
Reduced T-Cell stemness
underlies Th17 expansion and
graft dysfunction in kidney
transplant recipients

Chang Liu1†, Hao Jiang2†, Andu Zhu3†, Chen Xu1, Zhenfan Wang1,
Guocai Mao4,5, Minjun Jiang1, Jianchun Chen1, Zheng Ma1*,
Jiaqian Qi6* and Zhijun Cao1,2*
1Department of Urology, Suzhou Ninth People’s Hospital, Soochow University, Suzhou, China,
2Department of Urology, The First Affiliated Hospital of SoochowUniversity, Suzhou, China, 3Department
of Clinical Laboratory, Suzhou Ninth People’s Hospital, Soochow University, Suzhou, China,
4Department of Thoracic Surgery, Suzhou Dushu Lake Hospital, Dushu Lake Hospital Affiliated to
Soochow University, Medical Centre of Soochow University, Suzhou, China, 5Department of Thoracic
Surgery, The First Affiliated Hospital of SoochowUniversity, SoochowUniversity, Suzhou, Jiangsu, China,
6Department of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China

Introduction: End-stage renal disease (ESRD) is increasing worldwide, and although
kidney transplantation improves survival, long-term graft loss–driven mainly by
immune-mediated rejection–remains common. We aimed to delineate immune
mechanisms that distinguish recipients with stable versus impaired graft function.

Methods: Peripheral blood mononuclear cells from kidney-transplant recipients
with normal (n = 10) or impaired (n = 10) renal function were profiled by single-
cell RNA sequencing. Fourteen immune populations were identified; CD4+ T-cell
“stemness” was quantified using mRNAsi and EREG_mRNAsi indices, lineage
trajectories were reconstructed with Monocle, and ligand–receptor
communication was inferred with iTalk. Findings were validated in an
independent bulk RNA-seq cohort (n = 192) using differential expression and
weighted gene co-expression network analysis (WGCNA).

Results: Recipients with graft dysfunction exhibited (i) expansion of Th17 cells and
contraction of Treg cells, (ii) significant loss of CD4+ T-cell stem-like features
(lower mRNAsi/EREG_mRNAsi, p < 0.001), and (iii) pseudotime trajectories
skewed toward Th17 differentiation. iTalk revealed enhanced S100A8/A9-TLR4
signalling from myeloid cells to neutrophils, consistent with reduced circulating
neutrophils and presumptive intragraft accumulation. Bulk validation confirmed
the stemness deficit and identified eight hub genes (API5, CAPRIN1, CCT2, DLG1,
NMD3, RDX, SENP7, S100A4) that correlated with both low stemness and poor
clinical outcome. Pathway enrichment implicated cell-morphogenesis, tight-
junction, and metabolic-homeostasis pathways in graft injury.

Discussion: Integrative single-cell and bulk analyses link diminished CD4+ T-cell
stemness, Th17-dominant polarization, and S100A4-mediated neutrophil
recruitment to graft dysfunction. These signatures nominate stemness indices,
Th17/Treg balance, and the S100-TLR4 axis as candidate biomarkers and
therapeutic targets to preserve allograft integrity and prolong transplant survival.
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Introduction

End-stage renal disease (ESRD) is a rapidly growing global
health burden, with millions of patients worldwide requiring
renal replacement therapy (Liyanage et al., 2015; Pippias et al.,
2016; Robinson et al., 2016; Wu and Wu, 2018). Kidney
transplantation is the definitive treatment for ESRD, offering
improved survival and quality of life compared to dialysis
(Muduma et al., 2016; Nankivell and Chapman, 2006; Sellares
et al., 2012). However, long-term graft survival remains
challenging, as immune-mediated rejection is a leading cause of
allograft loss despite modern immunosuppression (Chapman et al.,
2005; Pascual et al., 2012). Both acute and chronic rejection involve
complex interactions between innate and adaptive immunity,
underscoring the need for precise immune regulation to achieve
durable graft tolerance. This persistent burden of graft dysfunction
highlights an urgent need to elucidate the immune mechanisms
governing transplant outcomes and to identify novel biomarkers
predictive of allograft survival.

The post-transplant immune response is primarily orchestrated
by CD4̂+ T cells, which can differentiate into subsets that either
drive inflammation or promote tolerance. Notably, T helper 17
(Th17) cells have been implicated in allograft rejection due to their
production of proinflammatory cytokines, whereas regulatory
T cells (Tregs) are crucial for suppressing alloimmune responses
and facilitating long-term graft acceptance (Rutman et al., 2022).
The balance between Th17 and Treg cells is thought to dictate
allograft fate: an elevated Th17/Treg ratio is associated with poor
graft function and heightened rejection risk (Gould and
Auchincloss, 1999; Vincent-Schneider et al., 2002). In parallel,
innate immune cells such as neutrophils contribute to graft
injury by exacerbating inflammation–they infiltrate the allograft
early and can act as antigen-presenting cells that activate T cells, as
well as release factors that amplify adaptive immune cascades
(Scozzi et al., 2017). Despite the well-defined roles of these
immune populations, their intercellular crosstalk and functional
plasticity in transplant recipients with divergent outcomes remain
incompletely understood (Azim et al., 2023).

Stemness, traditionally a hallmark of cancer and pluripotent
cells, has recently gained traction in immunology as a determinant of
cellular plasticity and self-renewal capacity. For example, a PD1+

TCF1+ CD4+ T cell population with stem-like properties was
identified in a tumor setting, capable of self-renewal and
generating diverse effector T cells (Cardenas et al., 2024). To
quantify such stem-like characteristics, an mRNA expression-
based stemness index (mRNAsi) was developed; higher mRNAsi
scores reflect a cell’s gene expression similarity to embryonic stem
cells (i.e., a less differentiated state) (Chen et al., 2022). An
epigenetically regulated counterpart, EREG-mRNAsi, integrates
DNA methylation features with transcriptomic data to more
comprehensively gauge cell differentiation status (Malta et al.,
2018). In the context of transplantation, we hypothesize that
preserving CD4+ T cell “stemness” is important for maintaining
immune homeostasis, whereas loss of these stem-like properties may
bias cells toward terminal differentiation into pathogenic effectors
such as Th17 cells. Despite the emerging links between immune
stemness and disease progression in other fields, its contribution to
kidney allograft outcomes remains largely unexplored, warranting a

detailed investigation of stemness dynamics in transplant T cell
populations.

While the opposing roles of Th17 and Treg cells in rejection
versus tolerance are well established, the interplay between T cell
stemness, immune cell networking, and long-term graft outcome is
poorly defined. For instance, the cellular and molecular pathways
underlying operational tolerance in kidney transplantation remain
unclear (Azim et al., 2023). High-dimensional techniques like single-
cell RNA sequencing now enable unprecedented resolution in
profiling immune states, but few studies have integrated these
approaches with stemness indices in transplant research.
Moreover, existing studies lack an integrative framework that
combines longitudinal differentiation analysis (pseudotime
trajectory), intercellular communication modeling (e.g., iTalk),
and network-driven gene co-expression analysis to unravel the
mechanisms of immune dysregulation. Addressing these gaps is
critical for identifying novel therapeutic targets to restore immune
equilibrium and ultimately improve graft survival.

This study aims to comprehensively characterize the immune
landscape of kidney transplant recipients with divergent graft
outcomes, with a special focus on CD4+ T cell subsets and their
stemness properties. Using single-cell RNA sequencing of peripheral
immune cells, coupled with pseudotime trajectory mapping and
computational cell–cell communication analysis (iTalk), we will
delineate the transcriptional programs governing CD4+ T cell
differentiation and their crosstalk with neutrophils and other
immune subsets. In addition, we employ weighted gene co-
expression network analysis (WGCNA) on bulk transcriptomic
data to identify key stemness-associated gene modules, which are
further validated in an independent GEO cohort. We hypothesize
that graft dysfunction is linked to an increased Th17/Treg ratio
alongside diminished CD4+ T cell stemness, reflecting a shift toward
a proinflammatory immune state. We propose that S100-family
alarmins (such as S100A8/A9) mediate inflammatory crosstalk that
promotes neutrophil infiltration and tissue injury in the allograft
(Wang S. et al., 2018).

