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Objective: Patent foramen ovale (PFO), a prevalent congenital cardiac defect, is
linked to clinical conditions such as cryptogenic stroke andmigraine. The genetic
underpinnings of PFO remain poorly elucidated, particularly in Tibet. This study
aimed to identify potential pathogenic mutations in Tibetan PFO patients via
whole exome sequencing (WES) to clarify its genetic basis.

Methods: Eighteen Tibetan PFO patients diagnosed by echocardiography were
enrolled. Peripheral blood samples underwent WES using Illumina HiSeq
platform, followed by bioinformatics analysis to filter rare variants.
Pathogenicity was assessed using predictive tools (SIFT, PolyPhen V2, and
MutationTaster) and cardiac development-related gene databases (OMIM,
HPO, HGMD, and MGI).

Results: In this study, we identified four novel pathogenetic mutations in Tibetan
PFO patients, including GABRP rs201584759 (c.421C>T: p. R141C), GJB4
rs200602523 (c.292C>T: p. R98C), RTTN rs199568901 (c.5410G>A: E1804K),
and USH2A rs144768593 (c.5608C>T: p. R1870W). Further analysis indicated that
GABRP, GJB4, and RTTN were significantly associated with the occurrence of
congenital heart disease.

Conclusion: This study first reveals genetic characteristics of Tibetan PFO
patients, implicating GABRP, GJB4, RTTN, and USH2A mutations in disrupting
cardiac developmental pathways, potentially contributing to the occurrence of
PFO. Findings underscore genetic factors regarding PFO prevalence in
populations living in high-altitude and provide insights for molecular research
and precision medicine.
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Introduction

Patent foramen ovale (PFO), a congenital cardiac structural
defect resulting from incomplete embryonic closure of the
foramen ovale, is pathologically characterized by a persistent
interatrial channel between the left and right atria (Cho et al.,
2021). This condition affects approximately 25% of the general
population, though the majority remain clinically asymptomatic
(Sposato et al., 2024). Interestingly, recent studies have reported
higher PFO prevalence in specific populations. For instance,
Möller et al. (2024) observed a PFO prevalence of 47% among
Tibetans and Han Chinese living at high altitude (2,275 m),
suggesting potential environmental or genetic influences on PFO
occurrence (Möller et al., 2024). Notably, PFO has been
implicated in diverse clinical sequelae through paradoxical
embolism and right-to-left shunt mechanisms.
Epidemiological evidence indicates that 40% of cryptogenic
stroke patients exhibit concurrent PFO, underscoring its
significant association with paradoxical embolic stroke (Mac
Grory et al., 2022; Baik et al., 2022). Furthermore, this
anatomical defect demonstrates clinical correlations with
migraine and hypoxemia syndromes, and emerging research
suggests potential involvement in atrial fibrillation and heart
failure pathogenesis (Nguyen et al., 2024; Yan and Li, 2021;
Mohan and Litwin, 2023). Regarding genetic mechanisms,
genome-wide association studies (GWAS) have identified
critical genes involved in angiogenesis and cardiac septation,
including TBX5 and GATA4, where loss-of-function mutations
may disrupt endocardial cushion remodeling and impair
foramen ovale closure (Apostolos et al., 2024). However,
substantial heterogeneity persists in current evidence for
pathogenic PFO-associated variants, with an incomplete
understanding of population-specific penetrance differences
and phenotype-genotype correlations (Paolucci et al., 2021).
Systematic elucidation of PFO’s genetic architecture holds
translational significance, not only for constructing risk
stratification models but also for identifying molecular targets
for precision interventions (Yeh and DeFaria Yeh, 2021).

The Tibetan population is predominantly distributed across
the Tibetan Plateau and adjacent high-altitude regions in China,
characterized by unique environmental adaptations and distinct
genetic profiles. Studies show a significant link between high
altitude and higher rates of congenital heart disease (CHD), with
incidence rising as elevation increases (González-Andrade,
2020). Due to their exposure to relatively isolated
environmental stressors and specific physiological traits,
cardiovascular health issues in Tibetans—particularly those
associated with PFO—remain understudied. Investigating the
genetic determinants of cardiovascular diseases in this
population holds significant scientific value as it provides
critical insights into the interplay between environmental and
hereditary factors shaping disease susceptibility within this
ethnically distinct group.

