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Background: Various occupational hazards in the electrolytic aluminum
environment have been linked to cognitive decline. However, the interactive
effects of these hazards and genetic factors on cognitive function remain unclear.

Objective: This study aimed to identify the primary occupational hazards,
examine their interaction with IL-1β gene polymorphisms in relation to
cognitive function.

Methods: A cross-sectional study was conducted in June 2024 at an electrolytic
aluminum company in China, involving 478male workers. Cognitive function was
assessed using the Montreal Cognitive Assessment. Calculate the cumulative
exposure dose of harmful factors such as aluminum dust. Additionally, IL-1β gene
polymorphisms (rs1143627, rs1143643, rs16944, rs3917356) and serum protein
levels were analyzed. The associations between environmental exposure, genetic
factors, and cognitive function were examined using multivariate stepwise linear
regression, restricted cubic splines, generalized linear models, and hierarchical
analysis. Covariance analysis and independent sample t-tests were employed to
assess the potential mediating effect of peripheral blood IL-1β levels.

Results:Cumulative exposure to aluminum dust was significantly associated with
cognitive decline (β = −0.18, 95% CI: 0.27, −0.10), and the relationship was linear.
Compared to the wild genotype, individuals carrying rs1143627 G/G,
rs1143643 C/C, and rs16944 A/A exhibited significantly lower cognitive scores
(P < 0.01), whereas rs3917356 C/T and T/T conferred a protective effect (P < 0.01).
Themodel was adjusted for age, bodymass index, and cumulative aluminumdust
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exposure. The genetic effect associated with IL-1β was more pronounced in
individuals with high aluminum exposure (>2.37 mg/m3 × year). IL-1β serum
protein levels showed no significant association with cognitive function (P > 0.05).

Conclusion:Cumulative exposure to aluminumdust is a key risk factor for cognitive
decline. IL-1β polymorphisms influence susceptibility, with the effect becoming
more pronounced under high aluminum exposure. However, peripheral blood IL-
1β levels do not mediate this association with cognitive decline.

KEYWORDS

occupational factors, aluminum dust, IL-1β, genetic polymorphism, cognitive function,
interaction

1 Introduction

With ongoing industrialization and increasing awareness of
occupational health, regulatory agencies continuously update and
refine workplace exposure limits for hazardous factors to minimize
their impact on workers’ health (Guo et al., 2024; Veer and Kumar,
2024). However, despite stringent regulatory frameworks, exposure
concentrations of hazardous substances in occupational
environments—such as those in the metal smelting
industry—remain significantly higher than those encountered in
everyday settings (Mozaffari et al., 2023; Silver et al., 2021). Research
indicates that workers exposed chronically to physical and chemical
hazards are at heightened risk for various occupational diseases, with
cognitive dysfunction being one of the more insidious and often
overlooked health impairments (Tharwani et al., 2024; Mohammed
et al., 2020). This issue is particularly pronounced among aluminum
workers (Meng et al., 2019). While most affected workers exhibit
only mild cognitive impairment (MCI), studies suggest that
approximately 8%–13% of individuals with MCI may progress to
Alzheimer’s disease (AD) (McGirr et al., 2022; Kandimalla et al.,
2016). Such cognitive decline not only threatens individual quality of
life but also raises concerns regarding workplace safety and
productivity. Given these risks, it is essential to identify the key
occupational hazards contributing to cognitive decline and to screen
high-risk individuals. Establishing effective prevention and
intervention strategies will be crucial in mitigating the long-term
health and occupational safety implications of these exposures.

Current research has established a strong association between
aluminum and its compounds and the development of
neurodegenerative diseases (Li et al., 2024; Zhang F. et al., 2024).
While aluminum intake in daily life is relatively low, occupational
exposure—particularly in the aluminum electrolysis
industry—significantly increases the body’s aluminum burden.
Elevated levels of aluminum exposure, as indicated by increased
blood or urine aluminum concentrations, have been positively
correlated with a higher incidence of cognitive dysfunction
(Shang et al., 2021; Letzel et al., 2000). In these studies,
demographic and behavioral characteristics such as age, gender,
education, smoking, and alcohol consumption are commonly
included as covariates in analytical models for adjustment.
However, limited attention has been given to the influence of
factors other than aluminum exposure on cognitive function (Lu,
2018). The aluminum electrolysis environment exposes workers to a
range of harmful occupational factors, including high temperatures,
noise, strong magnetic fields, sulfides, carbon oxides, nitrogen

oxides, fluorides, and other physical and chemical hazards, all of
which may have adverse effects on cognitive function (Yin et al.,
2024; Modenese and Gobba, 2021; Meo et al., 2024). Furthermore, It
is worth exploring whether these occupational hazards have a
threshold effect.

