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Background: The incidence of ulcerative colitis (UC) is rapidly increasing
worldwide, but existing therapeutics are limited. Neutrophil extracellular traps
(NETs), which have been associated with the development of various
autoimmune diseases, may serve as a novel therapeutic target for UC treatment.

Methods: Bioinformatics analysis was performed to investigate UC-related
datasets downloaded from the GEO database, including GSE87466, GSE75214,
and GSE206285. Differentially expressed genes (DEGs) related to NETs in UC
patients and healthy controls were identified using Limma R package and
WGCNA, followed by functional enrichment analysis. To identify potential
diagnostic biomarkers, we applied the Least Absolute Shrinkage and Selection
Operator (LASSO), Support Vector Machine-Recursive Feature Elimination (SVM-
RFE) model, and Random Forest (RF) algorithm, and constructed Receiver
Operating Characteristic (ROC) curves to evaluate accuracy. Additionally,
immune infiltration analysis was conducted to identify immune cells
potentially involved in the regulation of NETs. Finally, the expression of core
genes in patients was validated using Quantitative real-time PCR (qRT-PCR), and
potential therapeutic drugs for UC were explored through drug target databases.

Result: Differential analysis of transcriptomic sequencing data from UC samples
identified 29 DEGs related to NETs. Enrichment analysis showed that these genes
primarily mediate UC-related damage through biological functions such as
leukocyte activation, migration, immune receptor activity, and the IL-17
signaling pathway. Three machine learning algorithms successfully identified
core NETs-related genes in UC (IL1B, MMP9 and DYSF). According to ROC
analysis, all three demonstrated excellent diagnostic efficacy. Additionally,
Immune infiltration analysis revealed that the expression of these core genes
was closely associated with neutrophils infiltration and CD4+ memory T cell
activation, and negatively associated with M2 macrophage infiltration. qRT-PCR
showed that the core genes were significantly overexpressed in UC patients.
Gevokizumab, canakinumab and carboxylated glucosamine were predicted as
potential therapeutic drugs for UC.
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Conclusion: By combining three machine learning algorithms and bioinformatics,
this research identified three hub genes that could serve as novel targets for the
diagnosis and therapy of UC, which may provide valuable insights into the
mechanism of NETs in UC and potential related therapies.
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Introduction

Ulcerative colitis (UC) is a chronic and relapsing inflammatory
bowel disease that primarily affects the mucosa of the colon and
rectum, presenting with symptoms such as diarrhea, mucus-
purulent bloody stools, and possible extra-intestinal
manifestations (Gros and Kaplan, 2023). The etiology of UC is
complex and multifactorial, involving genetic susceptibility (Chen
et al., 2024a), immune system abnormalities (Baars et al., 2024),
dysbiosis of the (Yan et al., 2024), and dysfunction of the intestinal
epithelial barrier (Neurath et al., 2025). Among the mechanisms
underlying UC, abnormal mucosal immune responses and
inflammation are key pathological features, and neutrophils
playing a crucial role in maintaining intestinal immune
homeostasis (Noviello et al., 2021).

Neutrophils are an essential component of the innate immune
system, defending against microorganisms through phagocytosis,
degranulation, and the release of extracellular traps (NETs), which
enhance immune defense (Brinkmann et al., 2004). During the
pathogenesis of inflammatory bowel disease (IBD), the formation
of NETs can activate the production of various pro-inflammatory
factors, such as IL-1β, TNF-α, and IL-17A. Furthermore, NETs
found in inflamed intestinal tissues of IBD are enriched with
myeloperoxidase, lactoferrin, and calprotectin, which
collaboratively contribute to the progression of IBD (Zhou et al.,
2018). NETs also disrupt the intestinal epithelial barrier by
promoting the breakdown of cell-cell junctions and inducing
apoptosis in epithelial cells, leading to increased intestinal
permeability to luminal antigens. Additionally, NETs promote
intestinal inflammation by mediating the enhanced production
and release of inflammatory mediators by resident immune cells
and by degrading extracellular matrix components, thereby
disrupting connective tissue (Li et al., 2020; Wang H. et al.,
2024). Abnormal accumulation of NETs and their failure to be

effectively degraded may worsen tissue damage in the gut,
contributing to disease persistence and progression. Investigating
the role of NETs in UC could provide new insights and potential
therapeutic targets for the diagnosis and treatment of UC in
the future.

In this study, based on UC-related datasets in the GEO
database and NETs related genes (NRGs) collected in the
literature, differentially expressed genes related to neutrophil
extracellular traps (DEONRGs) was obtained after differential
and weighted gene co-expression network analysis (WGCNA).
Subsequently, enrichment analysis to explore the molecular
mechanisms and biological functions of DEONRGs. core genes
related to NETs were identified by machine learning models and
external data. The potential of these core genes as diagnostic
biomarkers for UC was assessed using Receiver Operating
Characteristic (ROC) curves. Additionally, immune cell
infiltration and biological pathways associated with core genes
were investigated through immune infiltration analysis and GSEA.
Finally, the expression of core genes in patients was validated using
Quantitative real-time PCR (qRT-PCR), and potential therapeutic
drugs for UC were explored through drug target databases. This
study provides an in-depth investigation that enhances our
understanding of the complex interactions of NETs in the
pathogenesis of UC. The detailed workflow of the analysis is
shown in Figure 1.

