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Effective population size (Ne) is a key parameter in various biological disciplines,
including evolutionary biology, conservation genetics, and livestock breeding
programs. When applying genomic approaches to estimate Ne or other
indicators of genetic variation, sample size is among the critical factors that
directly affect the balance between cost and precision. In this study, we
investigated the impact of sample size on Ne estimates by analyzing data
from previous genotyping studies and simulations. Our results suggest that a
sample size of 50 animals is a reasonable approximation of the “true” (“unbiased”)
Ne value within the populations analyzed. While estimating the Ne value is an
important starting point in population genetics, additional factors, such as the
degree of inbreeding, population structure, and admixture, must be taken into
account to obtain a comprehensive genetic evaluation and avoid
misinterpretation. We conclude that linkage disequilibrium (LD)-based
approaches are well suited for the estimation of Ne in livestock populations.
However, careful interpretation of results is essential as current bioinformatics
tools may introduce potential biases due tomethodological assumptions, marker
density, or population-specific factors.
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1 Introduction

Effective population size (Ne) is widely considered to be an important parameter to be
estimated in several contexts of biological concerns such as evolutionary and conservation
biology and breeding programs (Waples, 2024; 2025). Ne quantifies the magnitude of
genetic drift and inbreeding of populations. Originally introduced in the 1930s (Wright,
1931), the initial theory was based on idealized panmictic population at drift–migration
equilibrium, thus considering genetic drift as the only factor acting on the allelic
frequencies. The concept was progressively extended to account for the other

OPEN ACCESS

EDITED BY

Salvatore Mastrangelo,
University of Palermo, Italy

REVIEWED BY

Jesús Fernández,
Instituto Nacional de Investigación y Tecnología
Agroalimentaria (INIA), Spain
Isabel Cervantes,
Complutense University of Madrid, Spain

*CORRESPONDENCE

Arianna Manunza,
arianna.manunza@ibba.cnr.it

RECEIVED 06 March 2025
ACCEPTED 19 May 2025
PUBLISHED 03 June 2025

CITATION

Manunza A, Cozzi P, Boettcher P, Curik I,
Looft C, Colli L, Sölkner J, Mészáros G and
Stella A (2025) Estimating the optimal number of
samples to determine the effective population
size in livestock.
Front. Genet. 16:1588986.
doi: 10.3389/fgene.2025.1588986

COPYRIGHT

© 2025 Manunza, Cozzi, Boettcher, Curik,
Looft, Colli, Sölkner, Mészáros and Stella. This is
an open-access article distributed under the
terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic practice.
No use, distribution or reproduction is
permitted which does not comply with these
terms.

Frontiers in Genetics frontiersin.org01

TYPE Brief Research Report
PUBLISHED 03 June 2025
DOI 10.3389/fgene.2025.1588986

https://www.frontiersin.org/articles/10.3389/fgene.2025.1588986/full
https://www.frontiersin.org/articles/10.3389/fgene.2025.1588986/full
https://www.frontiersin.org/articles/10.3389/fgene.2025.1588986/full
https://www.frontiersin.org/articles/10.3389/fgene.2025.1588986/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2025.1588986&domain=pdf&date_stamp=2025-06-03
mailto:arianna.manunza@ibba.cnr.it
mailto:arianna.manunza@ibba.cnr.it
https://doi.org/10.3389/fgene.2025.1588986
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2025.1588986