In addition to occupational hazards, genetic susceptibility is one of
the most critical factors influencing cognitive function. Research has
demonstrated that neuroinflammation plays a pivotal role in the
development of MCI and AD (Nordengen et al., 2019; Schuitemaker
et al., 2009). Current studies suggest that, upon stimulation, microglia
in the hippocampus activate the intracellular transcription factor NF-
κB, leading to an upregulation of precursor interleukin-1β (pro-IL-1β)
expression. Concurrently, activation of the NLRP3-caspase-
1 inflammasome facilitates the maturation of IL-1β through
proteolytic cleavage, ultimately inducing neuronal damage and
contributing to cognitive dysfunction (Chen and Yu, 2023;
Chesnokova et al., 2016). Notably, in real-world occupational
settings, we observed substantial variations in the degree of
cognitive impairment among workers exposed to identical
environmental conditions. This observation suggests that genetic
variants in key molecular pathways may significantly influence the
onset and progression of cognitive impairmen. Based on this, we
hypothesize that IL-1β genetic polymorphisms may modulate
individual susceptibility to cognitive dysfunction.

To test this hypothesis and explore the interaction between IL-
1β genetic polymorphisms and occupational hazardous factors in
relation to cognitive function, a research study was conducted in a
large aluminum electrolysis company. Individual cumulative
exposures were quantified based on job type, years of work
experience, and the level of exposure to hazardous factors.
Simultaneously, four SNP loci of the IL-1β gene were genotyped
in each participant, and their associations with cognitive function
were analyzed. Additionally, IL-1β serum protein expression levels
were measured to assess whether genetic variants and occupational
hazards influence peripheral immune responses and, consequently,
cognitive function.

2 Methods

2.1 Participants

A cross-sectional study was conducted, recruiting 478 male
workers in June 2024 from a large electrolytic aluminum
producer in Baise City, Guangxi Province. Inclusion criteria. The
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inclusion criteria: (a) Employed for at least 1 year in the company;
(b) Adult males aged 18 years or olde. Exclusion criteria: (a)
Diagnosed with cognitive impairment or severe chronic diseases;
(b) Had first-degree relatives with Alzheimer’s disease; (c) Long-
term use of aluminum-containing drugs or psychotropic
medications; (d) Experienced major trauma within the last
2 months; (e) Had severe visual or auditory impairments or
exhibited extreme uncooperative behavior. Ethical approval for
this study was obtained from the Ethics Committee of Youjiang
Medical University for Nationalities (2023070601) and the Ethics
Committee of Universiti Teknologi MARA (REC/12/2023-PG/FB/
29). All participants provided written informed consent before
undergoing blood sample collection and cognitive function
assessment.

2.2 Sample size estimation

Refer to the sample size calculation formula for cross-
sectional studies:

N � Z2
1−α/2 × p 1 − p( )

d2

In the formula, N represents the required sample size, Z1-α/2 is the
critical value from the standard normal distribution, p refers to the
expected prevalence of the disease in the target population, and d is the
allowablemargin of error. According to previous studies, the prevalence
of cognitive impairment among aluminium workers is approximately
30% (Wang et al., 2020); therefore, pwas set to 0.30.With a significance
level of α = 0.05, the corresponding Z1-α/2 is 1.96, and dwas set at 0.05, a
commonly used value in epidemiological research. Substituting these
values into the formula results in a required sample size of
323 participants. In this study, a total of 478 individuals were
included, indicating that the sample size was sufficient.

2.3 Data collection

Demographic information was collected, including age, body mass
index (BMI), marital status (living alone/cohabiting), ethnicity (Han
Chinese/ethnic minorities), income level (<3,000 CNY,
3,000–5,000 CNY, >5,000 CNY), and education level (junior high
school and below/High school and above). Additionally, data on
smoking (at least one cigarette per day for ≥6 months; no) and
drinking (yes: drinking alcohol at least once a week for ≥6 months;
No) were recorded (Xiao et al., 2021). Cognitive function was assessed
using the Montreal Cognitive Assessment (MoCA). In accordance with
standard scoring criteria, participants with ≤12 years of education
received an additional one-point adjustment, with a maximum total
score of 30. Lower MoCA scores indicate poorer cognitive functioning.

