in major metabolic pathways in SMPDB (Frolkis et al., 2010).
For each gene in the input file, the associated metabolic pathways are

counted, and the most frequent pathway (Pathway) is identified. The
score is then assigned based on whether the gene belongs to this
Pathway. If the gene is part of the pathway, its score is calculated as
the frequency of that Pathway divided by the total number of genes
that can successfully match any Pathway. If the gene does not belong
to the Pathway, its score is 0. The specific formula is as follows:

GM � ndominant

Ntotal

Where the most frequent Pathway refers to the pathway that
appears most frequently across all genes in the Pathway distribution,
and the total number of matching genes refers to the total number of
genes that can match any given Pathway. The score naturally falls
within the range of [0, 1], with higher scores indicating that the gene
may play a key role in the metabolic network, while low scores or a
score of 0 suggest a weaker association with major pathways.

2.4.6 Tissue specificity score (GTS)
We employed the method proposed by Sevahn K. Vorperian

et al. for cell lineage tracing of the samples, thereby obtaining the
corresponding cell contribution scores (Vorperian et al., 2022). The
score TS quantifies the expression specificity of a gene across various
tissues by evaluating its overall expression characteristics and
distribution in highly specific tissues. The total expression
specificity of a gene across all tissues, referred to as total score
(TStotal), is calculated as the sum of its tissue-specific
scores (TScount):

TStotal � ∑
tissue

TSscore

The number of tissues where the gene exhibits significant
specificity (TSscore > 2.5) is represented as number of tissues
(TScount), calculated as:

TScount � ∑
n

i�1
1 TSscore > 2.5( )

To normalize the metrics and ensure consistency across genes,
the total score (TScount) is scaled to the range [0, 1] using Min-Max
Normalization.

Additionally, TScount is normalized by dividing it by a constant
factor, TSnorm, which represents the total number of tissues in the
dataset (32 types).

The combined tissue specificity score (GTS) integrates both the
normalized total score and the normalized tissue count, capturing
the overall expression specificity and the gene’s distribution across
highly specific tissues. It is calculated as:

GTS �
TScount
TSnorm

× TStotal −min TStotal( )( )
max TStotal( ) −min TStotal( )

2.4.7 Final score (GF)
The integrated final score (GF) quantifies the overall importance

and multi-omics characteristics of a gene. The weights for each
omics layer are determined using principal component analysis
(PCA), specifically based on the first principal component
(PCA1), which captures the maximum variance in the data. A
higher GF indicates a stronger association between the gene and
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the specific disease, suggesting that the gene may play a more
significant role in disease pathology and could serve as a
potential biomarker. The weight (wi) for each omics layer is
calculated as follows:

wi � Loadin| gi

∣∣∣∣
∑n

j�1 Loadin| gj

∣∣∣∣

In this formula, |Loadingi| represents the absolute value of the
loading coefficient for the i -th omics layer in PCA1, and
∑ | Loadingj| is the total sum of the absolute values of all
loading coefficients.

The integrated score is then computed as the weighted sum of
standardized scores from all omics layers:

GF � ∑
n

i�1
wi × Si

Si denotes the standardized score of the i -th omics layer, and wi is
the corresponding normalized weight.

2.4.8 Clustering of H-I profile
To explore the relationships between the four diseases based on

GF, we performed hierarchical and K-means clustering using the GF

matrix (Euclidean distance as the similarity metric and Ward’s
method (ward.D2) for linkage). This approach allowed us to
identify disease groupings based on shared molecular
characteristics, revealing potential similarities and distinctions in
their underlying genetic profiles.

2.4.9 Biomarker type classification
All the biomarkers identified were classified into the following

3 types according to the literature search results: 1) direct biomarker:
genes played a crucial role in at least one stage of the occurrence,
development, and prognosis of a H-I disease; 2) intermediate crucial
biomarkers: genes played a key role in a certain crucial biological
process related to the occurrence, development, and prognosis of a
H-I disease; 3) potential minor - effect biomarkers: genes that
currently have no relevant research to confirm their association
with the studied disease but possess similar characteristics to the
above two types of biomarkers.

3 Results

3.1 Pan-ischemic hypoxic disease profiles
construction

In this study, we analyzed multi-omics datasets from four H-I
diseases. For pulmonary arterial hypertension (PAH), GSE254617
(Hong et al., 2024) and GSE168905 (Li et al., 2021) were included.
The raw average number of detectable features was 20,962 ± 3,387,
which decreased to 18,723 ± 220 after normalization. 3,544 ±
2,513 DEGs were identified across these datasets. For high-
altitude polycythemia (HAPC), GSE29977 and GSE145802 (Tan
and Meier-Abt, 2021) were analyzed. A significant difference was
observed between these datasets (Figure 2), with the standard
deviation of the raw feature counts in GSE145802 being 7,857,
which is 2.3 times higher than that of GSE29977. This indicated