evolutionary forces influencing Ne in real populations. Methods
were developed to predict Ne at different spatial and timescales and
under various demographic scenarios (Wang et al., 2016). Ne can be
estimated using demographic, pedigree, and genomic data sources.
When using demographic information, Ne is generally calculated
based on the anticipated change in inbreeding per generation (ΔF),
considering the number of breeding males and females as well as the
variance in family size. With pedigree data, Ne is determined from
the inbreeding coefficients over generations, again using ΔF as the
basis. The growing availability of advanced genomic technologies
enabled the estimation of Ne from genetic markers, which is
particularly useful if no pedigree information is available. In
genomic data, the three primary methods for estimating Ne
utilize (i) the temporal method based on the change in
inbreeding coefficient ΔF, which reflects the rate of genetic drift;
(ii) the rate of coancestry, which measures the increase in genetic
relatedness among individuals over time; and (iii) the degree of
linkage disequilibrium (LD) between neutral loci, which provides
insights into historical and contemporary population structure and
size. Many efforts have beenmade to develop statistical methods and
approaches that allow the computation of Ne from genomic data
(Beichman et al., 2018; Novo et al., 2022; Novo et al., 2023; Ryman
et al., 2019; Santiago et al., 2024; Wang et al., 2016; Waples and Do,
2010). These methods have been applied to estimate both
contemporary (recent) and historical Ne with different inference
methods, methodological approaches, and applications (Hare et al.,
2011; Nadachowska-Brzyska et al., 2022). A commonly used
definition for contemporary Ne is the effective size for the period
of time covering the sampling, for which the calculation is based on
the linkage disequilibrium (LD) observed using unlinked markers.
These estimates find a practical application in conservation because
they can offer useful management advice (Waples, 2024; Waples,
2025). Historical Ne, calculated using linked markers, is related to
past demographic events and is relevant in phylogeographic
reconstruction of both wild and domesticated populations (Novo
et al., 2023). Many of the bioinformatics tools that implement the LD
method (NeLD) are specific for one of the two inferences, either
contemporary or historical, but often with a slight difference in the
time in terms of generations for which they provide information
(Nadachowska-Brzyska et al., 2022). In addition, the term “recent”
can refer to different time points within the interval of the
evolutionary time we are considering. For livestock species, the
possibility of estimating changes in population size in the recent past
is relevant in conservation of genetic diversity and particularly in
selecting samples for banking of germplasm material. The
application of genomic tools in livestock is becoming a
conventional practice, especially in commercial breeds, due to the
low costs of genotyping. However, for local breeds or breeds that are
the target of conservation strategies, the trade-off between cost of
genomic analysis and the potential economic returns makes its
application less relevant from an economic point of view
(Bruford et al., 2015). Conservation programs are often
underfunded (White et al., 2022) and, therefore, preclude
genotyping a large number of animals. To render the utilization
of genomics tools effective in practice, it is necessary to find a
compromise between the number of sampled individuals and the
precision of the estimate of Ne and other parameters that need to be
evaluated. The aim of this study was to assess the optimal number of

individuals to be genotyped to obtain the best approximation of Ne.
Data from two livestock species (sheep and goats) were used. We
chose three sample sizes and compared the results from simulated
and empirical data. We used SNP genotypes from public databases
of both local and transboundary goat and sheep breeds, applying the
NeLDmethod implemented in NeEstimator v.2 (Do et al., 2014). The
Ne estimates based on demographic and pedigree information were
available for some of the breeds included in the dataset, and we
compared them with our genomic estimates. In addition, we
simulated a one sheep population and calculated its effective size
under six different scenarios to explore the effect of some
demographic changes and other evolutionary forces (e.g., the
selection scheme).

2 Materials and methods

2.1 Characteristics of the analyzed breeds
and their genotyping data

Specifically, we used publicly available genotype data retrieved
for two goat breeds (Murciano-Granadina and Alpine) and two
sheep breeds (Churra and Tibetan). For the goat and sheep
populations, the markers’ positions were assigned based on the
caprine genome assembly ARS_v1.0 and the ovine genome assembly
Oar_v3.1, respectively, using the SNPchiMp v.3 database (Nicolazzi
et al., 2015) and by using a series of custom scripts developed in the
context of the SMARTER project (https://smarterproject.eu/) (Cozzi
et al., 2024). For more information about samples retrieved in the
SMARTER database, see the following link: https://webserver.ibba.
cnr.it/smarter/about.

The Spanish Murciano-Granadina (MG) goat breed was created
in 1975 from two breeds: Murciana and Granadina. According to the
most recent census, the MG breed numbers more than
100,000 individuals (Guan et al., 2021). The MG is typically
raised in semi-intensive conditions, primarily for cheese
production (Delgado et al., 2018), and one of its main features is
its extraordinary adaptation to harsh climatic conditions (Spanish
Ministry of Agriculture, Fisheries, and Food). For the MG
population, the data comprised 1,040 female goats from 15 farms
located in the autonomous region of Andalusia (Spain) and
genotyped with the Goat SNP50K Illumina BeadChip (Luigi-
Sierra et al., 2022).