2.4 Detection of occupational
hazardous factors

Data on occupational hazardous factors were primarily obtained
from the enterprise’s occupational disease hazard detection report.
All detection procedures were conducted in strict accordance with

the National Occupational Health Standard (GBZ/T). The detected
occupational hazardous factors included high temperature, noise,
magnetic fields, aluminum dust, nitrogen oxides (NOx), sulfur
dioxide (SO2), carbon monoxide (CO), fluoride, and manganese
oxide. For concentration values below the Limit of Detection (LOD),
half of the lowest detection limit (LOD/2) was substituted. All test
results were expressed as the 8-hour time-weighted average (8h-
TWA), and the Cumulative Exposure Dose (CED) for each worker
was calculated by multiplying the 8h-TWA by the number of years
of service.

The calculation formula for CED is as follows: CED = ∑(Ci ×
Ti),where: CED represents the cumulative exposure dose (unit:
concentration × year), Ci is the 8h-TWA for the ith time period,
Ti is the exposure duration in the ith time period.

2.5 IL-1β SNP selection, genotyping and
serum level determination

The selection of IL-1β SNPs was based on human genetic
variation data from the National Center for Biotechnology
Information (NCBI) database. The screening criterion
required a minor allele frequency (MAF) greater than 5%.
Four SNPs were selected: rs1143627, rs1143643, rs16944,
and rs3917356. Previous studies have suggested that these
loci may be associated with cognitive function (Zhuang
et al., 2012; Huang et al., 2024; Stacey et al., 2017).
Genotyping was conducted using the improved Multiplex
Ligation Detection Reaction (iMLDR) technique. Serum IL-
1β protein levels were measured using a commercial enzyme-
linked immunosorbent assay (ELISA) kit (Andi Gene
Biotechnology Co., Guangdong, China).

2.6 Statistical analysis

Age and BMI were expressed as mean ± standard deviation
(Mean ± SD), while the accumulation of occupational hazardous
factors was described using the median (25th, 75th percentiles).
Categorical variables, including marital status, ethnicity, income,
education, smoking status, and drinking status, were presented as
counts and percentages (n, %).

Multivariable Stepwise Linear Regression (MSLR) was
performed to evaluate the relationship between occupational
hazards and cognitive function and to identify major influencing
factors. Subsequently, dose-response curves for occupational
hazards and cognitive function were fitted using Restricted Cubic
Spline (RCS) to explore potential threshold effects.

A Generalized Linear Model (GLM) was used to assess the
association between IL-1β gene polymorphisms and cognitive
function. To further investigate the Gene-Environment
Interaction (GENI), participants were stratified based on the
threshold levels of major occupational hazards. The relationship
between IL-1β gene polymorphisms and cognitive function was then
re-evaluated using GLM.

A two-independent-samples t-test was used to compare
differences in IL-1β serum protein expression levels between
groups exposed to major occupational hazards. Additionally,
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general linear regression was applied to examine the association
between IL-1β serum protein expression levels and cognitive
function, further exploring the role of peripheral blood IL-1β in
cognitive function.

All statistical analyses were performed using IBM SPSS Statistics
22.0, with a two-sided P-value <0.05 considered statistically
significant.

3 Results

3.1 General characteristics of participants
and occupational exposure

Table 1 presents the general characteristics of the 478 aluminum
workers included in this study, along with their cumulative exposure

TABLE 1 General and occupational exposure characteristics of aluminum workers (n = 478).

Characteristics Mean ± SD, n (%), median (25th, 75th)

General characteristics

Age,mean ± SD e (years) 39.45 ± 6.90

BMI,mean ± SD (kg/m3) 24.86 ± 3.46

Marital status

Living alone 68(14.2)

Cohabiting 410(85.8)

Ethnicity

Han Chinese 162(33.9)

Ethnic minorities 316(66.1)

Income

<3,000(CNY) 116(24.3)

3,000–5,000(CNY) 306(64)

>5,000(CNY) 56 (11.7)

Education level

Junior high school and below 130 (27.2)

High school and above 348 (72.8)

Smoking

No 218 (45.6)

Yes 260 (54.4)

Drinking

No 309 (64.6)

Yes 169 (35.4)

Occupational Exposure

High temperature(oC × year) 318.75 (146.36, 468.19)