Methods

Patient enrollment and sample collection

This prospective study enrolled 32 adult kidney-transplant
recipients with institutional review-board approval. All patients
received a calcineurin-inhibitor–based triple immunosuppressive
regimen—tacrolimus (n = 27) or ciclosporin (n = 5) in
combination with mycophenolate mofetil and low-dose
prednisone (5 mg day-1). An additional mTOR inhibitor was
administered to 5 patients (15.6%), with no significant difference
in distribution between the stable-function and graft-dysfunction
groups. Before biopsy, acute viral, bacterial, and fungal infections
were ruled out by physical examination, complete blood count,
C-reactive protein, and pathogen-specific PCR assays for CMV,
BKV, EBV, and SARS-CoV-2. Two patients in the stable-function
group had low-level CMV viraemia, which did not affect subsequent
clustering analyses.

Approximately 10 mL of peripheral blood was collected into
EDTA tubes, typically in the morning (fasting state), and processed
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within 2 h. Exclusion criteria included active infection, recent
hospitalization, and significant autoimmune comorbidities. The
studies involving humans were approved by Suzhou Ninth
People’s Hospital. The studies were conducted in accordance
with the local legislation and institutional requirements. The
participants provided their written informed consent to
participate in this study. All procedures complied with the
Declaration of Helsinki and institutional ethics guidelines.

PBMC isolation and sample pooling

Peripheral blood mononuclear cells (PBMCs) were isolated
using Ficoll–Hypaque density gradient centrifugation at 400 g for
30 min at room temperature. The mononuclear layer was carefully
aspirated, washed twice in phosphate-buffered saline (PBS), and
assessed for viability via trypan blue exclusion. Cells exceeding
90% viability were counted and adjusted to a uniform
concentration. For each group (control vs. renal insufficiency),
ten individual samples were pooled in equal cell numbers to form
two composite PBMC preparations, thereby reducing inter-
individual variability while preserving representative immune
profiles. The pooled cells were then immediately prepared for
single-cell RNA sequencing.

Single-cell RNA-sequencing (scRNA-seq)
and library preparation

Pooled PBMCs were resuspended at ~1 × 106 cells/mL in PBS
supplemented with 0.04% bovine serum albumin. Cells were loaded
onto a Chromium Controller (10x Genomics) without additional
enzymatic or mechanical dissociation. Single-cell gel bead emulsions
were generated following the manufacturer’s protocols,
incorporating barcoded primers for reverse transcription. After
cDNA amplification, libraries were constructed via fragmentation,
end repair, A-tailing, and adaptor ligation steps. Final libraries were
quantified by Qubit and fragment size verified by Bioanalyzer.
Paired-end sequencing (2 × 150 bp) was conducted on an
Illumina NovaSeq 6,000 at an average depth of ~50,000 reads/
cell, ensuring comprehensive transcript coverage for
subsequent analyses.

Quality control and preprocessing of
scRNA-seq data

Raw sequencing reads were processed with Cell Ranger (10x
Genomics, v3.1) to perform demultiplexing, read alignment (using
GRCh38 as the reference), and feature counting. Cells with fewer
than 200 or more than 6,000 detected genes were excluded, as were
those with mitochondrial transcript counts exceeding 15%. Potential
doublets were removed using DoubletFinder (v2.0). Remaining cells
were normalized using a log-based method (Seurat, v4.0), applying
scaling factors to mitigate library size differences. Highly variable
genes were identified for downstream clustering, ensuring that
global cell-to-cell heterogeneity was captured while minimizing
technical noise.

Dimensionality reduction and clustering

Highly variable genes were identified in Seurat (v4.0) using the
FindVariableFeatures function, retaining approximately 2000 genes
for downstream analysis. The dataset was then centered and scaled
before Principal Component Analysis (PCA), and the top principal
components were projected onto a two-dimensional UMAP
(Uniform Manifold Approximation and Projection) space for
visualization. Clustering was performed using the Louvain
algorithm at varying resolution parameters (0.2–1.2). A final
resolution of 0.5 was selected after comparing cluster stability
and biological relevance, resulting in 14 discrete clusters (labeled
0–13). Each cluster was subsequently annotated based on canonical
immune markers (e.g., CD3D for T cells, LYZ for myeloid cells) and
known transcriptional profiles, enabling identification of
neutrophils, CD4+ T cells, Th17 cells, Treg cells, and other key
immune subsets.

Differential expression and functional
enrichment analyses

Differential expression was conducted via Seurat’s Wilcoxon
rank-sum test (v4.0), comparing clusters or cell subsets to uncover
genes up- or downregulated in each condition (false-discovery
rate <0.05). Significantly enriched pathways were then identified
using Gene Set Enrichment Analysis (GSEA) and KEGG annotation
to elucidate functional distinctions among clusters. For stemness
profiling, the mRNA stemness index (mRNAsi) and its
epigenetically regulated variant (EREG_mRNAsi) were computed
with a machine-learning algorithm, quantifying transcriptomic
similarity to embryonic stem cells. Correlations between these
indices and clinical/phenotypic parameters were subsequently
evaluated to assess their prognostic and mechanistic relevance.

Pseudotime trajectory analysis

Pseudotime trajectories were constructed using Monocle
(v2.20), which orders cells along a learned developmental
timeline based on transcriptomic similarity. To define input
features, we selected either highly variable genes detected in
Seurat or differentially expressed genes (DEGs) specific to key
clusters of interest. This gene set was then used to project CD4+

T, Th17, and Treg cells onto a low-dimensional manifold, capturing
their lineage progression and developmental branches. Monocle’s
principal graph construction identified branch points where cells
diverged, and we visualized expression trends of lineage-specific
markers (e.g., S100A4, CCL5) over pseudotime to highlight potential
regulatory events associated with T-helper cell fate decisions.

Cell–cell communication modeling

Cell–cell communication was inferred using the iTalk R package
(v0.1.0), which integrates ligand and receptor expression profiles
across major immune subsets. After extracting normalized
expression data, iTalk filtered out low-abundance genes and
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identified candidate ligand–receptor pairs based on a minimum
expression threshold. Pairs deemed statistically significant
(FDR <0.05) or functionally relevant were retained, such as
S100–TLR4 interactions implicated in neutrophil recruitment.
Visualization of these putative signaling networks was performed
via circular and chord diagrams, highlighting key axes of
immunomodulation and pinpointing potential molecular
conduits of cross-talk between T cells and myeloid cells.

Bulk RNA-seq analysis for cohort validation

An independent cohort of 192 kidney transplant recipients was
obtained from the GEO database (accession GSE147451). Reads
were aligned to the GRCh38 reference genome using STAR (v2.7)
and quantified with featureCounts (v1.6). Normalized gene
expression matrices were then processed to calculate mRNAsi
and EREG_mRNAsi scores for each sample, following the
established machine-learning protocol. Clinical data (e.g., graft
function status) were used to stratify patients into good vs. poor
outcome groups. Differential expression analyses were performed
using DESeq2 (v1.30), and Weighted Gene Co-expression Network
Analysis (WGCNA, v1.69) was conducted to identify modules
correlated with stemness indices. This approach validated single-
cell findings within a larger population-level dataset. In the bulk
RNA-seq cohort, graft dysfunction was defined a priori as (i) a ≥25%
fall in estimated glomerular filtration rate (eGFR). Patients meeting
neither criterion were classified as stable function.