The Alpine goat is a medium- to large-sized breed known for its
very good milking ability. The breed originated in the French Alps
and is now one of the most popular dairy breeds around the world.
More than 450,000 individuals are recorded in the local census in
France alone. Genotype data for 279 individuals genotyped with the
Goat SNP50K Illumina BeadChip were retrieved in the SMARTER
database (Cozzi et al., 2024), and they were originally genotyped in
the framework of the AdaptMap project (Stella et al., 2018), whose
samples were from France, Switzerland, and Italy.

The Spanish Churra is an autochthonous dual-purpose breed.
Milk production of Spanish dairy sheep breeds has been the subject
of intensive breeding programs, and the Churra has experienced a
15%–20% increase in yield during the last 25 years (Churra Breeding
Association web, http://www.anche.org). The current population
size in Spain is over 150,000 animals. Genotypes (Illumina
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OvineSNP50 BeadChip) for 270 animals were retrieved in the
SMARTER database (Cozzi et al., 2024) and from the study by
Kijas et al. (2012).

The Tibetan sheep is among the most common breeds in
northwestern China, with more than 23 million animals
distributed throughout the Qinghai–Tibet plateau. Originating
from northern Chinese ancient sheep ~3,100 years ago, Tibetan
sheep gradually evolved into different ecotypes depending on
geographic conditions. Their adaptation to harsh environments
makes them an important resource for the economic and social
development of the local people. Our study included 820 individuals
characterized by Illumina OvineSNP50 BeadChip and whole-
genome sequencing retrieved in the SMARTER database (Cozzi
et al., 2024) and originally from the study by Wang et al. (2016).

2.2 Procedure for empirical and
simulated data

Genotype data were edited following FAO recommendations
(Ajmone-Marsan et al., 2023) using PLINK v1.9 and v2 (Chang
et al., 2015). Supplementary Figure S1 illustrates the workflow for
the quality control (QC). To be consistent, we applied the same
setting for the pruning procedure (QC) keeping the correlation
coefficient between SNP pairs (r2) threshold to 0.5, thus removing
markers in high linkage disequilibrium (LD), as the loci are assumed
to be unlinked. The QC procedure left 214, 895, 233, and
659 animals and 35,375, 45,487, 18,708, and 35,529 markers for
Alpine, MG, Churra, and Tibetan breeds, respectively. This range of
SNP numbers aligns with the marker densities commonly reported
in recent genetic diversity research. For each replicate, Ne estimates
were obtained using two LD-based methods, as implemented by
NeEstimator v2.1 (Do et al., 2014). In addition, as a basis for
comparison, Ne was calculated for each breed by using the entire
dataset (post quality control) of available animals and marker
information. All the analyses were performed by applying the
Nextflow (Di Tommaso et al., 2017) pipeline (v0.2.1), which is
purposely developed and publicly available at cnr-ibba/nf-
neestimator. The workflow automated the following: (i) the
random sampling of individuals, (ii) the conversion from binary
files to the GENEPOP format (PLINK v1.9 and PGDSpider v2.1.1.5
(Chang et al., 2015; Lischer and Excoffier, 2012), and (iii) the Ne
estimation procedure and the LDNe procedure in NeEstimator. The
Pcrit parameter was set in the program to screen out alleles at the
frequency <0.02 because this criterion provides a generally good
balance between maximizing precision and minimizing bias
(Waples and Do, 2010). We also applied the sample size
correction before analyzing data, thus ensuring that the estimates
are more accurate even when the sample size is small, as described by
Waples (2006).