Noise (dB(A) × year) 921.38 (374.74, 1240.15)

Magnetic field (Tesla × year) 0.06 (0.00, 0.22)

Aluminum dust(mg/m3 × year) 2.37 (1.49, 6.36)

NOX (mg/m3 × year) 0.35 (0.17, 0.57)

SO2 (mg/m3 × year) 1.72 (1.00, 3.67)

CO(mg/m3 × year) 1.45 (0.65, 2.15)

Fluoride(mg/m3 × year) 0.05 (0.03, 0.14)

Manganese oxide (mg/m3 × year)) 0.02 (0.01, 0.02)

Abbreviations: SD: standard deviation; CNY, Chinese yuan. dB(A): A-weighted decibel.
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levels to occupational hazardous factors. The mean age of
participants was 39.45 years, and the mean BMI was 24.86. The
majority of workers (85.8%) lived with a partner. Ethnic minorities
accounted for the largest proportion of participants (66.1%). In
terms of income level, most workers earned a monthly salary of
3,000–5,000 CNY (64%). Regarding educational attainment, 72.8%
had at least a high school education. Concerning health behaviors,
the prevalence of smoking was high (54.4%), while the proportion of
alcohol consumption was relatively low (35.4%). Regarding
occupational exposure factors, various occupational hazards
exhibited some degree of cumulative exposure, indicating the
long-term presence of potentially harmful environmental
conditions in the workplace.

3.2 Multiple stepwise linear regression
analysis of cognitive functioning

Given the presence of multiple occupational hazards in the work
environment and the strong correlations or covariances among these
factors, this study employed multiple stepwise linear regression
analysis to investigate the associations between occupational
hazards and cognitive function among aluminum workers. The
four factors (age, BMI, noise, and aluminum dust) were
automatically selected and retained in the final model. As
presented in Table 2, age[β (95% CI): 0.08(-0.13, −0.04)], BMI [β
(95% CI): 0.08(-0.15, −0.01)] and aluminum dust [β (95% CI): 0.18(-
0.27, −0.10)] were significantly negatively associated with cognitive
function scores. Notably, noise exposure [β (95% CI): 0.001(0.001,
0.002)] exhibited a positive association with cognitive function scores.
However, noise was not statistically associated with cognitive function
in the one-way analyses, and it was statistically associated in the
multifactorial analyses but the regression coefficients had small β-
values and may have been influenced by other factors, and thus could
be considered excluded in the final model.

3.3 Dose-response relationship fitting for
cognitive function

To obtain a more comprehensive understanding of the dose-
response relationship between age, BMI, cumulative aluminum dust
exposure, and cognitive function, this study employed the RCS
method to fit the dose-response curve. The number of spline
knots was automatically selected based on the minimum Akaike
Information Criterion (AIC) to determine the optimal model. The

results are illustrated in Figures 1–3. Age exhibited a negative linear
association with cognitive function scores (P overall <0.001, P
nonlinear = 0.186). BMI was not significantly associated with
cognitive function scores (P overall = 0.152, P nonlinear =
0.965). Cumulative aluminum dust exposure was negatively and
linearly correlated with cognitive function scores (P overall <0.001, P
nonlinear = 0.172), indicating the absence of a threshold effect. The
50th percentile of exposure was 2.37 mg/m3× year.

3.4 Analysis of the correlation between IL-1β
gene polymorphisms and cognitive function

This study examined the association between four IL-1β gene
SNPs (rs1143627, rs1143643, rs16944, rs3917356) and cognitive
function scores. The results are presented in Table 3. In the
adjusted model, compared to the wild-type genotype, individuals
carrying the rs1143627G/G [β (95% CI): 1.22 (−1.94, −0.52)],
rs1143643C/C [β (95% CI): 0.95 (−1.68, −0.23)] and rs16944 A/A
[β (95% CI): 1.12 (−1.84, −0.39)] exhibited significantly lower
cognitive function scores. These findings suggest that individuals
carrying these mutant genotypes may be at a higher risk of
cognitive decline. In contrast, individuals carrying the rs3917356C/
T [β (95% CI): 0.88 (0.28, 1.47)] and T/T [β (95% CI): 1.27 (0.54,
1.99)] demonstrated higher cognitive function scores, indicating that
these genotypes may exert a protective effect against cognitive decline.