Identification and characterization of key
gene sets

Differentially expressed genes (DEGs) from the “good” vs. “poor”
outcome comparison were intersected with genes from the WGCNA
modulemost strongly associatedwith stemness indices (mRNAsi/EREG_
mRNAsi). The resulting candidate gene setwas further explored using the
STRING database (v11.0) to construct a Protein–Protein Interaction
(PPI) network, elucidating potential functional interconnections.
Subsequently, Gene Ontology (GO) and KEGG pathway enrichment
analyses were performed (ClusterProfiler v3.18) to identify relevant
biological processes and pathways. This integrative approach
highlighted critical gene clusters potentially mediating immune
dysregulation and tissue remodeling in graft dysfunction.

Statistical and computational tools

All statistical analyses were conducted using R (v4.0.5) unless
otherwise specified. Comparisons between two groups (e.g., cell type
abundance) were typically made using non-parametric Wilcoxon
rank-sum or paired t-tests, contingent upon data distribution.
Multi-group comparisons employed Kruskal–Wallis or one-way
ANOVA, followed by appropriate post hoc tests. Differentially
expressed genes were identified using Wilcoxon tests (Seurat) or
DESeq2’s negative binomial model, and false discovery rate (FDR)
corrections were applied to control for multiple testing. Pseudotime
trajectories were generated in Monocle (v2.20), cell–cell

communication was inferred via iTalk (v0.1.0), network analysis
relied on WGCNA (v1.69), and PPI mapping utilized STRING
(v11.0). For all comparisons, p < 0.05 or q < 0.05 (where
applicable) was considered statistically significant.

Ethical approval and data availability

This study was conducted in accordance with the principles of
the Declaration of Helsinki and approved by the Institutional
Review Board of Suzhou Nineth People‘s Hospital. Written
informed consent was obtained from all participants prior to
sample collection. Single-cell RNA sequencing data have been
deposited in the Gene Expression Omnibus (GEO), and the bulk
RNA-seq validation dataset was retrieved from [GSE147451]. All
custom scripts for data processing, analysis, and figure generation
are available upon reasonable request to the corresponding author.

Results

Distinct immune profiles and reduced CD4+

T-cell stemness in kidney transplant
recipients with impaired renal function

We collected peripheral blood from two groups of kidney
transplant recipients: ten individuals with normal renal function
(control group) and ten individuals with impaired renal function
(renal insufficiency group). After pooling the PBMCs from each
group, we performed single-cell RNA-sequencing (scRNA-seq) on
these two mixed samples, acquiring over 10,000 high-quality cells
per group. Figure 1A provides an overview of the study design,
illustrating how each group’s PBMCs were pooled and prepared for
scRNA-seq. To ensure the reliability of our data, we conducted
rigorous quality control (QC) procedures. We excluded low-quality
cells, doublets, and cells with abnormally high mitochondrial read
percentages (percent.mt). As shown in Figure 1B, the control and
renal insufficiency groups exhibit broadly comparable distributions
for nFeatureRNA (total number of genes detected per cell),
nCountRNA (total transcripts per cell), and percent.mt (fraction
of mitochondrial reads). These QCmetrics confirm that the datasets
for both groups met the criteria required for downstream analyses.

Following quality control (QC) confirmation, we explored a
range of clustering resolutions from 0.2 to 1.2 to determine the
optimal parameter for identifying distinct immune cell populations
within our single-cell dataset. As shown in Figure 1C, each
resolution level yielded a different number and composition of
clusters. Ultimately, we chose a resolution of 0.5 for our
subsequent analyses, which produced 14 discrete clusters labeled
from 0 to 13.We annotated these clusters based on canonical marker
genes and visualized them using Uniform Manifold Approximation
and Projection (UMAP), as illustrated in Figure 1D. Major cell types
included neutrophils, CD4+ T cells, Th17 cells, regulatory T (Treg)
cells, NK cells, CD8+ T cells, erythrocytes, B cells, monocytes,
platelets/megakaryocytes, plasma cells, and basophils. Notably,
the UMAP plots show that both control and renal insufficiency
groups harbor comparable core immune subsets, although their
relative abundances differ, as revealed in later analyses.
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FIGURE 1
Single-cell transcriptomic profiling of PBMCs in kidney transplant recipients. (A) Schematic of the study design. PBMCs from 10 kidney transplant
patients with normal renal function (Ctrl) and 10 with renal insufficiency (PTRI) were pooled into two groups. After enzymatic treatment and cell
preparation, single-cell RNA-sequencing was performed, yielding over 10,000 cells per group for subsequent analyses. (B)QC metrics for both groups.
Each dot represents a single cell, with three key parameters plotted: nFeatureRNA (number of detected genes), nCountRNA (total RNA count per
cell), and percent. mt (percentage of mitochondrial reads). Both groups show similar distributions, indicating that the data passed QC and are suitable for
further bioinformatic investigation. (C) Resolution testing across scRNA-seq data. Each column represents a clustering resolution from 0.2 to 1.2, and
each node indicates a cluster identified at that resolution. Arrows show how clusters merge or subdivide as the resolution changes. Based on these
findings, a resolution of 0.5 was chosen for downstream analysis. (D) UMAP visualization and cluster annotation. At resolution 0.5, 14 clusters (labeled
0–13) were defined according to established cell-type markers. The two panels compare the control (blue header) and renal insufficiency (red header)

(Continued )
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Building upon our annotated cell clusters, we next compared the
relative abundance of each major immune population between the
control (Ctrl) and renal insufficiency (PTRI) groups. As depicted in
Figure 1E, neutrophils showed a marked decrease in the PTRI group,
whereas CD4+ T cells, Th17 cells, and Treg cells exhibited significant
increases. Notably, the magnitude of Th17 cell elevation exceeded
that of Treg cells, suggesting a potentially heightened pro-
inflammatory milieu in the PTRI group. To further investigate
these findings, we conducted differential expression analyses on
neutrophils, CD4+ T cells, Th17 cells, and Treg cells between the two
groups. As shown in Figure 1F, multiple members of the
S100 protein family (e.g., S100A6, S100A12, S100A4) were
prominently upregulated in the PTRI group, indicating an
enhanced inflammatory or stress-related response in these cell
subsets. Consistent with the transcriptomic data, immunoblotting
of PBMC lysates demonstrated a marked increase in S100A4 protein
in recipients with graft dysfunction (PTRI) compared with clinically
stable controls. When normalised to β-actin, densitometric analysis
showed a ~2.5-fold elevation in the PTRI group (mean ± SD: 2.63 ±
0.17 a. u. vs. 1.04 ± 0.06 a. u.; P = 0.008, two-tailed Wilcoxon test;
Supplementary Figure S1A,B).

We performed KEGG pathway enrichment analyses across all
identified cell subsets to compare functional differences between the
control (Ctrl) and renal insufficiency (PTRI) groups. As shown in
Figure 1G, several pathways displayed notable enrichment
differences. Of particular interest, CD4+ T cells in the PTRI
group exhibited a markedly reduced stemness potential, whereas
neutrophils showed an enhanced stemness signature. To further
explore the stemness-related changes in CD4+ T cells, we conducted
a Gene Set Enrichment Analysis (GSEA). As illustrated in Figure 1H,
the “Hematopoietic cell lineage” pathway was significantly
negatively enriched in the PTRI group (NES = −1.67, adj. p =
0.025), suggesting a diminished regenerative or stem-like capacity in
the CD4+ T cell subset of patients with renal insufficiency.

Pseudotime analysis reveals divergent
T-helper cell trajectories and elevated
S100A4 in renal insufficiency

To investigate potential lineage relationships and dynamic
transcriptional programs among CD4+ T cells, regulatory T
(Treg) cells, and Th17 cells, we performed pseudotime trajectory
analyses using three distinct strategies for identifying highly variable
or differentially expressed genes. In Figure 2A, we show the
empirical dispersion versus mean expression for genes selected by
Seurat as highly variable (black points), whereas Figure 2B highlights

the genes identified as differentially expressed among the clusters.
Finally, Figure 2C depicts the set of highly variable genes determined
by Monocle’s own selection algorithm. Each scatter plot illustrates
the relationship between gene abundance (mean_expression on the
x-axis) and dispersion_empirical (y-axis), with the red trend line
representing the fitted dispersion model. Genes exceeding the
model’s threshold (black points) were subsequently incorporated
into a pseudotime analysis to reconstruct potential developmental
trajectories of the T helper subsets. By comparing these three gene-
selection approaches, we aimed to capture a comprehensive view of
key regulators and transition markers that may underlie the
functional plasticity and lineage specification of CD4+ T, Treg,
and Th17 cells.