The harmonic mean as implemented in the program was used.
This approach is standard because the harmonic mean places greater
weight on smaller population sizes. The harmonic mean provides a
more accurate representation of long-term genetic variation than the
arithmetic mean, particularly in populations that experience
bottlenecks or fluctuations in size. The program also provides a
fixed-inverse variance-weighted harmonic mean correction for
missing data for the linkage disequilibrium and temporal

methods. Simulation was used to complement the results
obtained with the real population data. Simulations were
performed using the QMSim 2.0 program (Sargolzaei and
Schenkel, 2009). Six scenarios mimicking small ruminant
populations were simulated: POP1 = selection based on
phenotype, POP2 and POP2_cd_h = selection design (sd) with
selection based on estimated breeding values (high selection
intensity for both) plus culling design (cd) high for POP2_cd_h,
POP3 = same as in POP1 but with the application of a recent
population bottleneck, POP4 = POP1 but with a recent expansion
event, and POP5 = constant population size and random mating
(contribution). Historical population is simulated based on the
forward-time approach, and the program can only simulate a
single historical population. A full description of the setting is
available in the Supplementary Material. In brief, for the
bottleneck event in our simulation, we modeled a classic
bottleneck scenario characterized by a sudden reduction in the
population size from 1,000 to 200 individuals at generation 70,
followed by a prolonged bottleneck phase lasting 30 generations,
before a moderate recovery. This setup allowed us to explore the
lasting effects of a rapid-onset, long-duration demographic
contraction on Ne estimation. We simulated a population
expansion in a recent population. In the expansion scenario, the
historical population size remained stable at 420 individuals for
200 generations, and the forward simulation began with a modest
number of founders (420 individuals). Over 10 generations, a
gradual population increase was allowed through controlled
reproduction (litter size = 2), modeling a slow and recent
expansion. This scenario enabled us to assess how limited growth
over a short time frame affects Ne estimates under LD-
based methods.

The six scenarios shared parameter settings for heritability
(0.20), phenotypic variance (1.0), litter size (1), and the
proportion of male progeny (0.5). We simulated genetic data for
populations of fixed size (N = 2,400 individuals), with
26 chromosomes. As with the real data, we randomly selected 20,
50, and 100 individuals for each of the 100 iterations. Ne was
estimated using the same methods as for the real dataset.
Estimates were based on the whole set of 52,000 simulated SNPs,
rather than approximately 35,000 SNPs (post-filtering) as in the
real-population data. Supplementary Figure S2 summarizes the
workflow followed in this study. For each population, three
sampling sizes were investigated: 20, 50, and 100 animals,
sampling individuals without replacement. One hundred
replicates were applied for each scenario (i.e., breed * sampling size).

3 Results

3.1 Estimating Ne from empirical data

For each sample size, the estimates of the Ne derived from LD
after 100 iterations and their descriptive statistics (e.g., mean,
standard deviation, and confidence intervals (CIs)) were obtained
and are illustrated in Figures 1A, B; Supplementary Table S1.

As anticipated, the estimate for N100 consistently demonstrated
the highest accuracy, yielding values closest to the “true value” across
all species and breeds. In contrast, the estimates derived from
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FIGURE 1
Ne estimates calculated for the four breeds of the two species over a range of sizes: 20, 50, and 100 animals. (A) Solid circles represent the estimates
from 100 independent iterations and (B) each black point corresponds to the mean value of 100 estimates with the CI. The “true” effective size, the value
of which was calculated based on the entire dataset, is indicated by the red horizontal line.
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FIGURE 2
Simulated scenarios. The Ne estimates of 20, 50, and 100 subsampled individuals for every population are plotted against the effective sizes
calculated for the whole population (indicated by the red horizontal line whose value can be retrieved in Supplementary Table S2). (A) Solid circles
represent the estimates from 100 independent iterations and (B) each black point corresponds to the averaged value of 100 estimates. The black point
shows the harmonic mean of 100 estimates.
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N20 often deviated more substantially, typically showing a tendency
toward overestimation. This trend was accompanied by broader CIs
for N20, indicating increased uncertainty at lower sampling sizes.
Notably, several outliers were present in both the N20 and
N50 estimates for Tibetan sheep; however, this pattern was
markedly more pronounced at N20 across all breeds.