Whole exome sequencing (WES), a high-throughput
genomic technology, enables comprehensive analysis of
protein-coding exonic regions in the genome. Compared to
whole genome sequencing (WGS), this method demonstrates
superior cost-efficiency for detecting coding sequence

variations due to its targeted design, making it particularly
valuable for identifying disease-associated genetic alterations
(Morton et al., 2022). Consequently, WES has emerged as a
critical tool in genetic research. Recent advancements in WES
applications have significantly enhanced CHD investigations.
This technology has facilitated the identification of monogenic
pathogenic variants underlying various CHD subtypes, including
hypoplastic left heart syndrome (Gordon et al., 2022), heterotaxy
(Bolkier et al., 2022), and patent ductus arteriosus (Gao et al.,
2022). Additionally, Li et al. (2024) demonstrated potential
cardiovascular risk associations in PFO-related variants (Li
et al., 2024). Notably, current genetic findings are
predominantly derived from Han Chinese populations. The
scarcity of WES data from Tibetan populations in high-
altitude regions with elevated CHD prevalence creates
substantial knowledge gaps, hindering cross-ethnic
investigations into disease mechanisms and PFO-related
genetic architecture.

This study employs WES technology to investigate genetic
characteristics of PFO in Tibetan populations, focusing on
identifying disease-associated mutations. The research seeks to
provide novel insights into the genetic mechanisms underlying
PFO development while establishing critical references for
optimizing cardiovascular health strategies among ethnic Tibetan
communities. Through comprehensive genomic analysis, we aim to
reveal population-specific molecular markers that could enhance
diagnostic precision and inform personalized prevention
approaches for this cardiac defect.

Materials and methods

Study participants

This study enrolled 18 Tibetan patients with
echocardiographically confirmed PFO from the Second
People’s Hospital of Tibet Autonomous Region. Inclusion
criteria comprised: 1) Diagnosis of PFO through
transesophageal echocardiography (TEE) or contrast-enhanced
transcranial Doppler (c-TCD); 2) Exclusion of other CHDs
including atrial septal defect (ASD), ventricular septal defect
(VSD) and patent ductus arteriosus; 3) No family history of
inherited cardiovascular diseases in three-generation of direct
relatives. Exclusion criteria were: 1) Comorbid acquired cardiac
conditions (such as rheumatic heart disease or infective
endocarditis); 2) Pulmonary hypertension (mean pulmonary
artery pressure ≥25 mmHg as measured by right heart
catheterization); 3) Cardiac structural/functional alterations
secondary to systemic disorders (such as connective tissue
diseases, thyroid dysfunction, chronic anemia); 4) Receiving
catheter-based interventions within the last 3 months. Basic
clinical data of the patients were collected from the hospital’s
electronic medical records, as shown in Table 1. The research
protocol received ethical approval from the Institutional Review
Board of the Hospital of Chengdu Office of People’s Government
of Xizang Autonomous Region (Hospital.C.X.) (Approval No.:
Med-Eth-Re [2022] 77). Written informed consent was obtained
from the legal guardians of all participants, and this study
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adhered to the ethical principles outlined in the Declaration of
Helsinki throughout its process.

WES

Genomic DNA was extracted from venous blood samples of
PFO patients using the Gentra Puregene Blood Kit (QIAGEN, USA).
The DNA quality was further evaluated by agarose gel
electrophoresis, with the requirement for a clear main band and
no tailing. DNA concentration (≥50 ng/μL, total ≥1.5 μg) and purity
(OD260/280 = 1.8–2.0) were measured using a Nanodrop 2000. The
DNA library was prepared by randomly fragmenting the DNA into
100–500 bp fragments with Covaris. Following end-repair and
A-tailing, Illumina sequencing adapters were ligated to both ends
of the library DNA using T4 DNA ligase. The library was then
purified and size-selected using the Agencourt SPRLselect kit.
Hybridization was performed in the solution phase with
SureSelectXT Human All Exon V6 probes. Exon-targeted
sequences were captured using streptavidin-coated magnetic
beads, followed by PCR amplification. After the library passed
quality control, it was further quantified via Qubit, and the insert
size was verified by Agilent 2,100. The effective concentration of the
library was precisely determined through qPCR (>5 ng/μL). Finally,
the library was sequenced on the Illumina Hiseq platform in 2 ×
150 bp paired-end mode to generate FastQ data.