Methods

Data source and processing

All RNA-seq datasets included in this study were obtained
from the Gene Expression Omnibus (GEO) database (http://www.
ncbi.nlm.nih.gov/geo), using “inflammatory bowel disease” as a
keyword to search for relevant expression datasets. Three
independent datasets were selected, including GSE87466 as the
training set and GSE75214 and GSE206285 as validation sets
(Supplementary Table 1). After importing the data into R
software (version 4.3.2, https://www.r-project.org/), Probes were
converted to gene symbols according to the platform annotation
information of the normalized data. probes without corresponding
gene symbols were excluded to maintain data integrity. For probes
mapping to the same gene, the mean expression value was used as
the final expression value to ensure accuracy and consistency. The
expression profiles were normalized using the Normalize Between
Arrays function from the “limma” package, and the normalized
data were subsequently used for further analysis (Ritchie et al.,
2015). Additionally, the 69 initial NETs biomarkers included in

Abbreviations: UC, Ulcerative colitis; NETs, Neutrophil Extracellular Traps;
GEO, Gene Expression Omnibus; NRGs, Neutrophil extracellular traps related
genes; DEGs, Differentially expressed genes; WGCNA Weighted gene co-
expression network analysis; DEONRGs, Differentially expressed genes
related to neutrophil extracellular traps; DYSF, Dysferlin; IL-1B, Interleukin-
1 Beta; MMP9, Matrix Metalloproteinase-9; qRT-PCR, Quantitative Real-Time
Polymerase Chain Reaction; IBD, Inflammatory bowel disease; GO, Gene
Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; BP, Biological
Process; CC, Cellular Component; MF Molecular Function; PPI, Protein-
protein interaction; MCODE, Molecular complex detection technology;
LASSO, Least Absolute Shrinkage and Selection Operator; SVM-RFE,
Support Vector Machine-Recursive Feature Elimination; RF, Random
Forest; ROC, Receiver operating characteristic; AUC, Area Under the
Curve; GSEA, Gene Set Enrichment Analysis; NES, Normalized enrichment
score; FDR, False positive rate; IS, Interaction scores.
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this study were sourced from previous research (Zhang et al.,
2022a) (Supplementary Table 2).

DEGs and weighted co-expression network

To identify differentially expressed genes (DEGs) associated
with NETs, we utilized 2 R packages, “GEOquery” and “Limma,”
to retrieve the raw data and perform differential expression analysis.
The “Limma” package was used to compare gene expression profiles
across different groups, with thresholds set at a p-value <0.01 and
|logFC| > 1 to identify DEGs between the case and control groups
(Ritchie et al., 2015). Subsequently, we employed the “WGCNA”
package for WGCNA on the training dataset expression data
(Langfelder and Horvath, 2008). To ensure the co-expression
network conforms to a scale-free distribution, the soft threshold
power was determined using the pickSoftThreshold function. The
dynamic tree cut method was applied to define separate modules,
each containing at least 30 genes. To consolidate similar modules, a
mergeCutHeight of 0.3 was set. The association between the
identified modules and UC was further explored. The module
most closely related to UC, with a correlation coefficient
exceeding 0.5 (p-value <0.05), was isolated. Modules with a |MM|
greater than 0.8 and |GS| exceeding 0.4 were deemed critical. Module
membership (MM) quantifies the relationship between genes and
the module, while gene significance (GS) measures the correlation

between genes and the trait. Finally, a Venn diagram was generated
(https://www.bic.ac.cn/EVenn/#/) to intersect the DEGs with the
final modules and NETs-related genes, which led to the
identification of 29 DEONRGs between UC and control samples.

PPI network construction

To explore the interactions between 29 DEONRGs, we
constructed a Protein-Protein Interaction (PPI) network
(Szklarczyk et al., 2023). Specifically, the PPI network was built
using protein interaction data from the STRING database (https://
cn.string-db.org/), Interactions with a composite score surpassing
0.4 were deemed statistically significant.

Enrichment analysis

Gene Ontology (GO) enrichment analysis (http://www.
geneontology.org) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) enrichment analysis (www.genome.jp/kegg/)
were employed to determine the biological functions of the genes
(Kanehisa et al., 2017; Yu et al., 2012). GO terms consist of three
categories: Biological Process (BP), Cellular Component (CC),
and Molecular Function (MF). Significant pathways with a
p-value <0.05 were selected for further analysis.