Although sampling at N50 resulted in slight overestimations, it
provided a reasonably close approximation to the full dataset, which
was comparable in precision to that of N100. A closer inspection of
mean Ne values revealed consistent overestimation in the two
caprine breeds, with a particularly pronounced peak at N50 in
Alpine. In the sheep breeds, overestimation at N50 and
N100 was minimal. An exception to the general overestimation
trend was observed in the Tibetan population at N20, where the
mean estimate of Ne fell below the reference value. This
underestimation may reflect the sensitivity of Ne estimators to
small sample sizes in structured populations, particularly when
rare alleles or subpopulation structures are underrepresented due
to limited sampling. Such bias is consistent with the demographic
complexity and potential substructure of the Tibetan breed.
Interestingly, although the mean Ne estimate for N20 in Churra
hovered around the true value (~370), the much wider CI suggests a
lack of precision and robustness at that sample size. In contrast, both
N50 and N100 estimates consistently exhibited narrow CIs across all
populations, reflecting a higher degree of precision and reliability in
the Ne estimation at increased sampling depths.

3.2 Estimates of Ne for simulated data

The estimation of Ne for the simulated populations returned
interesting evidence (Figures 2A,B).

By plotting the 100 iterations (Figure 2A), we observe a pattern
similar to that of the real dataset: N20 produces the most biased and
variable estimates, whereas N50 and N100 exhibit fewer outliers and
estimates that fall more closely around the true value. Examining the
average estimates (Figure 2B), POP1 and POP3 share the same
selection design based on phenotype but differ in their demographic
history. Notably, POP3 has experienced a severe population
reduction (from 1,000 to 420 sheep) due to a bottleneck event.
Although the N100 estimate in all cases is the closest to the “true
one,” the difference between N50 and N100 is of only a few animals.
POP2 and POP2_cd_h share a constant size and the sd based on
estimated breeding value but, in the second case, the cd based on
phenotype is high (see materials and methods for details). As we can
see, although in both cases the estimate for N20 gives the worst
result, we obtained a different result for N50 that performs better
than N20, but in POP2, it is also somewhat closer to the true value
than N100. POP4 and POP5 have two opposite situations,
characterized by different sd and demographic histories. In
POP4, which has experienced an increase in its population size,
the method provides better performance for N100 followed by N20,
whereas N50 slightly overestimates the real value. However, POP5,
which corresponds to an ideal scenario of constant population size
and random mating, shows just a little difference between N20 and
N50, with a CI for N20 estimate being somewhat bigger. Although
N100 plots demonstrate that with a subsampling of 100 animals the
program performs much better, on comparing N50 to N20, we

noticed that when using N50, the linkage disequilibrium-based Ne
estimator performed reasonably well, giving more uniform results.
Overall, the harmonic mean estimate from 100 simulations was
usually close to the true Ne when the sample size was N100 in our
simulated and natural datasets, and the estimates were often severely
biased upward when the sample size was equal to 20.