3.5 Stratified analysis of the association
between IL-1β gene polymorphisms and
cognitive function

To further investigate the interaction between IL-1β gene
polymorphisms and aluminum dust exposure, we performed a
stratified analysis according to the median cumulative exposure
to aluminum dust (2.37 mg/m3 × year). The results, presented in
Table 4, In the low exposure group (≤2.37 mg/m3 × year),
individuals carrying rs1143627 G/G exhibited lower cognitive
function scores [β (95% CI): 0.92 (−1.83, −0.01)], while those
carrying rs3917356 T/T had higher cognitive function scores [β
(95% CI): 0.99 (0.05, 1.92)]. In the high exposure group (>2.37 mg/
m3 × year), carrying rs1143627G/G [β (95% CI): 1.65(-2.71, −0.59)],
rs1143643C/C[β (95% CI): 1.17(-2.26, −0.08)], and rs16944 A/A [β
(95% CI): 1.46(-2.53, −0.38)] was associated with lower cognitive
function scores. Conversely, carrying rs3917356C/T [β (95% CI):
1.31(0.45, 2.16))] and T/T [β (95% CI): 1.59(0.53, 2.66)] was

TABLE 2 Results of the multivariate stepwise linear regression analysis of cognitive functions.

Variables β(95%CI)a P-valuea β(95%CI)b P-valueb

Age −0.07(−0.11,-0.04) <0.001 −0.08(−0.13,-0.04) <0.001

BMI −0.09(−0.16, −0.02) 0.028 −0.08(−0.15, −0.01) 0.036

Noise <0.001(−0.001, 0.000) <0.785 0.001(0.001, 0.002) <0.001

Aluminum dust −0.15(−0.23, −0.08) <0.001 −0.18(−0.27, −0.10) <0.001

Note:
aone-way analyses.
bmultivariate stepwise linear regression analysis.
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associated with higher cognitive function scores. Notably, the
interaction between each SNP locus and aluminum exposure was
not statistically significant. However, the trend in the data suggests
that the effect values (β) of risk genotypes increased in the high
exposure group, indicating a potential environmental modification.
This finding implies that aluminum dust exposure may amplify the
impact of genetic variation on cognitive function, though further
studies with larger samples are needed for validation.

3.6 Comparison of IL-1β serum protein
expression levels across different IL-1β SNPs
and aluminum dust exposure groups

We compared IL-1β serum protein expression levels across
different genotypes at four IL-1β SNPs. The results are illustrated
in Figure 4. Compared to the wild-type genotype, individuals
carrying the rs1143627G/A and G/G genotypes exhibited

FIGURE 1
Dose-response relationship between age and cognitive function. Model adjusted for BMI, cumulative noise exposure and cumulative aluminum
dust exposure.

FIGURE 2
Dose-response relationship between BMI and cognitive function. The model was adjusted for age, cumulative noise exposure and cumulative
aluminum dust exposure.
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significantly higher IL-1β serum protein expression levels than
those with the A/A genotype (P = 0.001, P = 0.040). Additionally,
individuals carrying the rs16944 G/A genotype had significantly

higher IL-1β serum protein expression levels compared to those
with the G/G genotype (P < 0.001). These findings suggest that
genetic polymorphisms at these two loci (rs1143627 and rs16944)

FIGURE 3
Dose-response relationship between cumulative aluminum dust exposure and cognitive function. Model adjusted for age, BMI and cumulative
noise exposure.

TABLE 3 Association between IL-1β SNPs and cognitive function.

SNPs n MoCA ± SD β (95% CI)a P-value β (95% CI)b P-value

rs1143627

A/A 126 26.17 ± 0.21 1 1

G/A 235 25.63 ± 0.19 −0.54 (−1.17, 0.09) 0.093 −0.48 (−1.09, 0.13) 0.122

G/G 117 24.97 ± 0.32 −1.19 (-1.92, -0.46) 0.001 −1.22 (−1.94, −0.52) 0.001

rs1143643

T/T 118 25.80 ± 0.24 1 1

C/T 244 25.86 ± 0.18 0.06 (−0.58, 0.70) 0.854 0.01 (−0.62, 0.64) 0.975

C/C 116 24.91 ± 0.32 −0.89 (−1.64, −0.15) 0.019 −0.95 (−1.68, −0.23) 0.010

rs16944

G/G 130 26.16 ± 0.21 1 1

G/A 240 25.55 ± 0.19 −0.61 (−1.23, 0.008) 0.053 −0.58 (−1.19, 0.03) 0.059

A/A 108 25.08 ± 0.33 −1.08 (−1.82, −0.34) 0.004 −1.12 (−1.84, −0.39) 0.002

rs3917356

C/C 139 24.97 ± 0.28 1

C/T 239 25.73 ± 0.18 0.76 (0.16, 1.37) 0.014 0.88 (0.28, 1.47) 0.001

T/T 100 26.21 ± 0.24 1.24 (0.50, 1.98) 0.001 1.27 (0.54, 1.99) 0.004

Note:
aUnadjusted model.
bThe model adjusted for age, BMI, and cumulative exposure to aluminum dust.