FIGURE 1
Roadmap of the main research ideas in this article.
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Screening biomarkers by machine
learning models

To identify key NETs-related biomarkers, we utilized three
machine learning algorithms: Least Absolute Shrinkage and
Selection Operator (LASSO) regression, Support Vector Machine-
Recursive Feature Elimination (SVM-RFE), and Random Forest
(RF). Prior to applying LASSO, SVM-RFE, and RF, the Synthetic
Minority Over-sampling Technique from the ‘smotefamily’ package
was employed to balance the imbalanced data (Bunkhumpornpat
et al., 2024). This procedure aimed to mitigate any potential bias
toward the majority class and uphold the integrity of the analysis.
Following this, the createDataPartition function from the ‘caret’
package was utilized to divide the balanced data into training and
test sets, with an 8:2 ratio. This division enables the model to be
trained on one subset and evaluated on an independent test subset,
ensuring a fair evaluation of the algorithm’s performance. LASSO is
a widely used regression method that selects variables to improve
prediction accuracy. It was implemented using the “glmnet” R
package (version 4.1). We selected the optimal λ value by cross
validation and removed genes exhibiting multicollinearity to reduce
potential bias (Kang et al., 2021). The SVM-RFE was implemented
using the “e1071”R package (version 4.1). We optimized the C and γ
parameters through 10-fold cross-validation and grid search to
select the best configuration in training sets (Zhang et al., 2022b).
The RF algorithm, a supervised classification method based on
decision trees, was implemented using the “randomForest” R
package (version 4.7). Similarly, we evaluated the error rate
across tree counts ranging from 1 to 500 and determined the
optimal number of trees by performing 10-fold cross-validation
in training set to select the configuration with the lowest error rate in
training sets (Schonnagel et al., 2024). Additionally, we measured
the feature importance scores of each gene, identifying candidate
hub genes with an importance value greater than 1. Finally, The
validation set is used to construct the confusion matrix of the
machine learning models and output the parameters including
accuracy, precision, recall, F1 score, and AUC to evaluate the
performance of different models (Rainio et al., 2024).

External validation and diagnostic
performance of core genes

To validate our findings, we assessed the expression of the core
genes using two external datasets, GSE75214 and GSE206285. Genes
that exhibited differential expression in both datasets were identified
as core genes. Subsequently, the ‘pROC’ package was utilized to
generate the receiver operating characteristic (ROC) curve,
evaluating the ability of the hub genes to distinguish between UC
patients and healthy individuals across all datasets (Robin
et al., 2011).

Gene set enrichment analysis

To investigate the relationship between hub genes and signaling
pathways, and to further elucidate the key role of DEONRGs in the
pathogenesis of UC, we divided the samples into high-expression

and low-expression groups based on the average expression levels of
the hub genes. Gene set enrichment analysis (GSEA) was
then performed between these two subgroups (Chang et al.,
2024). Gene sets showing enrichment with a nominal p-value
of <0.05, |normalized enrichment score (NES)| > 1, and a false
discovery rate (FDR) q-value <0.25 were classified as statistically
significant.

Immune infiltration of core genes

To further explore the potential relationship between core genes
and immune cell populations, immune infiltration analysis was
performed using the R package “CIBERSORT.” Subsequently,
Spearman’s correlation analysis was conducted to examine the
relationship between the expression of diagnostic biomarkers and
the abundance of 22 different immune cell types (Newman et al., 2015).

Quantitative real-time polymerase
chain reaction

Quantitative Real-Time Polymerase Chain Reaction (qRT-PCR)
was performed to determine the NETs expression profile in UC
patients. Blood samples were collected from three patients with
active UC, diagnosed based on confirmed pathological biopsy, as
well as from three age-matched healthy controls. The average age of
all samples was 38 ± 4.2 years, and no significant age difference was
observed between the two groups (P > 0.05). Informed consent was
obtained from all participants. This study was approved by the
Ethics Committee of Renmin Hospital of Wuhan University (Ethics
No: 2022K-K265 (Y01)). Total RNA was extracted from six blood
samples using TRIzol reagent (Ambion, Austin, USA). cDNA was
synthesized from total RNA using a first-strand cDNA synthesis kit
(Servicebio, Wuhan, China). qRT-PCR was performed using
2xUniversal Blue SYBR Green qPCR Master Mix (Servicebio,
Wuhan, China). All experiments were conducted according to
the manufacturer’s instructions. Primer sequences for PCR were
designed based on primer length (17–25 bp), Tm value (58°C–60°C),
GC content (40%–60%), and amplicon size (100–200 bp)
(Supplementary Table 3). GAPDH was used as an internal
reference gene. Gene expression was calculated using the 2−ΔΔCq

method (Livak and Schmittgen, 2001).

Prediction of potential drugs

Based on the identified diagnostic UC biomarkers, potential
drugs for UC treatment were predicted using the DGIdb database
(https://www.dgidb.org/) (Cannon et al., 2024). The biomarker-
compound interaction network was visualized using Cytoscape
software (version 3.9.1) (Franz et al., 2023).

Statistical analysis

Differences between the two groups were analyzed using the
unpaired Student’s t-test and the Wilcoxon rank-sum test. Pearson
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or Spearman correlation analysis was used to assess the relationships
between variables. Statistical analysis and data visualization were
performed using GraphPad Prism 8.0.2 and R 4.3.2 software. Unless
otherwise stated, differences were considered statistically significant
when p < 0.05 (*p < 0.05, **p < 0.01, ***p < 0.001).

Results

Screening DEGs in UC

DEGs from 87 UC samples and 21 control samples in the
GSE87466 dataset were rigorously analyzed using the “limma”
package in R for statistical analysis. Transcriptomic analysis
identified 3,327 DEGs, including 1,876 upregulated and
1,350 downregulated genes (Figure 2A). A heatmap displaying
the top 50 upregulated and downregulated DEGs, clustered by
sample, is shown in Figure 2B.