4 Discussion

Genomic methods are routinely used to estimate contemporary
Ne with preferences toward LD-based methods, especially when
pedigree data are not available. In our work, we apply LD-based
methods to analyze Ne in two livestock species coming from
different farming and breeding conditions as well as different
natural environments. The estimated Ne in our real-life
populations was approximately ~350 animals in MG and Churra,
whereas it is lower for Alpine (~285) and much higher for Tibetan
sheep (>1,000). Only a few previous studies that aimed to infer the
“historic Ne” of the same breeds included in this research were
available. Thus, comparison with those studies was difficult as theNe
calculation was based on pedigree data (Oliveira et al., 2016) or using
the LD method for the historic Ne (Chitneedi et al., 2017; Colli et al.,
2018; García-Gámez et al., 2012; Liu et al., 2021). Indeed, in this last
case, using the LD method, the most recent estimate referred to the
last 13 to 5 generations, which corresponds to approximately
60–20 years before the sampling, making the comparison with
our outcomes more difficult. Moreover, the method used to
assess the historic Ne trends is based on different assumptions
(Waples, 2024; Waples, 2025), resulting in different estimates.
However, in our study, we observed generally higher Ne
estimates, especially for Churra and Tibetan sheep, than those
obtained in previous studies (García-Gámez et al., 2012;
Chitneedi et al., 2017; Liu et al., 2021), whose estimates were
approximately 128 and 160 (Churra) and 250 animals (Tibetan).
The aforementioned studies of Churra breed differ for the total
number of markers and their density along the genome: Garcia-
Gamez et al. (2012) employed a medium-density 50K chip, whereas
Chitneedi et al. (2017) used high-density imputed data. This may be
the reason for obtaining different Ne estimates even if the datasets
partially overlapped. Those estimates were also lower than our
findings for the same breed, as stated before, and this can be
associated with two more sources of bias: i) sample design (the
animals included in those studies were highly related) and ii) the
quality control procedure prior to carrying out the analysis (the
dataset was not filtered for LD). Both factors contribute to produce
estimates of Ne that are downwardly biased because of excess LD
caused by linkage rather than drift (Sved et al., 2013). Our QC
procedure produced datasets without these two sources of bias: in
particular, from the kinship relatedness analysis after QC
(Supplementary Figure S3), we can observe a distribution of
kinship coefficient that suggests small internal relatedness. There
are also previous investigations based on other sheep and goat
breeds that reported downwardly biased Ne estimates, and all of
them share the inclusion of linked loci in their datasets (Vlaic et al.,
2024; Becker et al., 2024; Prieur et al., 2017; Liu et al., 2017), thus
providing less accurate estimates. Considering the high census size
of MG (Delgado et al., 2018) of over 100,000 individuals raised all
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over Spain and the currently ongoing official breeding and
conservation programs, our estimate for this breed agreed
reasonably well with those from other local Spanish goat breeds
such as Bermeya and Malaguena (~200 individuals (Colli et al.,
2018)) and are consistent with its reportedly good levels of genetic
diversity (Oliveira et al., 2016). MG, with minimal relatedness
(Supplementary Figures S3, S4), yielded consistent and accurate
Ne estimates even at small sample sizes. The most recent estimate
found in literature for Alpine was approximately 150 animals
(Santiago et al., 2020), which is quite low. This difference with
our estimate is most likely due to the different methods applied as
the historical Ne is based on linked markers for the demographic
reconstruction (Novo et al., 2022). This transboundary breed has a
high census size, is under intensive selection, and is widely employed
in breeding programs to improve the milk production performance
of less productive (local) breeds. However, a large census size does
not necessarily correspond to a high Ne, particularly under intensive
artificial selection, which is known to reduce Ne due to factors such
as strong selection intensity, reduced sire diversity, and unequal
parental contributions (Waples, 2016). This is exemplified by
Holstein cattle, where intensive selection has led to low Ne
despite a very large population (Makanjuola et al., 2020). In
contrast, the moderately higher Ne we observed for Alpine may
reflect differences in the breeding structure and strategies applied in
this breed potentially, including less centralized selection, more
diverse use of breeding animals across regions, or continued gene
flow among subpopulations. These factors could contribute to
retaining more genetic diversity than in more intensively selected
or closed populations, thus supporting a more favorableNe outcome
than might otherwise be expected. In addition, the combination of
these factors and the possible effect of the population structure
(Supplementary Figures S3, S4) due to the inclusion of genotypes
from three different countries in our experimental design may have
contributed to this difference. Conversely, there are several factors
that can affect both past and contemporary Ne inference, such as
selection and migration as well as strong changes in the population
size (bottlenecks and population expansion) and population
structure (Waples, 2024; Waples, 2025). Novo et al. (2022)
addressed the question of whether natural selection can bias
estimates of Ne that assume selective neutrality, and they found
that the historical Ne is almost unaffected by selection; this finding
reasonably allows us to conclude that contemporary Ne also should
show negligible or no bias due to selection (Waples, 2024; Waples,
2025). Except for Tibetan sheep, the breeds we investigated are
subject to specific artificial selection breeding programs. Notably, the
intensive selection of Spanish sheep breeds such as Churra for milk
production is relatively recent, having begun only 3–4 decades ago
(Manunza et al., 2016). During this period, genetic exchanges
between dairy and non-dairy populations may have also
occurred, potentially obscuring the detectable effects of
confounding factors. Furthermore, these breeds have undergone
demographic changes, including a decline in population size, as
indicated by previously cited studies. The estimates ofNe in MG and
Churra reflect the retainment of an effective degree of genetic
variability because of the establishment of recent balanced
selection-conservation programs (Delgado et al., 2018).
Microsatellites represent a valuable source of information for
assessing both genetic diversity and Ne. Previous studies