substantial heterogeneity between datasets. For ischemic stroke (IS),
GSE162955, GSE16561 (Barr et al., 2010), and GSE202709 (Kanki
et al., 2023) were analyzed. The average number of detectable
features before preprocessing was 21,305 ± 4,526, which was
reduced to 18,565 ± 1,462 after preprocessing. The average
number of DEGs identified across these datasets was 469 ± 384,
reflecting a moderate degree of internal variability. For preeclampsia
(PE), the data were derived from an integration of datasets from
prior studies (Benton et al., 2018). Rigorous preprocessing and
analysis of these datasets significantly improved data quality and
consistency. Subsequent differential expression analysis of the
preeclampsia dataset (comprising 14,651 genomic features)
revealed 6,124 statistically significant differentially expressed
genes (DEGs). Despite notable differences in the number of
detectable features and DEGs across datasets for each disease, the
comparison of internal standard deviations provided useful insights
into the variability within and among datasets. This variability
highlights the inherent heterogeneity and complexity of multi-
omics data associated with different H-I diseases.

3.2 Shared mechanisms among H-I
disease profile

We conducted a comprehensive gene scoring analysis across
seven layers for H-I disease profile. This resulted in the construction
of the HI-R-DP scoring matrix, consisting of 28 columns, where
each column represents scores from a specific layer, and each row
corresponds to a gene’s performance across these layers.
Subsequently, we calculated the total GF for each disease. Based
on the presence of genes in the four diseases, we classified all genes
into five groups to explore their commonalities and specificities
across multiple diseases.

As shown in Figure 3A, the degree of gene sharing across
different diseases varies greatly. The number of pan-disease genes
is higher than other types indicating the shared mechanism among
H-I diseases. For genes that received scores in all four diseases, the
distribution of GF scores was shown in Figure 3B. The Kruskal-
Wallis test revealed significant differences in GF across diseases (p <
2.2e-16). Pairwise comparisons showed that the score differences
between PAH and HAPC were statistically significant (p = 0.016),
suggesting some degree of difference in their gene regulatory
patterns, although the difference was smaller compared to other
disease pairs. In contrast, PAH exhibited highly significant score
differences when compared to PE and IS (p < 1.2e-10), indicating
greater molecular regulatory differences among these diseases.
Similarly, HAPC also showed significant score differences when
compared to PE and IS (p < 1.0e-4), suggesting that key genes in
high-altitude polycythemia follow a distinct scoring pattern
compared to other diseases. The most pronounced difference was
observed between PE and IS (p < 2e-16), implying substantial
biological differences in the expression or functional patterns of
shared genes between these two diseases. These findings indicate
varying degrees of bias in the functional regulation of shared genes
across the four diseases, reflecting their unique pathological
mechanisms. Although the difference between PAH and HAPC
is relatively small, it still suggests potential variations in gene
regulation related to vascular adaptation and oxygen supply. In
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contrast, the strong divergence between PE and IS further supports
significant molecular regulatory differences between these
conditions.

To further explore the common characteristics of the disease
spectrum, we selected genes present in at least three diseases and
performed clustering analysis (Figure 3C; Supplementary Figure S1).

FIGURE 3
Cross-omics gene scoring and analysis across diseases. (A)Distribution of genes into five groups based on cross-omics scoring: “Unrelated” (genes
not present in any disease), “Unique” (genes unique to a single disease), “Shared-2” (genes shared between two diseases), “Shared-3” (genes shared
between three diseases), and “Pan-disease” (genes present in all diseases). The bar chart shows the number of genes in each group. (B)Differences in the
total cross-omics scores across the four diseases: ischemic stroke (IS), pulmonary arterial hypertension (PAH), high-altitude polycythemia (HAPC),
and eclampsia/preeclampsia (PE). The box plot illustrates the distribution of GF for each disease (C) Clustering of total cross-omics GF for each disease.
The heatmap shows the clustering of GF , revealing patterns of gene expression across the four diseases.
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The analysis revealed that IS and PAH share the most similar gene
scoring patterns, suggesting a strong molecular regulatory
connection between them. PE displayed a relatively independent
gene profile, retaining pregnancy-specific vascular regulation and

placental adaptation features, despite some association with IS and
PAH. In contrast, HAPC exhibited a gene pattern distinct from the
other diseases, likely influenced by mechanisms related to
erythropoiesis, oxygen transport, and adaptation to high-

FIGURE 4
Clustering of GO Biological Process (BP) enrichment results for cross-omics gene groups.
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altitude hypoxia. This clustering analysis highlights both the
similarities and differences between diseases, helping to identify
gene modules that may play common roles across multiple

diseases. These findings provide new insights for future research
on disease mechanisms and potential cross-disease therapeutic
strategies.