As shown in Figure 2C, we constructed a sample clustering tree
and corresponding clinical feature heatmap using the WGCNA
package. After applying hierarchical clustering and dynamic tree
cutting functions to identify the samples without outliers, we
selected the top 10,000 genes based on expression levels from
108 samples for subsequent WGCNA analysis. To determine the
appropriate soft-thresholding power for WGCNA, we assessed scale
independence and average connectivity. Based on a correlation

coefficient threshold of 0.85, we selected the ideal soft-
thresholding power of 17 from the scale-free topology fit index
plot and constructed the topological overlap matrix (TOM)
accordingly. To identify modules associated with UC clinical
features, we performed hierarchical clustering of the dendrograms
of all DEGs using the corresponding dissimilarity (1-TOM). After
dynamic tree pruning and average hierarchical clustering (Figure 2D),
seven major modules were identified. Modules that exhibited strong
correlations with clinical features typically have significant and
specific biological relevance. We examined the Pearson correlation
coefficients between the modules and sample characteristics. Among
them, the salmon module (Correlation: 0.72, p-value: 2e-18) showed
the strongest association with UC (Figure 2E). To further investigate
the relationship between the salmon module and gene significance
(GS), an in-depth analysis was conducted. The salmon module was
found to have a correlation of 0.61 (p-value: 1.4e-187) with gene
significance (Supplementary Figure 1A). This module contains
1,837 UC-related genes, which will be further exploration of
NRGs in UC.

PPI network and enrichment analysis
of DEONRGs

We performed a cross-analysis of NRGs with DEGs, resulting
in 29 DEONRGs, as depicted in the Venn diagram (Figure 3A).

FIGURE 2
Identification of differentially expressed genes and trait-related gene modules in UC. Volcano plots (A) and heatmap (B) illustrating DEGs in UC
datasets. Each point represents a gene, with red and blue indicating significantly upregulated and downregulated genes, respectively, based on thresholds
of |lgFC| > 1 and p-value <0.01. Grey dots represent non-significant genes. (C) Scale independence and mean connectivity in the GSE87466. (D) Gene
dendrogram and modules after merging in the GSE87466. (E) Heatmaps showing module–trait relationships based on WGCNA in UC. Each row
represents a co-expression module labeled by color, and each column represents a clinical trait (Healthy Control or UC). The values within each cell
represent the Pearson correlation coefficient between the module eigengene and the trait, with the corresponding p-value shown in parentheses.
Modules with strong positive or negative correlations are highlighted in red and blue, respectively, indicating potential trait relevance. WGCNA, Weighted
gene co-expression network analysis; DEGs, differentially expressed genes.
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To further elucidate the potential relationships of DEONRGs in
UC, we conducted a PPI network analysis using STRING,
incorporating 29 genes into the network. The resulting
network contained 29 nodes and 157 edges (p < 1.0e-16), with
the depth and size of the nodes indicating the number of
connections for each gene (Supplementary Figure 1B).

Furthermore, to explore the pathways involved in the
intersecting genes, we created a dot plots for the key pathways
identified through GO enrichment analysis and KEGG
enrichment analysis, including BP (Figure 3B), MF
(Figure 3C), and CC (Figure 3D). We also displayed the
important pathways in network form (Figure 3E). In terms of
biological processes (GO enrichment), these genes were
primarily enriched in immune-related processes, such as
inflammation, leukocyte and neutrophil chemotaxis, and
chemokine-mediated signaling pathways. For molecular
functions and cellular components, these DEGs were enriched
in immune receptor activity, cytokine activity and secretory
granule membrane. In the KEGG pathway enrichment
analysis, besides the significant enrichment in NETs
formation, the DEONRGs were also associated with cytokine-
cytokine receptor interactions, the IL-17 signaling pathway, and
pathways related to Coronavirus disease - COVID-19, among
others. This suggests that DEONRGs may primarily enhance
immune cell activity and drive the migration of leukocytes and
neutrophils through the IL-17 signaling pathway and cytokine

receptor interactions, contributing to the progression of UC and
other various diseases.

Core gene selection of DEONRGs by
machine learning

Feature gene selection was performed using LASSO regression,
SVM-RFE and RF models. LASSO regression, combined with 10-
fold cross-validation, facilitated automatic feature selection and
optimization of the regularization parameters, aiming to
minimize prediction error. The LASSO algorithm successfully
identified 5 feature variables when the lambda value was
minimized (Figures 4A,B). The SVM-RFE model identified ten
key genes based on the maximum accuracy (Figure 4C). By
increasing the number of decision trees in the random forest
model, the prediction error gradually decreased, stabilizing at
approximately 300 trees (Supplementary Figure 1C). The random
forest model identified the 10 feature genes with variable importance
greater than 1 when selecting the smallest cross-validation error
(Figure 4D). As shown in Supplementary Table 4, the three machine
learning models demonstrated pretty consistency and reliability. A
Venn diagram was used to intersect the core genes identified by the
three machine learning methods, revealing that IL1B, MMP9, DYSF
and TECPR2 were considered core genes of NRGs in
UC (Figure 4E).