employing similar markers, specifically microsatellites (SSRs or
STRs), in three Spanish local ruminant populations—the Pajuna
cattle, Payoya goat, and Merino de Grazalema sheep (Cervantes
et al., 2011)—as well as in other local Spanish (Álvarez et al., 2008)
and Indian sheep breeds (Punuru et al., 2025), reported lower
estimates than those obtained in the present study. These
discrepancies may be attributed to the conservation status of the
populations examined in those studies, all of which involved rare
breeds. As noted by the respective authors, Ne values were likely
underestimated in their analyses, whereas our estimates appear to be
slightly inflated. Therefore, when feasible, the integration of multiple
types of genetic markers may be recommended to improve the
accuracy of Ne estimations, particularly in populations of
conservation concern. For the Tibetan sheep, our estimates were
very large, and this is probably due to the huge census size and the
presence of the population substructure, as we can observe in
Supplementary Figure S3. N20 underestimates Ne, likely due to
the presence of closely related individuals in the small sample. The
population was sampled over a wide area of China, that is, the
Qinghai plateau region (Li et al., 2021), where many local
populations and ecotypes are present. In subdivided populations,
the estimate of Ne can reflect the average changes in allele
frequencies and inbreeding in the metapopulation except when
one (or more) subpopulation has more influence with respect to
another one. In this case, the estimate could be likely more related to
a process specific to local subpopulations dynamics rather than to
the metapopulation “as a whole,” resulting in a “larger” or “smaller”
Ne than expected (Ryman et al., 2019). In addition, when the ratio of
Ne/N is very large, the uncertainty associated with the estimate will
usually be very large (Wang et al., 2016; Waples, 2016) because large
Ne produces a very weak drift signal. Waples, (2016) demonstrated
that with largeNe and only amoderate sampling of individuals (such
as N20 and N50 in our study), many estimates were much too low,
many were much too high, and very few were close to the true value.
Another general consideration is that in agreement with our overall
results, simulations showed that LD-based estimators are strongly
biased when the sample size is small (England et al., 2006). Waples
(2006) already demonstrated that demographic changes can play an
important role while assessing Ne from empirical data: following a
bottleneck, the signal generated by the increased new LD arising
from the recent reduction in Ne blurs the higher background values
of Ne. Indeed, following a population expansion, the drift signal is
still too small for the new Ne to be closely approximated to the
expected estimate, requiring more generations after the event for a
stronger drift signal to be detected with the methods currently
available (Waples, 2005).

One of the scenarios that we tested (POP4, Figures 2A,B)
included a gradual expansion and spanned only a few generations.
In such cases, the estimation of Ne is especially sensitive to the
sample size. Our results indicate that although N20 occasionally
produced estimates closer to the true value, this occurred
inconsistently and appears to result from random sampling
effects, particularly under recent expansion, where residual LD
can be more variable. However, N20 was also associated with a
higher variance of estimates, reflecting its greater susceptibility to
stochastic sampling noise and the inclusion of closely related
individuals. This inconsistency reduces its reliability,
particularly for empirical studies where replicate testing is not