FIGURE 5
Cell type distribution for PAH and HAPC (A) Top 5 cell types for PAH based on total cell type scores (B) Top 5 cell types for HAPC based on total cell
type scores (C) Comparison of cell type distribution for PAH (shown in red) and HAPC (shown in blue).
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The functional clustering analysis (Figure 4) revealed that genes
in the Pan-disease group are widely involved in biological processes
such as development and differentiation, substance transport, and
cell cycle regulation. This suggests that these genes play crucial roles
in maintaining tissue homeostasis, regulating cell proliferation, and
adapting to metabolic changes. They may contribute to disease
development by modulating vascular development, oxygen
transport systems, and cellular adaptation to hypoxic
environments. Notably, in ischemia- and hypoxia-related
diseases, these genes are likely involved in vascular remodeling,
erythropoiesis regulation, and hypoxia-induced signaling pathways,
forming a core cross-disease regulatory network.

In contrast, genes in the Unique group are primarily enriched in
development- and differentiation-related pathways, indicating their
critical roles in tissue-specific angiogenesis, placental function
regulation, and local hypoxia adaptation. Many of these genes are
involved in stem cell differentiation, embryonic development, and
tissue remodeling of specific organs, suggesting their unique
functions in pathological conditions such as placental
dysfunction, ischemic brain injury, or pulmonary vascular
remodeling (see Supplementary Tables S1,S2 for details). The
expression patterns of this gene set exhibit stronger tissue
specificity across diseases, potentially influencing cellular
adaptation and disease progression under local ischemic and
hypoxic conditions.

Overall, genes in the Pan-disease group may act as core
regulatory factors across multiple diseases, influencing various
hypoxia-related pathological processes. In contrast, genes in the
Unique group are more associated with disease-specific tissue
adaptation mechanisms, particularly in vascular development,
erythropoiesis, and local metabolic regulation.

To conduct an in-depth analysis of the source characteristics of
mRNA, this study performed a traceability analysis on the data of
HAPC and PAH since the two H-I diseases were shown to be in
different clusters (Figure 5C). The top 5 tissues ranked by the
cumulative number of all samples of each disease were selected
as domain tissue/cell for analysis (results shown in Figures 5A,B). It
was found that the mRNA of PAHmainly originated from club cell/
type I pneumocyte, endothelial cell, adventitial cell, and type II
pneumocyte, which was consistent with clinical knowledge. For
HAPC samples, the cells were mostly derived from myeloid
progenitor, hematopoietic stem cell, etc., also in line with clinical
understanding. Among them, the common cell was basophil, and its
correlation with the two diseases had been confirmed by previous
studies (Ni et al., 2022; Yuen et al., 2025). Besides, the immune
response following hypoxia - ischemia events in various diseases
indicated its downstream events in H-I diseases (Eltzschig and Eckle,
2011; Albertsson et al., 2014).

923 common genes of HAPC and PAH were identified as raw
trans-biomarkers. After removing genes overlapping with those
specific to IS, PE, and unique disease-specific genes, a final set of
495 trans-biomarkers (herein denoted as Bio-trans) was obtained.
These genes showed differential expression in both HAPC and PAH
but not in other diseases, suggesting their involvement in shared
hypoxia-related molecular mechanisms. The top genes obtained
were listed in Table 2 (Figure 6A). DSC2 was proven to be
directly associated with myocardial function under the regulation
of Cycloastragenol (Ren et al., 2020). Hypoxia - ischemia was

considered as secondary injury in spinal cord injury (SCI) (Tator
and Fehlings, 1991). The increased expression of Piezo2 was
associated with poorer urodynamic parameters in SCI mice
(Gotoh et al., 2022). Piezo2 played a key role in PAH, and its
deficiency was shown to be associated with PAH by impairing NO
synthesis and inducing EndMT (Tian et al., 2022; Wei et al., 2025).
There were no relevant literature on polycythemia, so the results of
this study suggested a possible relationship. The results of our study
also showed upregulation, which was consistent. Downregulation of
HPGD could improve the proliferation activity, reduce apoptosis,
and enhance adhesion and angiogenesis in endothelial cells (ECs),
thus promoting the occurrence and development of hypoxic
pulmonary hypertension (He et al., 2023). The results of our
study also showed downregulation, which was consistent. There
was no previous research on its relationship with polycythemia, so
our results suggested a possible relationship. CXCL8 was a
promising biomarker of inflammation - sensitized hypoxia, as
validated in an inflammation - sensitized hypoxia - ischemia
model (Lingam et al., 2021). Currently, there were no studies on
PRUNE2 and SRRM2-AS1 in the above - mentioned diseases, so
these two genes could be potential new markers. The key themes
across these genes highlight their roles in vascular remodeling,
inflammation, and metabolic dysregulation. Of which, HPGD and
PIEZO2 are central to vascular dysfunction, with HPGD
downregulation driving angiogenesis and pulmonary
hypertension via enhanced endothelial proliferation and reduced
apoptosis, while PIEZO2 deficiency impairs NO synthesis and
promotes EndMT, exacerbating PAH and SCI-related
complications. CXCL8 emerges as a critical biomarker linking
inflammation-sensitized hypoxia to tissue injury, as validated in
ischemic models. Meanwhile, SRRM2-AS1 and PRUNE2 represent
understudied candidates with potential relevance to vascular or
metabolic disorders, warranting further investigation. HPGD’s
angiogenic effects and PIEZO2’s disruption of NO signaling
indirectly implicate these genes in redox imbalance. Collectively,
these genes collectively underscore the interplay between vascular
integrity, inflammation, and metabolic adaptation in diseases like
PAH, SCI, and ischemia, with emerging roles for non-coding RNAs
and novel targets in therapeutic strategies.