Mapping to human genome sequence,
variants identification, and annotation

The quality of raw sequencing data was assessed using FastQC
(v0.11.9), followed by low-quality read filtering (Phred quality
score <20) and adapter removal using Trimmomatic (v0.39). The
processed reads were aligned to the human reference genome
GRCh37/hg19 using BWA-MEM (v0.7.17), and PCR duplicate
reads were marked using Picard (v2.27.5). To further improve
alignment accuracy, base quality score recalibration (BQSR) was
performed using GATK (v4.2.6.1), and single-sample gVCF files,
including single nucleotide variants (SNVs) and insertions/deletions
(InDels), were generated using GATK HaplotypeCaller, following
the GATK best practices.

Priority classification for SNV/InDel

For all SNV/InDel variants, first apply the following filters:
frequency in 1000Genomes, ExAC03 Asian population, and
gnomAD Asian population must be below 0.01,
GeneskyExonDB_Freq frequency must be below 0.05, and the
variants should be non-synonymous or located in exonic regions.
Then, classify the filtered variants into priority categories:
First1 requires the variant to be either already present in HGMD
or meet the following conditions: conserved (predicted as harmful

TABLE 1 Demographic and clinical data of PFO cases.

Sample ID Age Sex Ultrasonic electrocardiogram report

COHD2_1 1 year and 6 months women CHD: PFO (2.5 mm) with a left-to-right shunt at the atrial level; mild tricuspid regurgitation

COHD13_1 2 years and 2 months men CHD: PFO post-surgery; CDFI: No shunt detected in the atria, ventricles, and large vessels

COHD16_1 3 years old men CHD: PFO; CDFI: Occasional left-to-right shunt observed at the atrial level

COHD19_1 2 years and 2 months women CHD: PFO (2.6 mm); CDFI: Left-to-right shunt observed at the atrial level

COHD26_1 3 years old women CHD: PFO (3 mm); CDFI: Left-to-right shunt observed at the atrial level; Mitral valve regurgitation (mild); Tricuspid
valve regurgitation (small amount)

COHD27_1 8 years old men CHD: PFO (2 mm); CDFI: Left-to-right shunt observed at the atrial level; Tricuspid valve regurgitation (small amount)

COHD30_1 4 years old women CHD: PFO (2 mm); CDFI: Left-to-right shunt observed at the atrial level; Tricuspid valve regurgitation (small amount)

COHD31_1 12 years old men CHD: PFO (2.5 mm); CDFI: Left-to-right shunt observed at the atrial level; Tricuspid valve regurgitation (small amount)

COHD33_1 1 year and 2 months men CHD: PFO (2 mm); CDFI: Left-to-right shunt observed at the atrial level

COHD37_1 12 years old women CHD: PFO (2.5 mm); CDFI: Left-to-right shunt observed at the atrial level; Patent ductus arteriosus (5.5 mm); CDFI: Left-
to-right shunt observed at the level of the great vessels; Tricuspid valve regurgitation (small amount)

COHD41_1 17 years old women CHD: PFO (3.5 mm); CDFI: Left-to-right shunt observed at the atrial level

COHD44_1 2 years and 7 months men CHD: PFO (2 mm); CDFI: Left-to-right shunt observed at the atrial level

COHD47_1 7 months women CHD: PFO (2.5 mm); CDFI: Left-to-right shunt observed at the atrial level

COHD53_1 8 years old women CHD: PFO (2.5 mm); CDFI: Left-to-right shunt observed at the atrial level; Tricuspid valve regurgitation (small amount)

COHD61_1 2 years and 6 months men CHD: PFO (3 mm); CDFI: Left-to-right shunt observed at the atrial level; Tricuspid valve regurgitation (small amount)

COHD67_1 2 years old men CHD: PFO (2 mm); CDFI: Left-to-right shunt observed at the atrial level; Tricuspid valve regurgitation (small amount)

COHD69_1 8 years old men CHD: PFO (3 mm); CDFI: Left-to-right shunt observed at the atrial level; Aortic valve regurgitation (small amount)

COHD71_1 2 days women CHD: PFO (3 mm); CDFI: Left-to-right shunt observed at the atrial level