Frontiers in Genetics frontiersin.org07

Manunza et al. 10.3389/fgene.2025.1588986

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2025.1588986


feasible. In contrast, N100 consistently yielded the least biased and
most stable estimates, but such a sample size may be impractical in
many real-world livestock studies due to budgetary or logistical
constraints. Notably, N50 emerged as the most balanced
compromise, offering substantially reduced dispersion
compared to N20, while still being feasible for routine
application in conservation and breeding programs. In more
detail, slight upward bias in N50 can be related to the slow and
recent nature of the demographic increase of population. With a
moderate sample size (N50), the low level of LD in the expanded
population is harder to capture accurately in comparison to N100,
leading to a slight overestimation of Ne. In contrast, the smaller
sample size (N20), although more affected by sampling variance,
sometimes captured higher levels of residual LD, yielding slightly
more accurate Ne estimates. This suggests that in recent expansion
scenarios, random sampling effects can by pure chance improve
Ne estimation accuracy in small samples by mitigating LD decay
bias. The sampling issue also regards the assumption of
randomness, where each individual has the same chance of
being sampled. In nature, perfectly random sampling is usually
difficult to achieve, and the most common sampling bias occurs
when close relatives are sampled at higher rates. One possible
solution can be to exclude very related individuals (e.g., siblings).
The underlying problem is that pruning for close relatives can also
lead to biased Ne estimates as the incidence of relatives is a
fundamental part of the genetic-drift signal, and without
additional information from the pedigrees, it is impossible to
know how many individuals to remove to approximate a
random sample (Waples, 2024; Waples, 2025). This notable
difference in the performance of the Ne estimation depending
on the sample size is of particular importance in both breeding and
conservation programs, where maintaining high levels of genetic
diversity and keeping inbreeding low are important (Ryman et al.,
2019). For practical applications, the most important
considerations regarding the estimation of contemporary Ne are
the following: based on our results, despite the presence of
potential confounding factors, the representative sample size
should be N100. Through the graphic comparison between the
patterns presented in Figures 1, 2 for these two datasets (natural
and simulated populations), we have come to the same conclusion.
We observed that all means are overestimations (except for
Tibetan), especially for smaller sample sizes. To reduce this
bias, we applied the bias correction described by Waples
(2006). This correction accounts for the fact that small sample
sizes can inflate Ne estimates by leading to artificially low LD
values when too few individuals are sampled. A second option is to
use a larger sample size, but this is often less viable in real-world
applications, especially when dealing with livestock species and
breeds that are the target of non-profit-making projects. Indeed,
finding a cost-effectiveness balance is a priority for most of the
conservation and breeding programs. Addressing 100 animals
would be unfeasible for the available resources of most
laboratories, projects, and biobanks. This rationale can also
support our conclusion for N50 to be the best compromise to
reach this balance (the Ne values obtained using N50 overall
showed that this sample size is a reasonable approximation to
the true value). When using the Ne of a local population in
designing its diversity management program, it is necessary to

complement the results with other information and analyses such
as the level of inbreeding, population structure, admixture, the
inbreeding depression in fitness related traits, the genetic load, and
a more comprehensive demographic study. Many populations lack
these important clues and, under such circumstances, the
outcomes obtained from this estimator could be more difficult
to interpret. Finally, even if the next-generation sequencing
approaches provide interesting opportunities, this method of
recent Ne inference does not improve the chance of a more
reliable estimation by simply increasing the number of markers:
indeed, little extra precision is gained by using more than a few
thousand variants.

5 Conclusion

In conclusion, our study highlights the usefulness and
limitations of LD-based methods for estimating contemporary
Ne in livestock populations, particularly in the absence of pedigree
data. Our estimates, which were generally higher than those from
previous studies, reflect the influence of factors such as marker
density, sample size, population structure, and recent
demographic history. Breeds such as the Churra and MG show
Ne values consistent with active breeding and conservation
programs, whereas the very high Ne observed in Tibetan sheep
likely reflects both its vast census size and population substructure.
Populations with higher internal relatedness or substructure (e.g.,
Tibetan but also Alpine) displayed greater sampling sensitivity in
Ne estimates. Our findings reinforce the importance of using
adequately sized and well-designed samples to minimize bias in
a context of conservation programs for local breeds (Hampton
et al., 2019; Bruford et al., 2015; White et al., 2022). Therefore,
rather than focusing on minimal differences in average Ne values
between sample sizes, which can fluctuate due to stochastic effects
or specific demographic scenarios, we recommend N50 for its
favorable balance among estimation precision, logistical
feasibility, and robustness to sampling variance. This makes it
especially suitable for application in livestock management
programs where genomic monitoring is integrated into
decision-making but resources for sampling may be limited.
Nonetheless, these estimates should be interpreted cautiously,
complemented by other genetic indicators, and supported by
the comparison of Ne estimates calculated using high- or
medium-density SNP data and microsatellites marker. LD-
based Ne estimation, although not novel, remains a valuable
tool when used with appropriate design and context. Although
further scenarios and methods can still be explored to improve the
accuracy and applicability of Ne estimation, new perspectives are
suggested in this study for future and more complex
investigations.
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