The expression profiles of Bio-trans genes were analyzed using
the GTEx (Genotype-Tissue Expression) (GTEx Consortium, 2013)
data to determine their cellular and tissue origins Analysis revealed
distinct expression patterns across multiple genes. Of which, the
HPGD gene was predominantly expressed in vascular endothelial
cells of the lung (detected in cells: 9.20%) and alveolar macrophages
(detected in cells: 17.95%). Similarly, CXCL8 exhibited primary
expression in club epithelial cells of the lung (detected in cells:
3.18%) and alveolar macrophages (detected in cells: 2.05%). SRRM2-
AS1 demonstrated tissue-specific expression in lymphatic
endothelial cells of mammary tissue (detected in cells: 3.36%)
and basal epithelial cells of the lung (detected in cells: 3.52%).
Notably, DSC2 showed broad tissue distribution, with high
expression in suprabasal epithelial cells of the esophageal mucosa
(detected in cells: 40.52%), alveolar type I epithelial cells of the lung
(detected in cells: 1.44%), and both cytoplasmic (detected in cells:
8.86%) and non-cytoplasmic (detected in cells: 7.98%) cardiac
myocytes in the left ventricle. PRUNE2 was enriched in ciliated
epithelial cells of the lung (detected in cells: 20.31%) and adipocytes
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of the left ventricular heart tissue (detected in cells: 23.32%).
Strikingly, PIEZO2 displayed dominant expression in lung
fibroblasts (detected in cells: 47.56%), with additional activity in
lung lymphatic (detected in cells: 39.82%) and vascular endothelial
cells (detected in cells: 7.13%).

GO biological process (BP) enrichment analysis of these trans -
biomarkers identified two significantly enriched pathways: cellular
response to hypoxia (GO:0071456) and proteasome-mediated
ubiquitin-dependent protein catabolic process (GO:0043161)
(Figure 6B). Hypoxia is a well - known trigger for PAH, with
mitochondrial dysfunction and oxidative stress playing critical
roles in its pathogenesis (Ahmed et al., 2024). Similarly, in
polycythemia, hypoxia resulting from pulmonary vascular
abnormalities may lead to disease progression (Lertzman et al.,
1964). Alterations in the ubiquitin-proteasome system (UPS) due to
hypoxia have been implicated in PAH (Wade et al., 2018), and

dysfunction of the UPS has also been linked to abnormal red blood
cell production in polycythemia (Meyer et al., 2007). Collectively,
these findings suggest that hypoxia - related molecular mechanisms
underlie both PAH and polycythemia.

3.3 Disease-specific biomarkers
and function

3.3.1 PAH - Specific biomarkers
For PAH-specific biomarkers (Bio-PAH), 2,242 genes were

obtained after excluding genes overlapping with those of HAPC,
IS, and PE. The top genes obtained were listed in Table 2 (Figure
6A). These genes were divided into the following types Knockdown
of TSIX could improve functional recovery and attenuate the
inflammation response and cell apoptosis via the miR - 30a/

TABLE 2 Top 3 upregulated and downregulated differentially expressed genes in Bio-trans, Bio-HAPC, and Bio-PAH gene sets.

geneID log2FC p_value p_val_adj cluster label biomarker type

DSC2 5.025496 1.483261e-03 2.302198e-02 Bio-trans Sigup Intermediate crucial

PRUNE2 3.954060 1.361934e-03 2.204804e-02 Bio-trans Sigup Potential minor-effect

PIEZO2 3.762164 6.547431e-06 1.232190e-03 Bio-trans Sigup Direct

TSIX 8.353926 2.502102e-04 5.617039e-03 Bio-PAH Sigup Direct

HBG2 3.730207 3.507502e-05 1.556768e-03 Bio-PAH Sigup Intermediate crucial

GRIN2A 3.723723 2.738851e-05 1.309408e-03 Bio-PAH Sigup Intermediate crucial

RXFP1 3.736920 2.739276e-12 3.711719e-08 Bio-HAPC Sigup Potential minor-effect

FAM111B 3.719850 1.411383e-03 2.249318e-02 Bio-HAPC Sigup Intermediate crucial

HJURP 3.701026 2.676796e-02 1.344701e-01 Bio-HAPC Sigup Potential minor-effect

HPGD −1.767203 1.583123e-06 6.919780e-04 Bio-trans Sigdown Direct-PAH

CXCL8 −1.429028 6.737854e-03 5.749240e-02 Bio-trans Sigdown Intermediate crucial

SRRM2-AS1 −1.112642 1.603463e-03 1.878793e-02 Bio-trans Sigdown Potential minor-effect