To further examine lineage commitment within CD4+ T-cell
subsets, we constructed pseudotime trajectories that included CD4+

T cells, Th17 cells, and Treg cells for both control (Ctrl) and renal
insufficiency (PTRI) groups. As illustrated in Figure 2D, patients in
the PTRI group exhibited a reduced capacity for sustaining CD4+

T-cell “stemness,” instead displaying an increased propensity toward
Th17 differentiation. Concurrently, the generation of Treg
cells—known to modulate inflammation and mitigate allograft
rejection—was comparatively diminished. These findings suggest
that impaired renal function may skew T-helper cell fate toward a
more pro-inflammatory profile.We next visualized the expression of
S100A4 along the pseudotime axis, focusing on key branch points for
Th17 and Treg cells (Figure 2E). Notably, S100A4 levels were
substantially higher in Th17 cells than in CD4+ T or Treg
subsets, mirroring our single-cell differential expression results.
This elevated S100A4 expression in Th17 cells further
underscores the heightened inflammatory or pathogenic potential
of the Th17 lineage within the renal insufficiency cohort.

To further delineate the temporal dynamics of CD4+ T, Th17,
and Treg cell differentiation, we generated density plots (Figure 2F)
and heatmaps (Figure 2G) from the pseudotime analysis. In the
control group (top panel of Figure 2F), CD4+ T cells predominantly
transition toward Treg cells as pseudotime progresses, suggesting a
more robust capacity for anti-inflammatory regulation. In contrast,
patients with impaired renal function (PTRI group, bottom panel of
Figure 2F) exhibit a pronounced shift of CD4+ T cells into the
Th17 fate, with fewer cells becoming Tregs. This skew toward
Th17 lineage may contribute to the heightened pro-inflammatory
milieu observed in renal insufficiency. Consistently, the heatmap in
Figure 2G highlights genes associated with branching toward
Th17 versus Treg cells. Notably, S100A4 expression increases as
cells commit to the Th17 lineage, in line with our previous findings
that S100A4 upregulation correlates with a pro-inflammatory
phenotype. These patterns underscore a possible mechanism by

FIGURE 1 (Continued)

groups, revealing distinct immune cell populations such as neutrophils, CD4+ T cells, Th17 cells, Treg cells, and others. (E) Proportional comparison
of major immune cell types in the control (blue bars) versus renal insufficiency (red bars) groups. Neutrophils are significantly reduced in the PTRI group,
while CD4+ T cells, Th17 cells, and Treg cells are notably increased. (F) Heatmaps depicting key differentially expressed genes among neutrophils, CD4+

T cells, Treg cells, and Th17 cells. Several S100 protein family members (highlighted in red) show pronounced upregulation in the PTRI group,
consistent with a heightened inflammatory or stress response. (G) Dot plots of KEGG pathway enrichment for each cell type in the Ctrl (left) and PTRI
(right) groups. The color scale indicates adjusted p values, and the size of each circle corresponds to the gene ratio. Notably, CD4+ T cells in the PTRI
group display diminished enrichment of stemness-related pathways, while neutrophils exhibit an enhanced stemness signature. (H) GSEA plot focusing
on the “Hematopoietic cell lineage” pathway in CD4+ T cells. The negative enrichment score (NES = −1.67, adj. p = 0.025) in the PTRI group underscores a
loss of stem-like features in this subset among patients with impaired renal function.
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FIGURE 2
Gene selection and pseudotime analyses reveal divergent T-helper cell fates and elevated S100A4 expression. (A) Seurat-identified highly variable
genes (HVGs). Each dot represents a gene, plotted by its mean_expression (x-axis) and empirical dispersion (y-axis). Black points above the red trend line
indicate HVGs used in the pseudotime trajectory. (B) Cluster-based differentially expressed (DE) genes. Genes discovered through inter-cluster
comparisons are highlighted in black, again illustrating their divergence from the expected dispersion trend. (C)Monocle-derived HVGs. Monocle’s
native selection algorithm identifies a partially overlapping yet distinct set of HVGs (black points). These HVGs were likewise used for pseudotime
construction of CD4+ T, Treg, and Th17 lineages. (D) Pseudotime trajectory of CD4+ T, Th17, and Treg cells in control (left) and PTRI (right) samples. Each
branch point (black circles labeled “1” and “2”) represents a key bifurcation. CD4+ T cells (red) from the PTRI group show an increased differentiation
toward Th17 cells (green) and a reduced transition into Tregs (blue), indicating diminished T-cell “stemness.” (E) Expression of S100A4 over the
pseudotime trajectory. The heat-scale (blue to red) reflects S100A4 transcript levels across cells. Th17 cells exhibit notably higher S100A4 expression than

(Continued )
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which elevated S100A4may bias T-helper differentiation away from
a regulatory fate, potentially exacerbating allograft injury in patients
with renal insufficiency.

To further characterize genes driving the transition among
CD4+ T, Th17, and Treg cells, we identified the top
10 differentially expressed genes along pseudotime. Figure 2H
shows violin plots of these genes in each subset, demonstrating
clear distinctions in expression patterns among CD4+ T (red), Th17
(green), and Treg (blue) cells. Figure 2I depicts how these same
genes vary across pseudotime. Notably, S100A4 levels rise
progressively over the trajectory and peak in Th17 cells,
reinforcing previous observations that link S100A4 to a pro-
inflammatory phenotype. Other genes, such as CCL5 and GNLY,
also show distinct temporal and subset-specific expression,
underscoring their potential roles in T-cell lineage commitment
and function.

To test whether the transcriptional shift toward a Th17-
polarised CD4+ T-cell state is mirrored at the protein level, we
quantified circulating Th17 cytokines in a subset of 15 kidney-
transplant recipients. Plasma IL-17A concentrations were markedly
higher in patients with poor graft funciton exhibited the high-Th17
signature than in recipients with a high-stemness profile associated
with stable graft function (median 37 pg mL-1 vs. 16 pg mL-1; 2.3-
fold difference; P = 0.004; Supplementary Figure S1C).

Intercellular communication and reduced
stemness in kidney transplant recipients
with poor graft outcomes

We performed intercellular communication analysis using the
iTalk package, focusing on four immune cell subsets that exhibited
the most pronounced proportional changes—CD4+ T cells,
Th17 cells, Treg cells, and neutrophils. As shown in Figure 3A,
the network diagram reveals extensive ligand–receptor interactions
among these populations. Delving deeper into the specific pathways,
we found that multiple S100 family proteins, including S100A8 and
S100A9, can engage TLR4 on neutrophils (Figure 3B). This
interaction may promote substantial neutrophil infiltration into
the transplanted kidney tissue, potentially explaining why
peripheral blood neutrophil counts are markedly reduced in
patients with impaired graft function.

Given our earlier findings hinting at an aberrant “stemness”
profile in the CD4+ T-cell population of patients with impaired renal
function, we employed a machine learning algorithm to calculate the
mRNA stemness index (mRNAsi). As illustrated in Figure 3C, CD4+

T cells from the renal insufficiency (PTRI) group displayed a

significantly lower mRNAsi compared to those from the control
(Ctrl) group (p < 0.05). These results suggest that the CD4+ T-cell
subset in patients with impaired graft function may have reduced
regenerative or multipotent capacity, potentially contributing to a
skewed immune response post-transplant. To extend our findings to
a larger patient cohort, we retrieved RNA-sequencing data from
192 kidney transplant recipients in the GEO database. We calculated
the mRNA stemness index (mRNAsi) and its epigenetically
regulated variant (EREG_mRNAsi) for each sample. As
illustrated in Figures 3D–M, patients who subsequently
developed impaired graft function (“poor” outcome) showed
significantly lower stemness scores compared to those with stable
renal function (“good” outcome). Notably, while clinical factors
such as bodymass index (BMI) or age did not correlate strongly with
mRNAsi or EREG_mRNAsi (p > 0.05 in most comparisons), the
difference in stemness indices between good and poor outcome
groups was highly significant (p < 0.001). These results reinforce our
earlier single-cell findings and suggest that diminished mRNAsi/
EREG_mRNAsi may reflect a compromised regenerative capacity in
the transplanted kidney.