CHD, congenital heart disease; PFO, patent foramen ovale; CDFI: color doppler flow imaging.
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by SIFT, BayesDel addAF), frequency in 1000Genomes below 0.001,
frequency in ESP6500 below 0.01, SNV calling quality not equal to L,
homogeneity equal to 1, and mutation frequency in Genesky
Database below 0.005. First2 requires the variant to meet the
following conditions: frequency in 1000Genomes below 0.001,
frequency in ESP6500 below 0.01, SNV calling quality not equal
to L, homogeneity equal to 1, and mutation frequency in Genesky
Database below 0.005. Second is assigned to variants that have SNV
calling quality not equal to L, frequency in 1000Genomes below 0.01,
and homogeneity less than 3. Variants that do not meet any of the
above conditions are classified as Third.

Identification of pathogenic genes
and variants

This study selects candidate pathogenic loci and genes based on
the following criteria: First, priority is given to the First1 loci. Next,
high-quality variants with an SNPCalling quality of “H” are selected.
For functional prediction, loci predicted as damaging (D) by SIFT,
PolyPhen V2, and MutationTaster are considered, with the
additional requirement that the VEST Score is ≥0.5 to ensure the
potential impact of the mutation on gene function. Finally, based on
annotation data from databases such as OMIM, HPO, HGMD, and
MGI, as well as functional annotations from GO and KEGG, further
screening is carried out to identify candidate genes associated with
diseases. We can efficiently identify potential pathogenic variants
and related genes through this comprehensive filtering approach.

Results

Study patients

The basic characteristics of the participants are shown in
Table 1. This study comprised 18 children with PFO, with
balanced sex distribution (9 males/9 females) and ages spanning
2 days to 17 years. Echocardiographic measurements revealed PFO
measuring 2.0–3.5 mm, with 94.4% (17/18) demonstrating
persistent atrial-level left-to-right flow. Valvular dysfunction
affected 72.2% (13/18) of cases, predominantly characterized by
trivial/mild tricuspid regurgitation (61.1%, 11/18), with isolated
mitral and aortic valve involvement observed in one case each.

Comprehensive analysis of WES data

WES was performed on 18 PFO samples using the Illumina
HiSeq platform, generating a total of 731,487,944 sequencing reads.
The sequencing read lengths ranged from 15 to 151 bp. All samples
exhibited high-quality clean reads with optimal Q20 and Q30 scores.
The average proportion of bases with Phred quality score of ≥30
(Q30) in the raw data exceeded 97%, confirming the superior
sequencing quality suitable for downstream bioinformatics
analyses. Detailed statistical outcomes of the exome sequencing
data are provided in Supplementary Table S1.

Alignment quality assessment of preprocessed reads from
18 samples was performed using the Picard toolkit (https://

broadinstitute.github.io/picard/), with comprehensive metrics
presented in Supplementary Table S2. The cohort
demonstrated an average of 95,851,924.82 reads participating
in genomic alignment, of which 60,767,983 reads (99.5%
efficiency) were successfully mapped to the reference genome.
Exome coverage analysis revealed that 98.3% of targeted regions
achieved ≥10× depth, and 84.8% attained ≥30× depth on average.
Following established guidelines, single nucleotide variants
detected at positions with ≥10× coverage were considered
reliably called.

Using the GATK HaplotypeCaller pipeline, we identified
350,398 genetic variants comprising 291,532 single nucleotide
variants (SNVs, 83.2%) and 58,866 insertion-deletion variants
(InDels, 16.8%). Genomic region-based classification revealed
distinct distribution patterns of SNVs/InDels across coding
regions, regulatory elements, and intergenic regions, as illustrated
in Figure 1. Functional annotation analysis further categorized these
variants into missense, synonymous, and other functional types,
with their respective proportions detailed in Figure 2. Systematic
genotypic classification (homozygous/heterozygous) of both SNV
and InDel loci was performed, with comprehensive quantitative data
archived in Supplementary Table S3.