FGFBP1 −5.406030 4.154511e-08 1.369221e-05 Bio-PAH Sigdown Intermediate crucial

ATP8A1 −4.712998 4.167374e-02 1.481924e-01 Bio-PAH Sigdown Potential minor-effect

SAA1 −3.971495 1.168539e-12 4.525168e-09 Bio-PAH Sigdown Direct

GSTM1 −5.339262 1.234758e-06 6.141446e-04 Bio-HAPC Sigdown Direct

DNTT −4.219855 7.413852e-04 1.538403e-02 Bio-HAPC Sigdown Direct

IGKC −4.012964 6.380791e-06 1.232190e-03 Bio-HAPC Sigdown Direct

LEP 0.7903525 2.316661e-31 3.394141e-27 Bio-PE Sigup Direct

SERPINA3 0.5813629 6.368638e-17 1.003300e-14 Bio-PE Sigup Direct

ARHGEF4 0.4219916 5.946371e-17 9.469596e-15 Bio-PE Sigup Direct

HIST1H1T −0.4715339 3.492409e-09 9.493003e-08 Bio-PE Sigdown Potential minor-effect

C12orf39 −0.4697635 2.773734e-15 2.745810e-13 Bio-PE Sigdown Intermediate crucial biomarkers

SLAMF1 −0.3846013 1.850801e-18 4.108497e-16 Bio-PE Sigdown Intermediate crucial biomarkers

CD3D −0.7202023 1.834311e-02 3.822185e-01 Bio-IS Sigdown Direct

ITK −0.6823456 2.939615e-02 3.822185e-01 Bio-IS Sigdown Direct

RPL18A −0.6412929 2.381060e-02 3.822185e-01 Bio-IS Sigdown Direct
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SOCS3 axis (Pan et al., 2024). It could also aggravate spinal cord
injury (SCI) by regulating the PI3K/AKT pathway via the miR-532-
3p/DDOST axis (Dong et al., 2023). Besides, upregulation of TSIX
could partially explain the sexual dimorphism of female pulmonary
artery endothelial cells (ECs). This is consistent with our results, as

this gene was also upregulated in our study (Carman et al., 2024).
RegardingHBG2, although it is related to hypoxia, no direct research
on its association with PAH has been found. Hypoxia can induce the
transcription of γ - globin genes, including HBG2, by stabilizing
HIF1α, enabling the HIF1α - HIF1β heterodimers to bind to the

FIGURE 6
Differential gene distribution and enrichment analysis of Bio-trans, Bio-PAH, and Bio-HAPC gene sets (A) Volcano plot of differential gene
expression for Bio-trans, Bio-PAH, and Bio-HAPC, with significant genes (p < 0.05) highlighted in red (upregulated) and blue (downregulated) (B) GO BP
enrichment analysis for the Bio-trans gene set, shown in a circular plot (C) GO BP enrichment analysis for the Bio-PAH gene set (D) GO BP enrichment
analysis for the Bio- HAPC gene set.
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DNA elements of the BGLT3 gene downstream of HBG2 (Feng R.
et al., 2022). GRIN2A is related to myocardial infarction, yet no
direct research on its connection with PAH has been reported.
GRIN2A was considered a candidate biomarker of acute myocardial
infarction (Wu et al., 2022), which is closely related to PAH (Møller
et al., 2005). Pathway analysis shows an association between
FGFBP1 and hypertension (Tomaszewski et al., 2011). However,
in this previous study, FGFBP1 was upregulated, while in our study,
it was downregulated. This difference might be attributed to the
distinction between hypertension and pulmonary hypertension.
SAA1 was shown to be related to the pathogenesis of idiopathic
pulmonary arterial hypertension, regardless of sex differences (Xu
et al., 2021). Currently, no research on the relationship between
ATP8A1 and pulmonary hypertension has been found. Given its
minor effect, we speculate that this gene may function jointly with
other genes.