Differential gene expression and co-
expression network analysis reveal a
stemness-associated module

We compared the transcriptomes of 192 kidney transplant
recipients, dividing them into “good” versus “poor” graft-
function groups based on post-transplant renal performance. A
differential expression analysis identified a distinct set of genes
significantly associated with clinical outcome. As illustrated in
Figure 4A, the heatmap reveals clear clustering patterns: patients
with good renal function (blue header) preferentially express certain
immunoregulatory and B/T cell-related genes (e.g., CD69, HLA-
DQB1, MCM4), whereas individuals with poor graft function (red
header) exhibit higher expression of genes implicated in
inflammation and metabolic stress (e.g., CKS2, LYZ). The
corresponding volcano plot (Figure 4B) provides a global
overview of these differences. The x-axis indicates the log fold
change (logFC) in expression (poor vs. good), and the y-axis
represents statistical significance [–log10(FDR)]. Genes depicted
in blue circles on the left are more highly expressed in the
“good” function group, whereas those in red circles on the right
are upregulated in “poor” function samples. These divergent
expression profiles suggest that graft outcomes may be influenced
by distinct molecular pathways, highlighting potential targets for
further functional validation and therapeutic intervention.

FIGURE 2 (Continued)

CD4+ T or Treg cells, consistent with an enhanced pro-inflammatory state in the PTRI group. (F) Density plots illustrating pseudotime transitions
among CD4+ T (red), Th17 (green), and Treg (blue) subsets. In the control group (top), cells predominantly converge on Treg cells, whereas in the renal
insufficiency (PTRI) group (bottom), a larger fraction of cells progress toward the Th17 phenotype. (G) Heatmap of key genes regulating T-helper cell
branching. The “pre-branch” region is flanked by two fates, Th17 (left) and Treg (right). Expression levels of S100A4 (highlighted in red) increase in the
Th17 branch, suggesting a link between high S100A4 and the pro-inflammatory Th17 lineage. (H) Violin plots illustrating per-cell expression of the top
10 differentially expressed genes across CD4+ T (red), Th17 (green), and Treg (blue) subsets. The y-axis is shown on a logarithmic scale to accommodate
wide expression ranges, with higher violin spread indicating greater gene expression. (I) Pseudotime trajectories highlighting changes in gene expression
over the simulated developmental timeline. Each dot represents a single cell’s expression level, and the fitted line (black) indicates the overall trend.
Notably, S100A4 expression surges with time and is highly enriched in Th17 cells, suggesting a potential pro-inflammatory role in these late-stage T-cell
trajectories.
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We applied Weighted Gene Co-expression Network Analysis
(WGCNA) to the RNA-sequencing data of 192 kidney transplant
recipients, using their mRNA stemness index (mRNAsi) and its
epigenetically regulated variant (EREG_mRNAsi) as traits of
interest. In Figure 4C, a hierarchical clustering dendrogram
shows how genes were grouped into distinct modules based
on co-expression patterns. The dynamic tree cut, and
subsequent merging steps produced several color-labeled
modules. Among these modules, the “brown” module
displayed the strongest positive correlations with both
mRNAsi and EREG_mRNAsi, as illustrated by the

module–trait relationship heatmap in Figure 4D (correlation
coefficients are shown in each cell, with corresponding p
values in parentheses). To further explore the significance of
this brown module, we examined the association between a
gene’s module membership (its degree of connectivity within
the module) and its “gene significance” (how closely it correlates
with the stemness trait). The scatter plots in Figure 4E (for
mRNAsi) and Figure 4F (for EREG_mRNAsi) demonstrate
moderate yet statistically significant correlations, suggesting
that genes highly connected within the brown module are also
key contributors to stemness in the transplanted kidney context.

FIGURE 3
Intercellular communication, T-Cell stemness, and clinical outcome associations in kidney transplant recipients. (A)Network diagram illustrating the
extensive interactions among Treg (pink node), Th17 (orange node), CD4+ T (purple node), and neutrophil (green node) subsets. Arrows indicate the
direction of putative signaling, and numbers on each arrow represent detected ligand–receptor pairs. (B) Circular layout highlighting critical
ligand–receptor relationships. S100 family ligands (S100A8, S100A9, etc.) (green arcs) bind to TLR4 on neutrophils (brown sector), potentially driving
neutrophil recruitment to the graft site. Such infiltration may account for the observed decrease in circulating neutrophils in renal transplant recipients
with impaired graft function. (C) Comparison of mRNA Stemness Index (mRNAsi) in CD4+ T Cells. Bar plots depict the mean ± SEM for mRNAsi values in
CD4+ T cells isolated from control (blue) and PTRI (red) groups. The asterisk indicates a statistically significant difference (p < 0.05), consistent with
reduced stemness in the PTRI subset. (D–G) Box-and-whisker plots contrasting mRNAsi (D,F) and EREG_mRNAsi (E,G) for subgroups defined by BMI
(high vs. low) and age (<60 vs. ≥60). No significant differences were observed (p > 0.05). (H,I) mRNAsi (H) and EREG_mRNAsi (I) comparisons between
high and low Kidney Donor Profile Index (KDPI) groups. Lower mRNAsi was noted in the KDPI_high group (p = 0.005), whereas EREG_mRNAsi did not
reach statistical significance (p = 0.221). (J,K) Comparisons by race (non-white vs. white) did not reveal significant stemness differences (p > 0.05). (L,M)
Patients classified as having “good” renal outcomes showed notably higher mRNAsi (L) and EREG_mRNAsi (M) than those with “poor” outcomes. The p <
0.001 result underscores a strong association between decreased stemness indices and impaired renal function post-transplant.
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Identification and functional
characterization of eight key genes linked to
graft outcomes

To refine our search for critical genes underpinning renal allograft
outcomes, we intersected the differentially expressed genes (DEGs)
from the “good” vs. “poor” analysis with those constituting the
WGCNA-derived brown module. This approach yielded eight key
genes—API5, CAPRIN1, CCT2, DLG1, NMD3, RDX, SENP7, and
S100A4. As illustrated in Figure 5A, box plots compare mRNA levels
of the eight genes in patients with good outcomes (blue boxplots)
versus poor outcomes (red boxplots). Several genes (API5, CCT2,
RDX, and S100A4, among others) display statistically significant
differences between the two groups, suggesting their potential roles
in influencing transplant success or failure. In Figure 5B, a heatmap of
these same genes highlights distinct expression profiles, with certain
genes (e.g., S100A4) more prominently expressed in the poor-
outcome cohort. Lastly, the correlation matrix in Figure 5C
demonstrates that many of these genes exhibit moderate to strong
positive correlations with one another, indicating possible co-
regulation or shared pathways. Collectively, these findings pinpoint
a small but potentially impactful gene set that may drive immune
dysregulation or tissue injury in patients with suboptimal
graft function.

We next examined potential functional interactions among the
eight previously identified genes—API5, CAPRIN1, CCT2, DLG1,
NMD3, RDX, SENP7, and S100A4—using the STRING database. As
shown in Figure 5D, the Protein–Protein Interaction (PPI) network
suggests multiple direct or closely related connections among these
candidates, indicating that they may participate in shared pathways
relevant to graft outcome.