FIGURE 3
GO and KEGG Enrichment Analysis of DEONRGs in UC. (A) Venn diagram of DEONRGs in UC identified through WGCNA network analysis,
Differential analysis and overlap with NRGs; (B–D) Dot plots showing GO enrichment analysis of DEONRGs; (E) KEGG pathway enrichment analysis of
DEONRGs. An adjusted p-value <0.05was considered statistically significant. The ordinate represents the enriched terms, and the abscissa represents the
proportion of genes involved in each term. The size of the dots indicates the number of genes, while the color of the dots reflects the p-value.
WGCNA, Weighted gene co-expression network analysis; DEONRGs: differentially expressed genes related to neutrophil extracellular traps; BP:
Biological Process; CC, Cellular Component; MF, Molecular Function; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes.
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Validation of hub genes expression and
diagnostic performance

To validate our findings, we further confirmed the expression of
the four genes in UC using external datasets, GSE75214 and
GSE260258. The results showed that, except for TECPR2, IL1B,
MMP9 and DYSF exhibited differential expression between UC and
control groups (Figures 5A,B). Subsequently, we performed ROC
curve analysis to explore the diagnostic performance of the core
genes across three datasets. The results demonstrated that the AUC
values for the core genes in all three datasets were greater than 0.9,
indicating exceptional predictive ability. These core genes could
therefore serve as key molecular biomarkers for diagnosing UC
(Figures 5C–E).

Gene set enrichment analysis

To further elucidate the relationship between core genes and the
inflammatory and immune mechanisms involved in the
pathogenesis of UC, we performed GSEA analysis based on the
expression of core genes in the GSE87466 dataset. Based on the
enrichment scores, we identified ten key signaling pathways related
inflammation and immunity activated by DEONRGs in UC
(Supplementary Figure 2). The expression of the three core genes
was enriched in pathways related to NETs formation, immunity, and
inflammation. The results indicated that high expression of IL-1B in
UC was mainly associated with IL-17 signaling pathway, TNF
signaling pathway, NF-kappa B signaling pathway and Viral

protein interaction with cytokine and cytokine receptor. Elevated
MMP9 expression was primarily linked to Primary
immunodeficiency, Viral protein interaction with cytokine and
cytokine receptor, NF-kappa B signaling pathway and Intestinal
immune network for IgA production, while increased DYSF
expression was mainly associated with Glycosaminoglycan
biosynthesis-chondroitin sulfate dermatan sulfate, Primary
immunodeficiency, Viral protein interaction with cytokine and
cytokine receptor, ECM-receptor interaction and NF-kappa B
signaling pathway. The nominal p-values, FDR q-values, and
NES of the immunity and inflammation gene sets related to hub
genes expression in GSE87466 are provided in
Supplementary Table 5.

Immune infiltration analysis

To further identify the immune cell types associated with UC
in the colon, CIBERSORT was used to quantify the proportions
of 22 immune cell types in normal colon and UC colon samples
(Figure 6A). Compared to healthy controls, UC tissues exhibited
a significant decrease in activated NK cells, regulatory T cells and
M2 macrophages, while neutrophils, M0 macrophages,
M1 macrophages, and CD4+ T memory cells were
significantly increased (Figure 6B). We then performed
Pearson correlation analysis to examine the relationship
between these immune cells and the expression levels of core
genes. The results (Table 1) revealed that the expression of the
three core genes was significantly positively correlated with

FIGURE 4
Identification Key DEONRGs in UC. (A,B) By LASSO logistic regression algorithm, with penalty parameter tuning conducted by 10-fold cross-
validation, was used to select NETs-related features; (C) SVM-RFE algorithm to filter the 10 DEONRGs to identify the optimal combination of feature
genes; (D) RF algorithm to screen the top 10DEONRGs to identify the optimal combination of feature genes; (E) Venn diagram showing the overlap of key
genes identified by LASSO, SVM-RFE and RF in UC. Four common hub genes (TECPR2, IL-1B, MMP and DYSF) were identified across three machine
learning model. LASSO, Least Absolute Shrinkage and Selection Operator; SVM-RFE, Support Vector Machine-Recursive Feature Elimination; RF,
Random Forest.
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neutrophils infiltration (r > 0.5, p < 0.001). Furthermore, IL-1B
was positively correlated with activated mast cell, memory B
cells and dendritic cells, and negatively correlated with plasma
cells and resting mast cells (Figure 6C). MMP9 was significantly
positively correlated with M0 macrophages in UC, while
significantly negatively correlated with M2 macrophages
(Figure 6D). DYSF was positively correlated with
M0 macrophages, activated CD4+ T memory cells, and mast
cells, while negatively correlated with M2 macrophages and
eosinophils (Figure 6E). These results suggest that immune
responses mediated by NRGs play a crucial role in the
pathogenesis of UC.