Bold values indicate statistically significant differences compared to the reference genotype.
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may influence IL-1β protein expression levels in peripheral blood.
The effect of aluminum dust exposure on IL-1β serum protein
expression was analyzed separately (Figure 5). There was no
significant difference in IL-1β serum protein levels between
groups stratified by cumulative aluminum dust exposure (P =
0.341). This suggests that the damaging effect of aluminum on
cognitive function may not be mediated through peripheral
inflammation, although further research is needed to confirm
this hypothesis.

3.7 Correlation analysis of IL-1β serum
protein expression levels and
cognitive function

The results, presented in Table 5, indicate that IL-1β serum
protein expression levels were not significantly correlated with
cognitive function scores, regardless of whether other influencing
factors were adjusted. These findings further suggest that peripheral
inflammation may not play a mediating role in cognitive decline.

TABLE 4 Stratified analysis of IL-1β SNPs and cognitive function (based on cumulative exposure to aluminum dust).

SNPs ≤2.37 C
β (95%CI)

P-value >2.37(mg/m3× year)
β (95%CI)

P-value Pinteration

rs1143627 0.551

A/A 1 1

G/A −0.43(−1.23, 0.38) 0.300 −0.43(−1.31, 0.46) 0.343

G/G −0.92(−1.83, −0.01) 0.046 −1.65(−2.71, −0.59) 0.002

rs1143643 0.727

T/T 1 1

C/T 0.09(−0.73, 0.91) 0.832 0.11(−0.80, 1.01) 0.813

C/C −0.77(−1.69, 0.15) 0.101 −1.17(−2.26, −0.08) 0.036

rs16944 0.733

G/G 1 1

G/A −0.51(−1.31, 0.28) 0.206 −0.53(−1.40, 0.34) 0.231

A/A −0.89(−1.81, 0.04) 0.059 −1.46(−2.53, −0.38) 0.008

rs3917356 0.613

C/C 1 1

C/T 0.59(−0.19, 1.37) 0.136 1.31(0.45, 2.16) 0.003

T/T 0.99(0.05, 1.92) 0.039 1.59(0.53, 2.66) 0.003

Note: The model has been adjusted for age and BMI.

Bold values indicate statistically significant differences compared to the reference genotype.

FIGURE 4
Comparison of IL-1β serum protein expression levels across different rs1143627, rs1143643, rs16944, and rs3917356 genotypes. The model was
adjusted for age, BMI, and cumulative aluminum dust exposure.
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4 Discussion

In this study, we evaluated the association between cumulative
exposure to occupational hazardous factors in the electrolytic
aluminum environment and cognitive function. Additionally, we
explored whether individual genetic susceptibility, gene-
environment interactions, and the peripheral pro-inflammatory
factor IL-1β play a mediating role in cognitive decline. The
results demonstrated that cumulative aluminum dust exposure
(CED) is a major factor contributing to cognitive decline.
Furthermore, individuals carrying the IL-1β rs1143627G/G,
rs1143643C/C, and rs16944 A/A genotypes exhibited an
increased risk of cognitive decline, whereas those carrying the
rs3917356C/T and T/T genotypes appeared to have a protective
effect. Aluminum dust exposure appeared to modulate the above
genetic susceptibility. However, this study did not find a significant
association between IL-1β serum protein levels and cognitive
function, suggesting that peripheral inflammation may not
mediate aluminum-related cognitive decline.