To clarify their biological functions, we performedGeneOntology
(GO) and KEGG pathway enrichment based on these eight genes.
Figure 5E highlights two principal GO Biological Process (BP) terms:
“positive regulation of protein localization” and “regulation of cell
morphogenesis.” Meanwhile, Figure 5F (not shown in full here)
indicates significant enrichment in the “Tight junction” pathway
(p.adjust = 0.013), hinting that these genes could influence cell–cell
junction integrity and tissue remodeling in the context of kidney
transplantation. Collectively, these findings propose novel
mechanistic links by which these eight genes may modulate
immune or structural dynamics in the transplanted kidney.

Discussion

Our single-cell analysis highlights a dysregulated immune
microenvironment in patients with impaired graft function,

FIGURE 4
Differential expression and co-expression modules reveal key stemness signatures in kidney transplant recipients. (A) Heatmap of top differentially
expressed genes comparing “good” (blue header) and “poor” (red header) renal outcome groups. Gene expression is represented by a gradient from low
(blue/green) to high (red) values. (B) Volcano plot showing global distribution of differentially expressed genes. The x-axis indicates log fold change (poor
vs. good), and the y-axis shows–log10(FDR). Points in blue denote genes upregulated in the good-outcome group, whereas red points denote
genes overexpressed in the poor-outcome cohort. (C) Hierarchical clustering dendrogram of genes, with color-coded modules identified by dynamic
tree cutting. The “merged dynamic” bar indicates the final module assignments. (D) Module–trait relationship heatmap, showing correlations (and p
values) between each module and the mRNAsi or EREG_mRNAsi trait. Notably, the brown module is positively correlated with both indices. (E) Scatter
plot relating gene significance for mRNAsi (y-axis) to module membership (x-axis) in the brown module (cor = 0.15, p = 0.031). (F) Scatter plot relating
gene significance for EREG_mRNAsi (y-axis) to module membership (x-axis) in the brown module (cor = 0.34, p = 5.4e−07). The positive correlations
imply that genes more central to the brown module also exhibit higher relevance to stemness traits.
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characterized by pro-inflammatory T cell subsets and innate
immune activation. These findings align with broader literature
emphasizing that transplant outcomes hinge on the balance between
regulatory and effector immune mechanisms (Hanidziar and
Koulmanda, 2010). Notably, we observed a skewing toward
Th17 responses over regulatory Tregs in dysfunctional grafts.
Such Th17/Treg imbalances are well-documented drivers of
rejection: Th17 cells can mediate allograft damage and are
relatively resistant to suppression by Tregs (Benghiat et al., 2008;
Heidt et al., 2010). Furthermore, inflammatory cytokine milieus not
only favor Th17 differentiation but can also destabilize the Treg
lineage–in effect converting established Tregs into Th17-like cells
under pro-inflammatory conditions (Chung et al., 2009; Wei et al.,
2007). This plasticity is consistent with prior reports that adverse
graft inflammation creates resistance to tolerance induction by
preventing Treg development and function (Ciofani et al., 2012).
In summary, our data reinforce the paradigm that unchecked
inflammation tilts the immune equilibrium towards graft-
destructive pathways, echoing the broader consensus that
controlling intragraft inflammation and fostering Treg
dominance are key to promoting tolerance (Hang et al., 2019;
Miossec and Kolls, 2012). Importantly, our study extends these
concepts by providing granular, single-cell evidence of Th17/Treg

disruption in human transplant recipients, thereby linking classical
immune regulation paradigms to specific cellular and molecular
players in the failing graft.

A novel aspect of our study is the application of transcriptional
stemness indices (mRNAsi and EREG-mRNAsi) to immune cells in
the transplant setting. The mRNA expression-based stemness index
(mRNAsi), originally developed in oncology as a measure of how
closely a cell’s transcriptome mirrors that of stem cells (Malta et al.,
2018; Molinier-Frenkel et al., 2019; Nabors et al., 2017), was
repurposed here to gauge T cell differentiation states. Although
the mRNA-based stemness index (mRNAsi) and its epigenetically
weighted derivative EREG_mRNAsi were first described in
oncology, the underlying one-class logistic regression (OCLR)
model was actually trained to discriminate pluripotent (ESC/
iPSC) from fully differentiated adult tissues. Thus, the score
captures generic transcriptional programs that endow cells with
self-renewal and multipotency and has proven informative across
more than 30 normal tissues and developmental stages (Malta et al.,
2018). Building on this conceptual breadth, subsequent studies have
successfully repurposed mRNAsi in immune settings—for instance,
an integrative analysis of colorectal cancer showed that higher
mRNAsi values were strongly associated with activated memory
CD4+ T cells, underscoring the index’s ability to reflect “stem-like”

FIGURE 5
Functional analysis of key genes associated with renal allograft outcomes. (A) Box plots depicting log-transformed expression levels of the eight
candidate genes (API5, CAPRIN1, CCT2, DLG1, NMD3, RDX, SENP7, and S100A4) in the “good” (blue) versus “poor” (red) outcome groups. Asterisks denote
statistically significant differences (p < 0.05; p < 0.01). (B) Heatmap showing expression patterns of these eight genes across individual samples in each
outcome group. Red coloring indicates higher expression, while blue/turquoise indicates lower expression. (C) Correlation matrix (Pearson’s r)
illustrating pairwise relationships among the eight genes. Larger circles and deeper blues indicate stronger positive correlations, suggesting potential co-
regulatory networks related to transplant outcomes. (D) STRING-derived PPI network for the eight genes. Nodes represent genes of interest, and edges
reflect putative interactions or co-functional relationships. (E) GO Biological Process (BP) enrichment analysis showing top terms enriched among the
eight genes, including “positive regulation of protein localization” (red bar) and “regulation of cell morphogenesis” (blue bar). The color scale indicates
adjusted p-values. (F) KEGG pathway enrichment identifying “Tight junction” as a significantly associated pathway (p.adjust = 0.013), suggesting that these
genes may impact cell junction integrity and possibly modulate graft survival.
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T-cell states (Ye et al., 2022). High mRNAsi scores in graft-
infiltrating T cells suggest a less-differentiated, self-renewing
phenotype–analogous to T memory stem cells–whereas lower
scores indicate terminally differentiated effectors. Clinically, this
finding raises intriguing implications: a pool of long-lived, stem-like
T cells could perpetuate chronic alloimmune responses despite
conventional immunosuppression. This is reminiscent of
observations in chronic infections and cancers where a subset of
progenitor-exhausted T cells sustains the immune reaction over
time (the “stemness” of T cells) (Goronzy and Weyand, 2017; Graef
et al., 2014; Kallies et al., 2020). In transplantation, such cells might
continually refuel anti-graft reactivity or, conversely, could be
harnessed for tolerance if steered toward a regulatory fate. The
plasticity of immune cells is a double-edged sword: while stem-like
T cells provide adaptability and longevity to immune responses,
their fate can be redirected by the microenvironment. For instance,
as noted above, pro-inflammatory signals may redirect tolerogenic
Tregs into pathogenic Th17 cells (Chen and Wood, 2007; Koenders
and van den Berg, 2010; Zheng et al., 2008). Our pseudotime
trajectory analysis indeed suggested fluid transitions along the
Th17–Treg axis, underscoring that immune phenotypes in the
graft are not fixed. From a clinical standpoint, these results
underscore the need to modulate the local cytokine milieu–for
example, by blocking inflammatory cues (IL-6, IL-1β) – to
prevent harmful lineage switching and to possibly maintain a
reservoir of exhaustion or regulation-prone T cells. In sum,
integrating stemness indices with T cell biology provides a
framework to understand how certain T cells in a transplant
might acquire a self-renewing, plastic state that can either hinder
or help graft tolerance depending on how it is therapeutically
manipulated.