Expression of hub genes in UC patients

To further validate our hypothesis, we measured the
transcriptional levels of IL-1B, MMP9, and DYSF in blood
samples collected from UC patients (n = 3) and healthy
individuals (n = 3) by qRT-PCR. All three genes showed a
marked upregulation in the UC group, with statistically
significant differences observed across three independent
biological replicates (Figures 7A–C), (P < 0.05 to P < 0.001).
These findings suggest that IL-1B, MMP9 and DYSF play a role
as core NETs targets in the progression of UC, highlighting their
potential as candidate diagnostic biomarkers for identifying and
monitoring severe UC cases.

Potential drugs targeting neutrophil
extracellular traps genes

To explore potential drugs for the treatment of UC, we searched
the DGIdb database for drugs targeting NETs biomarkers. The
drug–gene interaction results from the DGIdb database revealed
51 drugs targeting IL-1B and 25 drugs targeting MMP9. Regarding
IL1B-targeting drugs, 37 have been approved for marketing, and
14 of these have undergone clinical trials related to UC (Figure 8A).
The top five drugs with the highest interaction (IS) scores (IS > 2) are
GEVOKIZUMAB, CANAKINUMAB, TT-301, PENTAMIDINE
and POLYVALENT VACCINE. Among the MMP9-targeting
drugs, six have been approved for marketing, and three have
been proven effective in treating UC. Furthermore, three drugs
have been shown to slow the progression of UC in animal studies
(Figure 8B). The top five drugs with the highest IS (IS > 1) are
CARBOXYLATED GLUCOSAMINE, ANDECALIXIMAB, DP-
B99, ULINASTATIN, and CURCUMIN PYRAZOLE.

Discussion

UC, a chronic inflammatory bowel disease characterized by
mucosal immune dysregulation, has seen an increasing incidence
in recent years. Over the past 3 decades, the prevalence of
inflammatory bowel diseases (IBD) has risen by 47.45%, and this
trend is expected to continue, with projections indicating that by

FIGURE 5
Identification the Expression and ROC Curves for Key Hub Genes in Training and Validation Sets for UC. (A,B) Box plot depicting the differential
expression of the four candidate hub genes between UC patients and control groups in GSE75214 (A) and GSE206285 (B) (C–E) ROC curves for individual
hub genes (IL-1B, MMP9 and DYSF) in GSE87466, with their corresponding AUC values (C) ROC curves for hub genes in the GSE75214 dataset, showing
high predictive accuracy with AUC ranging from 0.953 to 0.962 (D) ROC curves for hub genes in the GSE206285 dataset, showing varying levels of
predictive accuracy, with AUC values ranging from 0.951 to 0.990 (E) Statistical analysis was performed using unpaired t-tests. (*P < 0.05, **P < 0.01,
***P < 0.001) ROC, receiver operating characteristic; AUC, Area Under the Curve.

Frontiers in Genetics frontiersin.org08

Li et al. 10.3389/fgene.2025.1589999

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2025.1589999


2030, IBD patients will comprise 1% of the global population (Wang
S. et al., 2024). Despite the significant reduction in UC-related
mortality due to the use of immunosuppressive drugs and
biologics, delayed diagnosis and the individual variability in
treatment response pose significant challenges in achieving
complete remission for UC patients (Hirten and Sands, 2021).
NETs have long been associated with the local immune responses
and pathological processes in IBD. Excessive NETs release may
impair intestinal barrier function, sustain inflammation, and
exacerbate tissue damage and poor repair, further promoting the
destruction of the intestinal barrier and contributing to chronic
inflammation (Li et al., 2021). Several studies have previously
demonstrated the role of neutrophils in the pathogenesis of UC.
One study identified two neutrophil-associated gene subtypes and
their biological functions involved in UC, but it did not further
elucidate the core genes driving NETs formation and their specific
roles in UC (Zhang et al., 2023). Another Mendelian study
confirmed the involvement of NETs in UC from a genetic
perspective (Xv et al., 2024). However, due to limitations related
to specific populations and disease activity, the results of the
Mendelian study require further comprehensive bioinformatics
analysis to clarify the biological functions and mechanisms of
NETs, particularly in UC, a disease influenced by multiple factors
including genetics, environment, and immunity.

This study aimed to better understand the specific role of NETs
in UC through bioinformatics and machine learning approaches,
identifying potential diagnostic and therapeutic targets. We used the

limma and WGCNA packages for comparative analysis and to
identify DEGs. A Venn diagram was then used to obtain
overlapping NRGs from the DEGs, followed by comprehensive
enrichment analysis to explore the biological pathways associated
with these NRGs. The analysis revealed that DEGs were primarily
enriched in “leukocyte migration activation”,“immune receptor
activity” and the IL-17 signaling pathway. Next, we constructed a
PPI network of NRGs using the STRING database, revealing strong
interconnections among the NRGs in UC. To further identify core
genes within the DEONRGs, we applied three machine learning
methods, resulting in the selection of four candidate core genes: IL-
1B, MMP9, DYSF and TECPR2. After validation using external
datasets, IL-1B, MMP9 and DYSF were confirmed as core NRGs.
Excellent ROC curve performance further validated their potential
as biomarkers for early UC diagnosis. Immune infiltration analysis
were conducted to determine the immune cell functions associated
with the core NRGs. The results of qRT-PCR further validated our
findings, and the potential therapeutic drugs were identified using
the DGIdb database.