Microglia are resident immune cells of the brain that remain in
an inactive ‘resting’ state under physiological conditions,
continuously monitoring changes in the brain microenvironment
in a highly dynamic manner (Nimmerjahn et al., 2005)。When the
central nervous system (CNS) is invaded by external factors, such as
circulating inflammatory molecules, microglia become activated,
leading to gene expression regulation, and the production of pro-

inflammatory and anti-inflammatory cytokines, as well as
modifications of cell surface receptors (Salter and Stevens, 2017;
Yu and Ye, 2015). Chronic stimulation of microglia results in the
persistent release of pro-inflammatory cytokines, such as IL-1β, IL-
6, and TNF-α, which contribute to neuronal dysfunction, including
impaired proliferation, differentiation, apoptosis, and synaptic
plasticity (Ekdahl et al., 2009). The hippocampus, a key brain
region responsible for cognition, learning, and memory, is a
major site for the expression of IL-1β and its receptors (Deng
et al., 2010; Jessberger and Gage, 2014). Consequently, abnormal
elevations of IL-1β in the hippocampus may lead to direct
impairments in memory and other cognitive functions (Zhang T.
et al., 2024). In the electrolytic aluminum work environment,
aluminum dust is a prevalent occupational hazard. Although
aluminum is generally considered a low-toxicity metal, studies
suggest that it can cross the blood-brain barrier through
transferrin receptor-mediated endocytosis and transporter-
mediated mechanisms (Yokel, 2001), inducing microglial
activation and IL-1β expression, ultimately leading to
hippocampal nerve damage (Izadi et al., 2024). Animal studies
have demonstrated that increased AlCl3 concentrations result in
microglial activation in the hippocampus, accompanied by a
significant upregulation of IL-1β mRNA and protein expression
levels, along with activation of downstream signaling pathways,
leading to neurotoxicity (Vlas et al., 2024). This study found that
cumulative exposure to aluminum dust (CED) was significantly and
linearly associated with cognitive function. This provides strong
epidemiological evidence for the neurotoxicity of aluminum.

Peripheral pro-inflammatory cytokines, such as IL-1β, can enter
the brain through active transport by periventricular organs and by
disrupting blood-brain barrier (BBB) permeability, leading to the
activation of astrocytes and microglia and the initiation of a cascade
of neuroinflammatory responses (Dantzer et al., 2008; Ransohoff
and Brown, 2012). However, our analysis of whether peripheral IL-
1β mediates cognitive decline associated with aluminum exposure
revealed no significant correlation between IL-1β serum protein
levels and cognitive function scores. Moreover, there was no
significant difference in the serum levels of IL-1β at different
cumulative exposure groups of aluminum. This finding suggests
that aluminum exposure may not induce neurotoxicity through
peripheral inflammatory pathways, but instead may involve other
inflammatory mediators or direct neurotoxic mechanisms.
Additionally, this study found that workers over 40 years of age
were at a higher risk of cognitive decline. This may be attributed to
the increased sensitivity of senescent microglia, which exhibit a
greater propensity to release inflammatory cytokines (Norden and
Godbout, 2013).

The IL-1β gene, located on human chromosome 2q14, encodes a
key pro-inflammatory cytokine involved in various physiological

FIGURE 5
Comparison of IL-1β serum protein expression levels between
groups stratified by cumulative aluminum dust exposure.

TABLE 5 Association between IL-1β serum protein expression levels and cognitive function.

Variable β(95%CI)a P-value β(95%CI)b P-value

IL-β (ng/L) −0.004(−0.145, 0.137) 0.957 −0.002(−0.139, −0.136) 0.981

Note:
aUnadjusted model.
bThe model adjusted for age, BMI, and cumulative exposure to aluminum dust.
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and pathological processes. Genetic variations, particularly single
nucleotide polymorphisms (SNPs), may influence gene function or
expression and have been implicated in the onset and severity of
multiple diseases, including tumors (Wu and Xu, 2010), Parkinson’s
disease (Li et al., 2021), and coronary heart disease (Sreekanth et al.,
2016). In this study, individuals carrying the rs1143627G/G,
rs1143643C/C, and rs16944 A/A genotypes exhibited significantly
lower cognitive function scores, suggesting that these variants may
lead to increased IL-1β expression, which in turn may heighten the
risk of cognitive decline. Notably, rs1143627 and rs16944 are located
in the promoter region of IL-1β, and their variants may disrupt the
TATA box upstream of the transcription start site, thereby altering
gene expression (Xu et al., 2013; Landvik et al., 2012). rs1143643,
found in an intron region, has been shown to upregulate serum IL-
1β expression and increase asthma risk in children (Sobko et al.,
2017). Conversely, rs3917356 C/T and T/T variants in the promoter
regionmay reduce IL-1β expression, potentially exerting a protective
effect on cognitive function. However, the functional impact of these
IL-1β SNP variants varies across different diseases, and their precise
role in regulating IL-1β expression remains inconclusive (Huang
et al., 2024; Lawrence et al., 2024; Tian et al., 2015).