All participants in this study received calcineurin-inhibitor
(CNI)–based immunosuppression (e.g., tacrolimus or cyclosporin
A). Because CNIs inhibit NFAT signaling and thereby affect T-cell
activation, metabolism, and lineage commitment, prolonged
exposure could alter the maintenance of T-cell stemness and the
Th17/Treg balance. Drug effects may therefore interact with
transplant-related immune status and confound the
transcriptomic features observed here. Our cohort lacks
systematic trough-level monitoring and detailed pharmacokinetic
data, so we could not fully adjust for this factor at the single-cell
level. Future work will: (i) record individual CNI dosages and
concomitant blood levels in an expanded cohort, sampling them
in parallel with immune profiling; (ii) recruit recipients maintained
on alternative regimens such as mTOR inhibitors or belatacept for
comparative analysis; and (iii) treat PBMCs in vitrowith graded CNI
concentrations to assess direct effects on T-cell stemness markers
and Th17 differentiation. These strategies should clarify how
immunosuppressants modulate T-cell lineage fate and provide a
foundation for fine-tuning immunotherapy in transplant recipients.

Our findings also shed light on the intercellular communication
networks driving graft inflammation. Using the iTalk
ligand–receptor modeling, we identified robust crosstalk between
innate and adaptive immune compartments. A striking example is
the S100 family protein-mediated signaling: S100 transcripts
(particularly S100A4) were highly expressed by graft-infiltrating
myeloid cells, with predicted engagement of Toll-like receptor 4
(TLR4) on neutrophils and other innate immune cells. This

mechanism is supported by the literature, as many S100 proteins
act as extracellular alarmins that bind pattern recognition receptors
like TLR4 and RAGE to amplify inflammation (Donato, 2001).
S100A4 is known to bind TLR4, triggering NF-κB signaling and
cytokine release (Abdelfattah et al., 2022; Wu et al., 2021). Thus, our
data suggest a feed-forward loop wherein S100A4 released in the
graft can recruit and activate neutrophils via TLR4, exacerbating
tissue damage. This is in line with recent reports that blocking
S100A4 function markedly dampens neutrophil infiltration in
inflamed tissues (Chen et al., 2015; Sun et al., 2021). Moreover,
S100A4 and related S100 alarmins have been correlated with
elevated neutrophil-to-lymphocyte ratios and systemic
inflammation (Bagheri-Hosseinabadi et al., 2022; Liu et al., 2021),
a pattern mirrored in our patients with poor graft function. Beyond
S100A4, the intercellular communication analysis highlighted other
critical cytokine and chemokine interactions: for example, high
expression of IL-6 and IL-1β in myeloid clusters (upstream
drivers of Th17 differentiation) and potential T cell to myeloid
signals like GM-CSF or IFN-γ that could further activate
macrophages (Kleinewietfeld et al., 2013; Wang W. et al., 2018).
These interactive networks emphasize that graft rejection is not
solely a T cell-autonomous process, but rather a concerted dialog
between innate and adaptive cells. Neutrophil recruitment emerges
as a notable feature of impaired grafts, likely orchestrated by
damage-associated signals such as S100-TLR4 interactions and
chemokines. Clinically, this insight points to the potential benefit
of interrupting these dangerous liaisons–for instance,
TLR4 antagonism or S100 neutralization might reduce the innate
immune-driven inflammatory amplification within the graft.
Overall, the intercellular crosstalk analysis reinforces that
effective control of rejection may require targeting these
upstream innate triggers and not just T cells alone.

Weighted gene co-expression network analysis (WGCNA)
yielded eight hub genes (API5, CAPRIN1, CCT2, DLG1, NMD3,
RDX, SENP7, S100A4) associated with the stemness and
dysfunction signatures in our cohort. These genes, though not
classical immune markers, appear to be pivotal intracellular
regulators that modulate immune cell survival, activation, and
interaction. API5 (Apoptosis Inhibitor 5), for instance, is an anti-
apoptotic factor that can be secreted and function as a DAMP; it has
been shown to bind TLR4 on dendritic cells and stimulate NF-κB
activation (Kim et al., 2018). Elevated API5 in rejecting grafts could
thus promote dendritic cell activation and prolong T cell survival,
fueling chronic rejection. CAPRIN1 is an RNA-binding protein
integral to cell cycle progression; its absence impairs proliferation of
immune cells (Wang et al., 2005), indicating CAPRIN1 supports the
expansion of allo-reactive lymphocytes. CCT2, a subunit of the CCT
(TRiC) chaperonin complex, is essential for folding cytoskeletal
proteins (actin, tubulin) during T cell activation (Andres-Delgado
et al., 2012; Martin-Cofreces et al., 2021). Upregulation of
CCT2 likely reflects vigorous T cell activation and proliferation
in failing grafts, as properly folded cytoskeletal elements are needed
for immunological synapse formation and clonal expansion.
Another scaffold is DLG1 (Discs Large Homolog 1), which
organizes TCR signaling microclusters; DLG1 promotes the
assembly of kinase complexes at the T cell–APC interface and its
loss disrupts early TCR signaling 34960191. The enrichment of
DLG1 in our data suggests a state of heightened TCR engagement,
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and by extension, that targeting downstream DLG1-interacting
pathways might modulate T cell activation intensity.

The other hub genes further underscore the cellular metabolic
and migratory machinery driving graft immunopathology. NMD3 is
a nuclear export adaptor for the 60S ribosomal subunit (Sengupta
et al., 2010), required for robust protein synthesis. High
NMD3 expression implies increased ribosome biogenesis,
consistent with rapidly proliferating immune cells in an active
rejection milieu. RDX (Radixin), a member of the ezrin-radixin-
moesin family, links actin filaments to the plasma membrane. ERM
proteins like radixin are crucial for lymphocyte morphology changes
during migration and immune synapse stabilization (Pore and
Gupta, 2015). Radixin upregulation may facilitate the migration
of effector cells into the graft and stable contact with target cells (e.g.,
graft endothelial cells or APCs). SENP7, a SUMO-deconjugating
protease, has recently been shown to sustain CD8+ T cell metabolic
fitness by removing SUMOmodifications frommetabolic regulators
(such as PTEN) under oxidative stress (Wu et al., 2022). Thus,
SENP7 in graft-infiltrating T cells could enhance their glycolytic and
survival capacity in the inflamed, nutrient-poor graft environment,
thereby prolonging their effector functions. Lastly, S100A4 – already
discussed as an extracellular factor–may also have intracellular roles
in immune cells, but its primary significance here is as a secreted
pro-inflammatory mediator connecting this gene network to tissue
inflammation. Collectively, these eight genes represent key nodal
points in immune cell survival (API5, SENP7), proliferation and
protein synthesis (CAPRIN1, NMD3), activation (DLG1, CCT2),
migration (RDX), and inflammatory signaling (S100A4). Each
presents a potential therapeutic angle: for example, blocking
S100A4-TLR4 interactions to reduce neutrophil recruitment, or
inhibiting API5 to limit unwanted dendritic cell activation. While
targeting core cellular processes like CCT2 or NMD3 is less specific
and could be toxic, their identification highlights the intense
metabolic and biosynthetic demands of anti-graft immune cells,
suggesting that metabolic interference (e.g., mTOR inhibition)
might preferentially affect these highly active cells. Future
therapeutics might also explore SENP7 or related metabolic
checkpoints to preferentially impair effector T cells’ fitness while
sparing regulatory cells. In summary, the hub genes not only provide
mechanistic insight into the cellular state of rejection but also reveal
non-canonical targets (like S100A4 and API5) that warrant further
investigation for immune modulation.