A multi-stage filtering pipeline was systematically applied to
analyze detected SNVs/InDels. Initial prioritization identified
4,121 variants classified as “First 1″tier in the exome data of PFO
patients. Subsequent filtering employed stringent population
frequency thresholds: 1,000 Genomes <0.001, 1,000 Genome-
EAS <0.01, ExAC03 < 0.01, gnomAD exome <0.01, and
ESP6500 < 0.01, with concurrent requirement of high-quality
SNP calling (grade H). This refined selection retained 28 rare
variants. Pathogenicity prediction was performed using composite
algorithms, including SIFT, PolyPhen-2, MutationTaster, and
VEST3 (≥0.5 threshold) to identify deleterious mutations. Four
exonic nonsynonymous SNVs were ultimately validated: GABRP
(c.421C>T: p. R141C), GJB4 (c.292C>T: p. R98C), RTTN
(c.5410G>A: E1804K), and USH2A (c.5608C>T: p. R1870W). As
illustrated in Figure 3, PolyPhen-2 predictions yielded pathogenic
probabilities of 1.000 (GABRP), 0.996 (GJB4), 0.943 (RTTN), and
0.880 (USH2A), respectively. Besides, GJB4 and USH2A were
identified as pathogenic mutations through the HGMD database.
The results of these four genes are presented in Table 2.

Table 3 shows detailed information of four mutation sites. These
mutations are located in exonic regions and belong to non-
synonymous SNVs, including rs201584759 in GABRP,
rs200602523 in GJB4, rs199568901 in RTTN, and rs144768593 in
USH2A. Additionally, functional annotation analysis indicated that
GABRP was significantly associated with congenital heart disease
and developmental disorder, while GJB4 was involved in
cardiomyopathy. RTTN was related to pulmonary stenosis,
whereas USH2A was associated with amyotrophic lateral
sclerosis (Table 4).

Discussion

PFO, a prevalent congenital heart defect, remains incompletely
understood in its pathogenic mechanisms. Previous studies have
shown that genetic factors likely play a significant role in PFO
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development (Moradi et al., 2023). Utilizing whole exome
sequencing, we identified four novel pathogenic variants
associated with PFO in the Tibetan population: rs201584759
(c.421C>T: p. R141C) in GABRP, rs200602523 (c.292C>T:
p. R98C) in GJB4, rs199568901 (c.5410G>A: E1804K) in RTTN,
and rs144768593 (c.5608C>T: p. R1870W) in USH2A. Functional
investigations further elucidated the potential roles ofGABRP,GJB4,
and RTTN in CHD. These findings not only advance the
understanding of genetic contributors to PFO in Tibetan
populations but also illuminate molecular regulatory networks
underlying cardiac developmental abnormalities in high-altitude
hypoxic environments.

GABRP, a member of the neurotransmitter receptor family, has
functions that extend beyond the traditional GABAergic signaling
framework. Research reveals that GABRP orchestrates tumor
microenvironment remodeling in pancreatic cancer by
modulating KCNN4-dependent calcium ion flux, a mechanism
independent of GABA transmission (Jiang et al., 2019). Similarly,
GABRP sustains the self-renewal capacity of triple-negative breast
cancer stem cells via EGFR pathway activation (Li et al., 2021), while
also governing airway epithelial progenitor differentiation by
regulating goblet cell formation, thereby maintaining tissue
homeostasis (Wang et al., 2021). These findings underscore its
pleiotropic regulatory roles in cellular signaling and

FIGURE 1
Variant distribution in genomic regions.

FIGURE 2
Distribution of functional types for all variants.
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developmental processes. Given its pivotal position in critical
pathways, genetic alterations in GABRP may trigger diverse
pathological consequences. For instance, GABRP polymorphisms
correlate with susceptibility to systemic lupus erythematosus (Kim
et al., 2015), and specific mutations potentially exacerbate immune
checkpoint inhibitor-induced hepatotoxicity (Fontana et al., 2024).
Notably, our study identified GABRP rs201584759 (c.421C>T:
p. R141C) as a pathogenic variant in Tibetan patients with PFO,
with functional analyses implicating its involvement in CHD. This
evidence supports the hypothesis that GABRP mutations may
critically contribute to PFO pathogenesis, though further
experimental validation remains essential. Clinically,
understanding the role of GABRP in calcium signaling pathways
could provide insights into potential dysregulations in cardiac
development relevant to PFO and point to pathways that might

influence susceptibility to PFO-related complications like
arrhythmias in the future.