IL-1B is a factor synthesized and secreted by macrophages,
monocytes, and other cell types, belonging to the interleukin-1
(IL-1) family. It participates in various cellular activities,
including cell proliferation, differentiation, and programmed cell
death, by binding to its receptor IL-1R (Aschenbrenner et al., 2021).
Previous studies have shown that IL-1B-induced NETs formation
can promote experimental abdominal aortic aneurysm (Meher et al.,
2018). In UC-related studies, targeting IL-1B effectively alleviates

FIGURE 6
Immune Cell Infiltration Analysis for UCDatasets. Stacked proportional bar chart of immune cells between UC group and control group (A) Boxplots
illustrating the proportions of various immune cell types in the control (blue) and disease (red) groups in the datasets GSE 87466. Significant differences in
cell type abundance are observed between the groups. The p-values indicate the statistical significance of these differences between groups (B) The
lollipop chart shows the results of correlation analysis between IL-1B (C)MMP9 (D) and DYSF (E)with various immune cell types in UC patients. The
correlation coefficients are represented along with the p-values, indicating the strength and significance of the correlation between gene expression and
immune cell infiltration. The size of the circles represents the absolute correlation (abs (cor)), and the color scale represents the p-value, with darker
colors showing more significant correlations.
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colitis in mice (Cook et al., 2013). Our immune infiltration and
GSEA analysis results suggest that, aside from neutrophils, IL-1B is
strongly correlated with B cells memory and dendritic cells activated.
We suggest the high expression of IL-1B may activate dendritic cells
through NF-kappa B signaling pathway, leading to the secretion of
IL-1 and TNF, which subsequently activate NETs (Chen et al.,
2024b). In addition, the expression of IL-1B may active the
memory B cells, continuous activation of memory B cells may
lead to the loss of intestinal immune tolerance, resulting in
abnormal activation of the intestinal immune system and
attacking self-tissues through the interaction between memory B
cells and the IL-17 signaling pathway (He et al., 2024). Furthermore,
viral protein interaction with cytokine and cytokine receptor may
activate mast cells through the Toll-like receptor signaling pathway,
leading to increased IL-1 secretion, enhanced vascular permeability
at the secretion site, and subsequent migration of white blood cells to
the inflammatory site (Gebremeskel et al., 2021). This creates
persistent inflammation that contributes to the development of UC.

Matrix metalloproteinase-9 (MMP9), a member of the zinc-
dependent endopeptidase family, plays a crucial role in immune
activation, inflammation cascade regulation, and extracellular

matrix degradation and remodeling. MMP9 facilitates the
accumulation of immune cells in the pathogenesis of various
diseases (Mei et al., 2022). Observational studies have reported
high expression of MMP9 in the inflamed mucosal regions of
UC (B et al., 1999). Multiple studies have confirmed that
MMP9 induces tissue damage via the NETs pathway in diseases
such as osteoarthritis and myocardial infarction (Ke et al., 2024;
Luan et al., 2023). Our study provides additional insights into the
mechanism of MMP9-mediated NETs damage in UC. Immune
infiltration analysis shows that the expression of MMP9 is
significantly correlated with the infiltration of M0 macrophages
and CD4+ T cells in UC. GSEA enrichment analysis suggests that
MMP9 may promote the polarization of M0 macrophages into
M1 macrophages through the NF-κB and TLR signaling
pathways, leading to the secretion of pro-inflammatory cytokines
such as TNF-α,IL-1β, and IL-6, which then contribute to NETs
formation andmucosal damage (Pucci et al., 2021). Additionally, the
correlation between MMP9 high expression and CD4 T cell
infiltration suggests that MMP9 may active CD4+ memory
T cells, promoting the Th17 cell differentiation and release of
pro-inflammatory cytokines such as IFN-γ, IL-17, and TNF-α,

TABLE 1 The results of sperman analysis between core genes and immune cells.