It is worth noting that the effects of IL-1β gene polymorphisms
on cognitive function vary across different populations. For
example, Tsai et al. reported that variation at the rs16944 locus
may influence cognitive function in healthy elderly Chinese men
(Tsai et al., 2010), whereas Lawrence’s study found no significant
association between this variant and cognitive ability in healthy
elderly American men (Lawrence et al., 2024). In the Polish
population, the rs16944 variant was not associated with late-
onset Alzheimer’s disease (AD) in the elderly (Klimkowicz-
Mrowiec et al., 2009). However, in Canadian adolescents, this
variant showed a significant association with mental disorders
such as bipolar disorder (Shonibare et al., 2020). In the present
study, the rs16944 variant was positively associated with cognitive
decline among aluminium workers. These findings collectively
suggest that the effects of IL-1β gene polymorphisms on
cognitive function may differ according to population
characteristics, including region, and age and so on. It is also
important to highlight that most previous studies on the genetic
susceptibility to cognitive impairment have focused on elderly
populations. In contrast, the current study, which targeted a
middle-aged and young adult occupational group, provides
valuable supplementary evidence for the genetic epidemiology of
cognitive impairment susceptibility.

To evaluate whether these SNP variants influence cognitive
function through IL-1β serum protein levels, this study analyzed
IL-1β serum levels in genotype carriers. The results indicated that
carriers of rs1143627G/A, G/G, and rs16944G/A exhibited elevated
IL-1β serum levels. However, only the elevated IL-1β serum level of
rs1143627G/G corresponded to the cognitive decline of
rs1143627G/G carriers. Despite this observation, no significant
correlation was found between overall IL-1β serum protein levels
and cognitive function scores. Consequently, it remains uncertain
whether elevated IL-1β serum levels directly contribute to the
cognitive decline linked to the rs1143627G/G variant.
Furthermore, in the group with high aluminum dust exposure
(CED>2.37 mg/m3 × year), the effect trends of rs1143627G/G,
rs1143643C/C and rs16944 A/A towards decreased cognitive

ability and the effect trends of rs3917356C/T and T/T towards
protection were both enhanced. These findings suggest that
cumulative high aluminum exposure may amplify the impact of
IL-1β gene polymorphisms on cognitive susceptibility. However, no
significant interaction was detected between cumulative aluminum
exposure and gene polymorphisms. This lack of significance may be
attributed to an insufficient sample size or the possibility that no
actual interaction exists, warranting further validation in a
larger cohort.

This study has several limitations. First, as a cross-sectional
study, it cannot establish a clear causal relationship between
aluminum exposure, IL-1β polymorphisms, and cognitive decline.
Future longitudinal studies are needed to further verify this
association. Second, the sample was drawn from an ethnic
minority region, and geographical constraints may limit the
generalizability of the findings. Third, this study found no
significant association between IL-1β serum levels and cognitive
function, which may indicate that the neuroinflammatory
mechanism of aluminum exposure is not solely driven by IL-1β.
Future research should explore other inflammatory factors to better
understand the underlying mechanisms. Lastly, this study assessed
cognitive function using the MoCA, which, despite its high
sensitivity, may not be sufficient to detect subtle cognitive
changes. Future studies should incorporate additional cognitive
assessment tools to achieve a more comprehensive evaluation.

5 Conclusion

This study confirmed a significant linear association between
occupational exposure to aluminum dust and cognitive decline.
Individuals carrying the IL-1β gene rs1143627G/G, rs1143643C/C
and rs16944 A/A may have a higher risk of cognitive decline. In
contrast, the rs3917356C/T and T/T genotypes were negatively
correlated with cognitive function scores, suggesting that they
may have a protective association. Cumulative exposure to high
levels of aluminum may enhance the effect of genetic susceptibility.
However, further verification is required. This study did not find a
significant association between IL-1β serum protein levels and
cognitive function, suggesting that peripheral blood IL-1β may
not be the mediating pathway for cognitive damage induced by
aluminum exposure or genetic variation. These findings provide a
scientific foundation for screening and intervention strategies aimed
at high-risk occupational groups, with the goal of mitigating the risk
of aluminum-related cognitive decline.
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