The GJB4 gene encodes a connexin protein that regulates
intercellular electrophysiological signaling by forming gap
junctions, which are essential for maintaining cellular
coordination and communication, particularly in tissues such as
the skin and heart (Lucaciu et al., 2023; Dai et al., 2020). Research
indicates that mutations in GJB4 are closely associated with various
diseases, notably cutaneous and cardiovascular disorders. For
instance, GJB4 mutations are linked to erythrokeratodermia
variabilis et progressiva (EKVP), a skin condition characterized
by impaired trafficking of connexins, leading to defective gap
junction assembly (Zhang et al., 2022). Furthermore, GJB4 plays
a critical role in cardiac function, where mutations or deficiencies
may disrupt electrical signaling, contributing to arrhythmias and

FIGURE 3
Mutation predictive of (A) GABRP (c.421C>T: p. R141C), (B) GJB4 (c.292C>T: p. R98C), (C) RTTN (c.5410G>A: E1804K), and (D) USH2A
(c.5608C>T: p. R1870W).
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congenital heart defects (Okamoto et al., 2020). Our study has
identified the GJB4 rs200602523 variant (c.292C>T: p. R98C) as
a pathogenic mutation associated with PFO and cardiomyopathy,
highlighting its systemic impact on cardiovascular health. The
association of this specific variant with cardiomyopathy in our
study underscores a direct clinical link between GJB4 mutations
and significant cardiac phenotypes beyond PFO, suggesting that
carriers of this variant, particularly in the Tibetan population, may
warrant closer cardiac monitoring for potential functional
impairment.

RTTN plays a critical role in cellular division, microtubule
organization, and neurological development. It encodes a protein
involved in essential biological processes such as spindle
formation and stabilization, as well as cell cycle regulation
(Kheradmand Kia et al., 2012). Mutations in RTTN disrupt
these mechanisms, leading to diverse developmental disorders,
particularly affecting the nervous and cardiovascular systems.
For instance, RTTN variants are associated with primary
microcephaly and primordial dwarfism, often manifesting as
intellectual disability and developmental delays (Shamseldin
et al., 2015). Additionally, RTTN is vital for cerebral cortex
formation, with mutations causing structural abnormalities in
cortical layering (Guguin et al., 2024). Beyond
neurodevelopmental impacts, RTTN mutations may also
impair cardiac and brain morphogenesis (Cavallin et al.,
2018). Notably, studies link RTTN mutations to infantile
dilated cardiomyopathy (IDC), where defective myocardial cell
proliferation and differentiation result in cardiac dysfunction
(Chun et al., 2023). Importantly, our investigation identified the
RTTN rs199568901 variant (c.5410G>A: E1804K) as a
pathogenic mutation in PFO. Those findings suggest that
RTTN mutations may play a critical role in PFO pathogenesis
by disrupting developmental pathways in cardiac septation. The
established link between RTTN mutations and severe
cardiomyopathies like IDC highlights the potential for RTTN
variants, such as the one identified here, to confer risk for broader
cardiac developmental issues or functional deficits, emphasizing
the importance of comprehensive cardiac evaluation in
individuals carrying such mutations.

USH2A encodes a protein critical for maintaining cellular
structure and signaling, particularly in the auditory, visual, and
cardiovascular systems. By stabilizing intercellular junctions, this
protein supports retinal and inner ear development, with mutations
linked to Usher syndrome (hearing and vision loss) and keratoconus
(Ahmed et al., 2021; Yeo et al., 2025). Recent studies also associate
USH2A mutations with congenital heart defects. For instance, rare
variants (c.2299delG) were identified in fetuses with ventricular
septal defects, suggesting disrupted cardiac cell adhesion or
migration during development (Cao et al., 2022). Notably, our
research identified pathogenic USH2A mutation (rs144768593,
c.5608C>T: p. R1870W) patients with PFO, underscoring its
broader role in cardiovascular anomalies. These findings
emphasize the pleiotropic effects of USH2A mutations, though
their specific mechanisms in cardiac disorders require further
validation. The association of USH2A mutations with both
structural heart defects (like VSD and now PFO) and sensory
disorders (Usher syndrome, keratoconus) suggests that
individuals diagnosed with PFO, especially if accompanied byT
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sensory issues, could potentially benefit from genetic screening for
USH2A variants, informing broader health management.