Immune cells IL-1B MMP9 DYSF

correlation pvalue correlation pvalue correlation pvalue

B cells naive −0.03 0.80 0.40 <0.001 0.16 0.14

B cells memory 0.42 <0.001 0.05 0.63 0.09 0.39

Plasma cells −0.52 <0.001 −0.27 0.01 −0.11 0.31

T cells CD8 −0.32 <0.001 −0.31 <0.001 −0.31 <0.001

T cells CD4 naive −0.04 0.68 0.15 0.16 0.26 0.02

T cells CD4 memory resting 0.07 0.50 −0.27 0.01 −0.37 <0.001

T cells CD4 memory activated 0.32 <0.001 0.48 <0.001 0.36 <0.001

T cells follicular helper −0.17 0.12 0.10 0.33 0.02 0.87

T cells regulatory (Tregs) −0.19 0.08 −0.35 <0.001 −0.30 0.01

T cells gamma delta −0.01 0.91 −0.22 0.04 −0.14 0.20

NK cells resting −0.02 0.83 0.18 0.09 0.20 0.06

NK cells activated 0.01 0.93 −0.30 <0.001 −0.25 0.02

Monocytes −0.16 0.13 −0.16 0.13 −0.15 0.16

Macrophages M0 0.09 0.41 0.74 <0.001 0.46 <0.001

Macrophages M1 0.27 0.01 0.14 0.19 0.15 0.16

Macrophages M2 −0.34 <0.001 −0.62 <0.001 −0.51 <0.001

Dendritic cells resting −0.20 0.06 −0.07 0.50 −0.17 0.11

Dendritic cells activated 0.37 <0.001 0.17 0.11 0.18 0.10

Mast cells resting −0.51 <0.001 −0.29 0.01 −0.39 <0.001

Mast cells activated 0.46 <0.001 0.24 0.03 0.36 <0.001

Eosinophils −0.16 0.13 −0.35 <0.001 −0.40 <0.001

Neutrophils 0.85 <0.001 0.53 <0.001 0.67 <0.001
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which enhance NETs formation and excessive immune responses
(Jiang et al., 2023). Meanwhile, NETs and their histones further
promote Th17 cell differentiation directly via TLR2, ultimately
leading to chronic inflammation and tissue damage (Wilson
et al., 2022).

Currently, there is no evidence supporting the use of dysferlin
(DYSF) as a biomarker for UC. However, dysregulation of DYSF

expression is closely associated with various hereditary
myopathies and autoimmune diseases. For example,
upregulation of DYSF expression plays a key role in
inflammatory cell infiltration and muscle damage in
dermatomyositis and idiopathic inflammatory myopathy (Xiao
et al., 2019). Moreover, DYSF promotes monocyte activation,
enhancing its phagocytosis, adhesion, and migration, thus

FIGURE 7
Expression analysis of IL-1B, MMP9 and DYSF in control and UC groups. (A–C)Quantitative qRT-PCR results showingmRNA expression levels of IL-
1B (A)MMP9 (B) and DYSF (C) in three biological replicates from the control group (blue) and UC group (red). Data are presented as fold change relative to
the control group. Statistical analysis was performed using unpaired t-tests (*P < 0.05, **P < 0.01, ***P < 0.001)
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contributing to the formation of necrotic cores in atherosclerosis
and playing an important role in atherosclerotic cardiovascular
disease. It has been confirmed as a core diagnostic biomarker for
atherosclerosis and systemic lupus erythematosus (Ding et al.,
2023; Zhang X. et al., 2022). In our study, DYSF demonstrated
excellent discriminatory ability, suggesting its potential as a
candidate biomarker for UC. Combining previous research
with our immune infiltration results, we found that DYSF may
mediate NETs formation through both intestinal mucosal barrier
and immune cell activation, promoting the progression of UC.
On the one hand, DYSF is significantly correlated with CD4 T cell
infiltration in UC, which may promote Th1 and Th2 cell
differentiation, leading to the production of cytokines such as
IFN-γ, IL-4, IL-5, IL-13, and TNF-α (Gomez-Bris et al., 2023).
Activated Th1 cells secrete IFN-γ and TNF-α, recruiting and
activating neutrophils, which enhances NETs formation. On the
other hand, our enrichment analysis revealed that DYSF
expression is associated with mucosal barrier pathways,
including ECM-receptor interaction and glycosaminoglycan
biosynthesis, specifically chondroitin sulfate/dermatan sulfate
pathways in UC (Long et al., 2024). This suggests that DYSF
may affect the repair and regeneration of intestinal epithelial cells
via these pathways. Inadequate repair of the damaged intestinal
mucosal barrier leads to the excessive activation of immune cells
and the recruitment of pro-inflammatory factors, triggering
NETs formation and further damage to intestinal tissue.

In our study, we have, for the first time, identified and validated
the core NETs genes in UC, exploring their molecular functions,
signaling pathways, and immune-mediated actions, and screened
potential therapeutic drugs for UC based on these core genes.
Despite our efforts to improve the reliability of the findings by

utilizing large datasets, multiple analytical methods, and both
internal and external validation, there are inevitable limitations
in our research. Firstly, our samples were derived from previously
published datasets, potential sample bias and limited
representativeness may compromise the generalizability of the
findings, and variations in dataset selection and analytical
methods could lead to different outcomes. Secondly, as the
study of NETs deepens, the gene set associated with NETs
requires further refinement. Lastly, the lack of additional
molecular experiments or animal studies limits our
understanding of the mechanistic role of core genes in UC.
Therefore, further experimental studies are necessary to confirm
our findings.

Conclusion

In conclusion, IL-1B, MMP9 and DYSF have been identified as
core genes associated with UC-related NETs and are involved in the
regulation of the immune microenvironment in UC. Our future
research will focus on these genes in order to further elucidate the
pathogenesis and management of UC. NETs-based approaches in
UCmanagement may contribute to its potential for complete cure in
the future.
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FIGURE 8
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related clinical trials. Drugs marked in blue have already been tested on animal models.
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Scatterplot of MM and GS from the salmon module in UC (A) PPI network
diagram (B) Decision tree of RF model in GSE87466 (C) Abbreviations: UC:
ulcerative colitis; GS, Gene Significance; MM, Module Membership; PPI:
protein-protein interaction. RF: Random forest.
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An integrated gene set enrichment analysis plot of DYSF (A) IL-1B (B) and
MMP9 (C) in dataset GSE87466.
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