GO BP enrichment analysis identified seven significantly
enriched pathways (Figure 6C). These pathways include
endocytosis (GO:0006897), positive regulation of the PI3K/Akt
signaling pathway (GO:0051897), angiogenesis (GO:0001525),
positive regulation of cell migration (GO:0030335), positive
regulation of the apoptotic process (GO:0043065), protein
transport (GO:0015031), and protein phosphorylation (GO:
0006468). Disrupted endocytosis contributes to PAH progression
by affecting surface protein internalization and trafficking (Chichger
et al., 2019). The PI3K/Akt signaling pathway has been implicated in
hypoxic PAH, with studies showing that improvements in this
pathway can mitigate endothelial and mitochondrial dysfunction
(Shi et al., 2023). Vascular remodeling, driven by angiogenesis, cell
migration, and apoptosis, is a hallmark of PAH and involves
processes such as cell hypertrophy, proliferation, and migration
(Tajsic and Morrell, 2011). Additionally, protein phosphorylation
plays an essential role in cellular signaling, with alterations in
phosphorylation pathways contributing to PAH pathogenesis
(Zhang J. et al., 2018; Li et al., 2024).

3.3.2 HAPC-specific biomarkers
For HAPC-specific biomarkers (Bio-HAPC), 1,425 genes

were obtained after excluding genes overlapping with those of
PAH, IS, and PE. The top genes obtained were listed in Table 2. A
significant reduction in RXFP1 expression was observed in the
ischemic myocardium (Gao et al., 2019). Mutations in the
FAM111B gene may predict the severity of pulmonary fibrosis
and a poor prognosis (Arowolo et al., 2022). Pulmonary fibrosis
may be one of the causes of polycythemia (Ghosh et al., 2021). In
the Jordanian population, the GSTM1 null genotype alone and in
combination with the CYP1A1m1 genotype may be predisposing
risk factors for polycythemia vera (Naffa et al., 2012). DNTT was
found to be downregulated in polycythemia vera and considered
as a diagnostic marker (Baumeister et al., 2021). IGKC was
downregulated in polycythemia vera (Gangaraju et al., 2020).
Currently, there is no research on the relationship between
HJURP and polycythemia.

GO BP enrichment analysis revealed 10 significantly enriched
pathways, all related to the cell cycle (Figure 6D). These findings
reflect the hyperproliferative characteristics of polycythemia,
highlighting the role of cell cycle regulation in the development
and progression of the disease (Lertzman et al., 1964). Dysregulation

of the cell cycle may drive excessive red blood cell production,
contributing to the pathological mechanisms underlying HAPC.

3.3.3 PE-specific biomarkers
For PE-specific biomarkers (Bio-PE), 3496 genes were obtained

after excluding genes overlapping with those of PAH, HAPC, and IS.
The top genes obtained were listed in Table 2 (Figure 6A). LEP and
ARHGEF4, involved in metabolic and hypoxia/angiogenesis
pathways, are shown to be upregulated (in accordance with our
result) in placentas from severe preeclampsia (sPE) patients across
ancestries, suggesting its contribution to the pathophysiology of
preeclampsia (Aisagbonhi et al., 2023). The SERPINA3 gene is
identified as a key diagnostic biomarker for preeclampsia,
showing differential expression in affected placentas and
associations with immune cell infiltration (Yang et al., 2022).

TheHIST1H1T gene plays a critical role in spermmaturation by
facilitating histone-to-protamine replacement in spermatocytes, and
its disruption in double-knockout mouse models synergizes with
other genes (e.g., Mcsp) to impair sperm function (e.g., morphology,
motility, fertilization) and severely compromise fertility, indirectly
impacting embryonic development by disrupting successful
fertilization (Nayernia et al., 2003). The C12orf39 gene exhibits
differential expression in placental tissue from mothers with
antenatal depression and those using antidepressants during
pregnancy, suggesting its potential role in placental dysfunction
associated with maternal mental health or pharmacological
exposure (Olivier et al., 2014). The SLAMF1 gene is
downregulated in placental microvascular endothelial cells from
severe intrauterine growth restriction (IUGR) cases compared to
controls, and its expression differences are confirmed in placental
tissue microarray analyses, suggesting its role in vascular
dysfunction in pregnancy complications like PE (Dunk et al., 2012).

3.3.4 IS-specific biomarkers
For IS-specific biomarkers (Bio-IS), 405 genes were obtained

after excluding genes overlapping with those of PAH, HAPC, and
PE. The top genes obtained were listed in Table 2. CD3D, ITK were
considered to be IS biomarkers by former researches (Feng S. et al.,
2022; Wei et al., 2023; Wang et al., 2024). The RPL18 gene is a key
mediator in stroke pathophysiology, as its dysregulation is linked to
cerebral ischemia, and its restoration via traditional medicines (e.g.,
BYHW, NXT, YYTN) improves outcomes by modulating the gut
microbiota-brain axis and suppressing neuroinflammation
(microglia/astrocyte hyperactivation) (Yin et al., 2022).