This study’s strength lies in its multi-dimensional single-cell
approach, enabling an unprecedented resolution of the immune
landscape in kidney transplant patients with graft dysfunction. By
employing single-cell transcriptomics, we captured the
heterogeneity of immune infiltrates that bulk assays would
obscure, distinguishing subtle states of T cells (e.g., putative
stem-like vs. terminal effector) and myeloid cells (e.g., pro-
inflammatory neutrophils, monocyte-derived dendritic cells, etc.).
The addition of pseudotime trajectory analysis allowed us to
reconstruct dynamic differentiation pathways in silico, providing
clues about how, for example, a Treg might diverge toward a
Th17 phenotype under inflammatory pressure. This temporal
modeling strengthens the causal interpretations of our snapshot
data by suggesting possible lineage relationships and progression
patterns of immune cells. Another notable strength is the use of
intercellular communication modeling (iTalk) to integrate

information across cell types. Rather than analyzing T cells or
myeloid cells in isolation, iTalk helped identify critical
ligand–receptor pairs (such as S100A4–TLR4, IL-6–IL-6R, CXCL
chemokines–CXCR2 on neutrophils) that drive the coordination of
rejection. This systems-level view mirrors the complex cell–cell
interactions in vivo and generates testable hypotheses about
interrupting these signals. Lastly, our WGCNA-based gene
discovery pipeline provided a data-driven means to pinpoint key
regulatory genes within the co-expression network correlated with
clinically relevant traits (stemness index and graft function). This
unbiased approach led us to genes like API5 and SENP7 that might
have been overlooked by conventional differential expression
analyses. Integrating these advanced methodologies–single-cell
RNA-seq, pseudotime modeling, ligand–receptor analysis, and
network-based gene selection–is an innovative aspect of our
work, yielding a comprehensive picture from molecular
regulators to intercellular interactions. We believe this integrative
strategy is a blueprint for dissecting complex immunological
diseases beyond transplantation as well.

Validating our key molecular interactions remains a priority.
Determining S100A4 levels in tissue or blood across independent
cohorts and correlating expression with neutrophil infiltration and
graft function would lend credibility to the single-cell transcriptomic
findings. Model systems, such as mouse transplant models or ex vivo
human assays, could confirm whether blocking
S100A4–TLR4 alleviates neutrophil-driven tissue injury.
Moreover, IL-6 or IL-1β blockade might tip the Th17/Treg
balance toward tolerance, enhancing graft survival. Another
compelling avenue is inducing T cell exhaustion or senescence to
limit the persistence of high-stemness T cells, while bolstering Treg
stability (e.g., via IL-2 receptor agonists or epigenetic modulators) to
prevent Th17 conversion under inflammatory conditions.

Longitudinal studies tracking immune phenotypes from pre-to
post-transplant could reveal whether mRNAsi shifts or rising
API5 and S100A4 levels foreshadow rejection, enabling earlier
therapeutic intervention. Parallel integration of spatial
transcriptomics or multiplex imaging with our single-cell data
would clarify the microanatomic context of inflammatory lesions,
such as neutrophil clustering around S100A4-secreting cells.
Ultimately, translating these molecular insights into biomarkers
or treatments can guide more precise, tolerance-promoting
strategies for transplant recipients, advancing beyond our current
snapshot to a dynamic, patient-tailored approach in managing graft
function. Although this study used iTalk to systematically predict
ligand-receptor interactions from single-cell transcriptomic data,
these in silico inferences have not yet been functionally validated.
Whether the predicted pairs truly drive signal exchange between
peripheral T cells and myeloid cells in transplant recipients remains
to be confirmed. Going forward, we will establish homologous and
heterologous co-culture systems and apply neutralizing antibodies
against S100A4/S100A8/A9 or TLR4 inhibitors to evaluate the direct
role of the S100–TLR4 axis in Th17 expansion, maintenance of
T-cell stemness, and amplification of inflammation. In parallel, we
will employ CRISPR-Cas9 knockouts or siRNA-mediated
knockdowns of key ligands/receptors, together with phospho-NF-
κB reporter assays, to rigorously verify the biological relevance of our
computational predictions. These follow-up experiments are
expected to clarify the functional significance of the inferred
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signaling pathways in transplant-related immune dysregulation and
lay the groundwork for novel precision immunotherapeutic strategies.
To ensure sufficient cell numbers while controlling sequencing costs,
we pooled peripheral blood mononuclear cells (PBMCs) from
10 participants per group before sequencing. However, without cell
hashing or individual sample barcoding, we could not trace each cell
back to its donor, preventing assessment of inter-individual biological
variability. This limitation reduces the granularity of our analyses and
may affect the generalizability of our conclusions. In future studies, we
will incorporate multi-tag strategies—such as oligonucleotide-based
cell hashing, MULTI-seq, or CITE-seq—to retain donor-level
provenance while remaining cost-effective. We will also apply
deconvolution algorithms like Demuxlet to disentangle mixed-
sample data, enabling systematic comparison of immune
heterogeneity across individuals and enhancing the external
validity of our findings. This study employed a cross-sectional
design, with peripheral blood sampled only once for
transcriptomic and proteomic profiling. Consequently, we could
not track real-time changes in T-cell stemness and inflammatory
status after transplantation, nor determine causal links between these
immune states and graft function over time. The absence of
longitudinal follow-up limits the reconstruction of immune
trajectories and may obscure early warning signals. In future work,
we plan to establish a multi-time-point cohort, collecting serial
samples at 1, 3, 6, and 12 months post-transplantation and during
any clinically confirmed rejection episodes. By integrating barcoded
single-cell sequencing, flow cytometry, and Bayesian dynamic
modeling, we aim to systematically delineate the temporal features
of T-cell stemness exhaustion and inflammatory imbalance during
graft adaptation or rejection, thereby defining optimal windows for
precision intervention. Our study used a single-time-point
transcriptomic snapshot to perform pseudotime modeling and
infer differentiation trajectories—such as the transition from CD4+

T cells to Th17 cells. It is important to note that pseudotime
algorithms reconstruct a “pseudo-temporal” order from static
expression differences; they lack true temporal resolution and
lineage-tracing markers, making it impossible to definitively assign
directionality or rule out parallel differentiation paths. Although we
added RNA velocity and shared TCR-clonotype analyses to partially
support the inferred trajectory, these approaches cannot replace
longitudinal sampling or experimental lineage tracing. Future work
will: (i) integrate barcoded scRNA-seq, scTCR-seq, and RNA velocity
on serial follow-up samples to enhance temporal information; (ii)
employ lineage-tracing techniques driven bymitochondrial mutations
or CRISPR barcodes, along with in-vitro differentiation and adoptive
transfer into humanized mice, to empirically validate key
differentiation nodes; (iii) combine multi-omics (scATAC-seq,
CITE-seq) to map epigenetic and protein-level dynamics, thereby
clarifying T-cell fate decisions comprehensively.

In conclusion, this single-cell study illuminates how reduced
T-cell stemness, coupled with S100-driven neutrophil recruitment,
contributes to graft dysfunction in kidney transplant recipients. Our
data underscore a Th17/Treg imbalance, heightened inflammatory
signals, and the involvement of eight key genes modulating immune
activation and tissue remodeling. Such insights emphasize the need
for interventions that restore T-cell plasticity and curb pathogenic
Th17 programs, potentially by targeting S100–TLR4 axes or
metabolic checkpoints. Future longitudinal investigations may

validate these findings, guide personalized immunosuppressive
strategies, and ultimately improve allograft outcomes through
earlier detection and targeted modulation of immune dysregulation.
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SUPPLEMENTARY FIGURE S1
Elevated plasma IL-17A in kidney-transplant recipients with a high-Th17
CD4+ T-cell transcriptional profile (A) Representative immunoblots for
S100A4 (37 kDa) and the loading control β-actin (43 kDa) in peripheral-
blood mononuclear cells from three kidney-transplant recipients with graft
dysfunction (PTRI, lanes P1–P3) and three with stable graft function (CTRL,
lanes P1–P3); “P” denotes individual patients. (B) Bar chart summarising
densitometric quantification of S100A4 normalised to β-actin (mean ± SD,
n = 3 patients per group). * indicates P < 0.01 by two-tailed Wilcoxon test,
confirming a ~2.5-fold increase in the PTRI cohort. (C) Box-and-jitter plot
of plasma IL-17A concentrations measured by Luminex multiplex assay in
recipients whose graft biopsies exhibited a poor graft function (n = 7) versus
recipients with a stable graft function (n = 8). Boxes show the inter-quartile
range; horizontal lines, medians; whiskers, 1.5 × IQR; dots, individual patients.
Significance was assessed with a two-sided Mann–Whitney U test.
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