This investigation has several limitations. Primarily, the
restricted sample size might diminish the broader applicability of
the findings. Importantly, our cohort consisted exclusively of
pediatric patients, and we recognize that the natural history of
PFO closure dynamics differs significantly cross age groups.
Besides, the present study is limited to 18 Tibetan pediatric PFO
patients identified incidentally via cardiac murmur or routine
physical examination; none exhibited clinical stroke or migraine.
Consequently, subgroup or sensitivity analyses based on stroke or
migraine phenotypes could not be performed. Validation of the
association between the identifiedmutations and late-onset stroke or

migraine will require larger, longitudinally followed adult Tibetan
cohorts in future work. Additionally, while functional analyses
provided initial insights into the association between identified
genes and PFO, precise mechanistic pathways require validation
through targeted experimental approaches. Notably, this research
marks the inaugural discovery of four pathogenic mutations linked
to PFO within the Tibetan population, offering novel perspectives
on the genetic architecture underlying this cardiac defect. However,
given the exploratory nature of this study and its focus on pediatric
cases, it is critical to validate these findings in larger, independent
cohorts spanning different age groups (especially adults) to confirm
the mutations’ prevalence and their specific association with
persistent PFO in the Tibetan population.

TABLE 3 Genetic data of predicted genes.

Gene SNP ID Chr Position Gene region cDNA change Protein change InterVar Functions

GABRP rs201584759 chr5 170795388 exon5 c.421C>T p.R141C Uncertain significance nonsynonymous
SNV

GJB4 rs200602523 chr1 34761546 exon2 c.292C>T p.R98C Likely pathogenic nonsynonymous
SNV

RTTN rs199568901 chr18 70048102 exon40 c.5410G>A E1804K Uncertain significance nonsynonymous
SNV

USH2A rs144768593 chr1 216073265 exon28 c.5608C>T p.R1870W Uncertain significance nonsynonymous
SNV

SNP, single nucleotide polymorphism; Chr, Chromosome; cDNA, Complementary DNA; R, glutamine; E, ; K, ; H, histidine; C, cysteine; SNV, single nucleotide variant.

TABLE 4 Function analysis for the candidate genes.

Gene OMIM HPO HGMD_gene MGI GO_BP GO_MF GO_CC KEGG_Pathway

GABRP - - congenital heart
disease,

developmental
disorder

- signal
transduction,
chemical
synaptic

transmission,
ion

transmembrane
transport

GABA-A
receptor
activity,

extracellular
ligand-gated
ion channel
activity,
chloride
channel
activity

integral
component of

plasma
membrane,
chloride
channel
complex,
neuron

projection

neuroactive ligand-
receptor interaction -
Homo sapiens (human)

GJB4 autosomal dominant,
Erythrokeratodermia

variabilis et
progressiva 2

abnormality of
cardiovascular

system
morphology,
diabetes
mellitus

cardiomyopathy liver/biliary
system

phenotype,
immune
system

phenotype,
hematopoietic

system
phenotype

cell-cell
signaling,

transmembrane
transport, gap
junction-
mediated

intercellular
transport

gap junction
channel
activity,
protein
binding

nucleoplasm,
integral

component of
plasma

membrane,
connexin
complex

-

RTTN autosomal recessive dysplastic
corpus

callosum,
Agenesis of
corpus
callosum

Pulmonary stenosis cardiovascular
system

phenotype

positive
centriole

replication,
determination
of left/right
symmetry

- cytoplasm,
centrosome,
ciliary basal

body

-

USH2A autosomal recessive,
Usher syndrome,

type 2A

autosomal
recessive

inheritance

amyotrophic lateral
sclerosis

nervous system
phenotype

tissue
development,
cell migration,

substrate
adhesion-

dependent cell
spreading

protein
binding,
collagen
binding,
myosin
binding

photoreceptor
inner segment,

basement
membrane,
apical plasma
membrane

-
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Conclusion

This study offers critical genetic evidence for pathogenic mutations
associated with PFO in Tibetan populations. The identification of four
disease-causing variants (GABRP rs201584759, GJB4 rs200602523,
RTTN rs199568901, and USH2A rs144768593) may establish novel
targets for early detection and personalized therapeutic strategies.
Subsequent investigations should focus on elucidating the precise
biological effects of these genetic alterations on cardiac
morphogenesis and their underlying molecular pathways.
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