4 Discussion

In this study, we devised a novel risk assessment method to infer
the shared features among four H-I diseases in the presence of
heterogenous omics data. Traditional bioinformatics analyses were
performed to construct a H-I disease profile based on transcriptomic
data since mRNAs responded promptly to abnormal physiological
states in the human body and were easy to detect. Considering the
lack of large scale high-quality multi - omics data that specifically
target the same disease, population, and tissues, we exploited several
public databases/datasets to design various risk assessment scores. A
final new evaluation score was designed to integrate evaluation
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information from genomics, proteomics, and metabolomics in
previous researches. The similarity and differences among these
H-I diseases were then analyzed on both feature molecules and
functional levels.

We divided all the genes in pan disease profile into groups.
The ‘pan-disease genes’ were shown to play a central role in the
occurrence and development of multiple diseases. Specifically,
they may influence the pathological processes of these diseases by
regulating some common biological processes, such as
angiogenesis, hypoxic response, and cell proliferation. Further
analysis may reveal the common regulatory roles of these genes in
different diseases and provide clues for cross-disease biomarkers.
Compared with this, unique group genes are crucial for disease -
specific tissue adaptation, especially in vascular and metabolic
aspects, which advances our understanding of disease genetic
mechanisms.

The four diseases investigated in this study present distinct
clinical manifestations. However, at the molecular level, all of
them are associated with ischemia or hypoxia. Besides, these
features may also be explained from the body’s circulatory
system. IS is a typical systemic circulation disease. It occurs when
there is an obstruction in the blood vessels of the brain, which are
part of the systemic circulation network. The lack of blood supply to
the brain tissue due to blockages in arteries like the carotid artery or
its branches leads to ischemic injury. The pathophysiological
mechanisms involve factors such as thrombosis formation,
embolism, and atherosclerotic plaque rupture within the systemic
arterial system, with little direct connection to the pulmonary
circulation in its primary etiology. PE is a condition unique to
pregnancy, mainly affects the systemic circulation. It is characterized
by systemic small - vessel vasospasm, endothelial cell injury, and
subsequent organ dysfunction. The placenta, which is part of the
maternal - fetal circulatory system (a specialized part of the systemic
circulation during pregnancy), plays a crucial role. The abnormal
placentation and reduced placental perfusion can trigger a cascade of
systemic responses, leading to hypertension, proteinuria, and
potential involvement of multiple organs such as the kidneys,
liver, and heart. In severe cases, PE can also impact the
pulmonary circulation, causing pulmonary edema, indicating its
complex relationship with both circulatory systems. HAPC is closely
related to the pulmonary circulation. In individuals with HAPC, the
body’s adaptation to the hypoxic environment at high altitudes leads
to an increase in red blood cell production. This process is mainly
regulated within the context of the pulmonary circulation as the
lungs are the primary organs sensing the low - oxygen condition.
The subsequent elevation in hematocrit aims to enhance oxygen -
carrying capacity, but it also brings about changes in the pulmonary
vascular bed, such as increased blood viscosity, which may affect
pulmonary hemodynamics. PAH has a complex relationship with
both the systemic and pulmonary circulations. Initially, it is
considered a pulmonary circulation disorder, where abnormal
remodeling of the pulmonary arteries occurs, leading to increased
pulmonary vascular resistance. This results in elevated pulmonary
arterial pressure and impaired right - heart function. However,
systemic factors cannot be ignored, which is similar to that of IS.
For example, systemic inflammatory cytokines can be released into
the bloodstream and reach the pulmonary vasculature, promoting
endothelial dysfunction and smooth muscle cell proliferation in the

pulmonary arteries. This was also validated in this study (See
Figure 3C for details).

In our results, we found PAH and HAPC were more similar to
the other two diseases which may be cause partly due to their
involvement in pulmonary circulation especially in hypoxic
response and vascular regulation. The significant differences
between PAH and PE, IS validated that the differences of these
diseases may be caused by the interactions of human body systems
based on circulation systems. As a pregnancy-related disease, PE
may be influenced by unique vascular regulatory mechanisms
during pregnancy. IS, on the other hand, involves ischemic injury
to the nervous system, fundamentally different from the molecular
mechanisms of PAH and HAPC. Therefore, further investigation of
the differences in gene regulation among these three diseases will
contribute to uncovering their underlying biological disparities. To
illustrate the molecular features in details, we traced the mRNA
sources in HAPC and PAH and basophil was found to be the
common cell type among the top - 5 - ranked cells, which reflected
the downstream role of immune response in H - I diseases.

Of the 18 top biomarkers in each group, the number of direct,
intermediate crucial, and potential minor - effect biomarkers were 7, 6,
and 5, respectively. These indicated our novel method can effectively
identify genes related to H - I diseases that have been confirmed in
previous experiments, thus validating the effectiveness of our risk
assessment score. In summary, the “Bio - HAPC” category has the
largest number of direct biomarkers, the “Bio - PAH” category has the
largest number of intermediate crucial biomarkers, and the “Bio - trans”
category has the largest number of potential minor - effect biomarkers.
This indicates that the current types of omics data (in this study, GWAS
results related to HAPC could not be obtained from public databases)
can basically meet the research needs for HAPC. Regarding PAH,
perhaps due to the complexity of its pathogenesis, most of the top -
ranked genes are involved in biological processes closely related to the
occurrence of PAH,which also validates the effectiveness of thismethod
to some extent. Interestingly, there are currently no other systematic
evaluation studies on H - I diseases. Therefore, the potential minor -
effect biomarkers identified in this study can serve as an entry point for
subsequent research and are of great significance. However, with the
development of biological experiments, these intermediate crucial and
potential minor-effect biomarkers may be proved to be direct
biomarkers in the future.

The interplay among the four H-I diseases underscores a
complex network of shared mechanisms and bidirectional risks.
HAPC, characterized by hypoxia-induced erythrocytosis,
substantially increases blood viscosity and causes vascular
endothelial dysfunction, thereby elevating the risk of developing
PAH. Moreover, HAPC contributes to cerebrovascular events
through thrombosis and microvascular ischemia. PAH, in turn,
exacerbates cerebral hypoperfusion, creating an indirect link to IS
via shared hypoxic and pro-thrombotic pathways. PE induces
systemic endothelial dysfunction. This not only predisposes
patients to cerebrovascular complications but also heightens the
risk of cardiovascular events. Significantly, PAH is a well -
recognized complication of severe PE, highlighting a direct
pathophysiological overlap between the two conditions.
Conversely, chronic hypoxic states, such as those associated with
HAPC, may exacerbate PE - like symptoms in pregnant individuals
at high altitudes due to shared mechanisms of placental ischemia
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and systemic inflammation. These cross - disease relationships,
where one condition can both contribute to and be a
consequence of others, underscore the necessity for integrated
research frameworks and holistic management strategies. Such
approaches are essential for effectively addressing the overlapping
pathophysiological cascades in H-I disorders.

The bidirectional risks between H-I diseases necessitate
proactive clinical strategies. When a patient presents with an H-I
condition such as PE/eclampsia, clinicians should initiate aggressive
acute - phase management. This includes strict blood pressure
control, administration of anticonvulsants (e.g., magnesium
sulfate), and timely delivery. Concurrently, comprehensive
diagnostic evaluations should be performed. Brain imaging (MRI/
CT) is crucial for detecting silent cerebral ischemia or hemorrhage.
Echocardiography and right heart catheterization are essential for
screening PAH, while blood tests (e.g., D - dimer, blood viscosity)
help assess the risk of thrombosis and HAPC. Long - term
management requires lifelong cardiac follow - up for PE
survivors. Serial echocardiograms can facilitate early detection of
PAH. For PE/HAPC patients, stroke risk evaluations using carotid
ultrasound and cognitive screening are essential. In individuals with
chronic hypoxia or PAH, vigilance against polycythemia - driven
thromboembolism is necessary. Multidisciplinary, integrated care is
crucial to mitigate comorbidities and improve patient outcomes.

The primary limitations of this study stem from the restricted
scope of data sources and sample diversity. First, the datasets relied
upon in this analysis were predominantly based on transcriptomic
profiles, while proteomic, metabolomic, or epigenetic data were either
derived from intermediate analytical outputs or secondary data from
public repositories. This limited integration of multi-omics layers
constrained our ability to systematically dissect multiscale molecular
mechanisms underlying hypoxia-ischemia (H-I) disorders. For
instance, the lack of direct experimental data linking gene
expression changes to protein post-translational modifications or
metabolic pathway perturbations hindered a comprehensive
understanding of disease-driven molecular networks. Second, the
sample size and ethnic representativeness were insufficient to
ensure generalizability. Most data originated from single-center
studies or populations of specific ethnic backgrounds (e.g.,
European ancestry), lacking coverage of diverse geographic,
genetic, and environmental exposure groups. This limitation may
have led to the omission of critical gene-phenotype associations (e.g.,
functional racial differences in genes like HIST1H1T, RPL18A, or
PIEZO2) and limited our capacity to explore race-specific risk profiles
or therapeutic response heterogeneity. Additionally, the absence of
longitudinal dynamic data restricted insights into temporal disease
progression. H-I pathologies involve dynamic transitions from acute
ischemic insults to chronic vascular remodeling, but static datasets
cannot capture the temporal evolution of molecular markers (e.g., the
timing of hemodynamic changes relative to gene expression shifts).

Despite these constraints, the methodological framework
developed in this study is inherently scalable. Future research
leveraging large-scale, integrated multi-omics data and ethnically
diverse, prospective cohorts could significantly expand our findings
by: (1) integrating transcriptomic, proteomic, and epigenetic data to
unravel hierarchical regulatory mechanisms; (2) comparing cross-
ethnic datasets to identify universal disease-driving modules and
race-specific modifiers; and (3) analyzing time-series data to map

the spatiotemporal dynamics of key pathways (e.g., endothelial
dysfunction-inflammation-vascular remodeling axes).
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