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Introduction: Heart failure (HF) is the most common complication following
myocardial infarction (MI) and frequently occurs during the postinfarction
recovery phase. Despite the well-established association between HF and MI,
the underlying molecular mechanisms driving their transition remain poorly
understood.

Methods: The aim of this study was to identify key regulatory genes involved in this
transition via advanced computational tools. We conducted a comprehensive
analysis of differentially expressed genes (DEGs) via Limma software, leveraging
five independent datasets retrieved from the Gene Expression Omnibus (GEO)
database: GSE59867, GSE62646, GSE168281, GSE267644, and GSE269269. Our
multistep analytical pipeline included weighted gene coexpression network analysis
(WGCNA) to map interacting genes, machine learning algorithms for robust
classification, functional annotation via Kyoto Encyclopedia of Genes and
Genomes (KEGG) to explore biological pathways, CIBERSORT correlation analysis
linking hub genes with immune cell states, transcriptional regulation profiling of key
hubs, and single-cell sequencing to assess the functional relevance of these hubs.

Results:Our findings revealed that 413 DEGs were significantly different between
MI and HF. WGCNA identified 98 genes associated with both conditions. Machine
learning filtering further prioritized 10 hub genes: GPER1, E2F5, DZIP3, CYLD,
ADAMTS2, ZNF366, ST14, SNORD28, LHFPL2, and HIVEP2. These hubs were
significantly associated with immune-related processes, suggesting their
potential role in the pathogenesis of HF after MI. Single-cell transcriptomic
analysis demonstrated that CYLD exhibited the strongest correlation with the
transition from MI to HF; using random forest modelling, we validated its
predictive value in this context.

Discussion: In conclusion, our study identified CYLD as a critical regulator of the
transition from MI to HF. Our findings underscore the potential of hub genes as
targets for novel therapeutic interventions aimed at mitigating MI-to-HF
progression and improving patient outcomes.
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1 Introduction

Myocardial infarction (MI) is a leading cause of morbidity and
mortality worldwide, with heart failure (HF) being a common yet
devastating complication (Bahit et al., 2018; Li et al., 2024). Despite
advancements in treatment strategies, patients who experience MI
remain at high risk for the development of HF, which significantly
impacts their long-term prognosis (Kaul et al., 2013). HF frequently
follows MI, and its prevalence among hospitalized patients with
acute MI varies widely across studies, ranging from 14% to 36%
(Bahit et al., 2018). HF significantly elevates the risk of mortality
following MI. Over time, mortality rates after MI have decreased,
primarily due to advancements in HF survival rates. This difference
may be attributed to varying risk factors and underlying
mechanisms that contribute to the development of HF at
different time points following MI(Gerber et al., 2016; Jenca
et al., 2021). Current guidelines recommend that patients
undergo early risk assessment after acute MI to ensure the
provision of appropriate therapy. Early and accurate risk
stratification is crucial for identifying patients at risk of
developing HF post-MI, as it guides treatment and improves
prognosis (Ibanez et al., 2018; Collet et al., 2021; Jenca et al.,
2021; Akhtar et al., 2024).

The American Heart Association and the European Society of
Cardiology have long acknowledged the existence of an urgent public
health need for the prevention of HF (Schocken et al., 2008; Ponikowski
et al., 2014). The cohort of patients who have experienced an MI
constitutes a high-risk demographic for the development of HF,
rendering HF screening and prevention within this group
particularly crucial. Failure to diagnose HF promptly or accurately
can jeopardize patient outcomes and increase treatment expenses
(Faridi et al., 2016; Jenca et al., 2021). If a biomarker is causally
associated with HF, it may play a pivotal role in predicting the
onset and progression of HF post-MI. This predictive capability not
only aids in early diagnosis but also facilitates personalized treatment
strategies; thus, these biomarkers may ultimately serve as a important
targets for intervention. By identifying and targeting such biomarkers,
healthcare providers can implementmore effective preventivemeasures
and therapeutic interventions, thereby improving patient outcomes and
reducing the overall burden of HF. In pursuit of this goal, the
identification of potential target genes involved in the development
of HF post-MI is of paramount importance.

To further elucidate themolecular mechanisms drivingHF afterMI,
our study employed a comprehensive bioinformatics approach. Given
the swift advancements in microarray and high-throughput sequencing
technologies, bioinformatics approaches are frequently employed in
disease research. Using weighted gene coexpression network analysis
(WGCNA), we identified several modules enriched for immune-related
processes that were significantly associated with the transition from MI
to HF. These findings were validated via the CIBERSORT algorithm,
which revealed specific signatures linked to unfavourable outcomes in
high-risk patients. Single-cell transcriptomic data provided additional
insights into the heterogeneity of HF progression.

Our findings underscore the importance of early and accurate
risk stratification for HF development in MI survivors. By
identifying biomarkers that are causally associated with HF, we
can develop targeted therapeutic strategies aimed at reversing or
preventing disease progression.

2 Materials and methods

2.1 Data collection

In this study, we accessed gene expression microarray data from
the Gene Expression Omnibus (GEO) database (http://www.ncbi.
nlm.nih.gov/geo). The microarray data were obtained via multiple
platforms: GPL6244 with accession numbers GSE59867 (Maciejak
et al., 2015) and GSE62646 (Kiliszek et al., 2012), an additional
external validation set GPL11154 with accession number
GSE168281, and single-cell gene expression datasets GSE267644
(Kneuer et al., 2024) and GSE269269 (Qian et al., 2024).

2.2 Identification of differentially expressed
genes (DEGs)

The initial expression matrix was normalized and processed via
R software (version 4.4.1). To identify DEGs between the datasets
GSE59867 and GSE62646, we utilized the “limma” package within
the R environment. DEGs were selected based on an adjusted P
value <0.05 and a fold-change threshold of |log FC| ≥ 0.5.

2.3 Construction of the WGCNA network

WGCNA is a widely used bioinformatics tool for revealing gene
coexpression patterns across multiple samples by clustering genes
with similar expression profiles into distinct modules. These gene
modules can be further correlated with external traits or phenotypes
to explore potential functional associations (Langfelder and
Horvath, 2008). In this study, WGCNA was performed via the R
WGCNA package. To construct a reliable coexpression network, we
selected a soft-thresholding power of 11 based on the criterion for
achieving a scale-free topology. Specifically, we evaluated a range of
power values and identified the lowest power for which the scale-free
topology fit index (R2) exceeded 0.80 while ensuring relatively high
mean connectivity. This approach aligns with the principle that
biological networks tend to exhibit scale-free properties.

2.4 Identification of shared genes

To identify the core common genes, we performed a
comprehensive analysis by first constructing Venn diagrams of
genes identified through WGCNA and DEG analyses to identify
overlapping genes. These shared genes were then selected for
subsequent analysis.

2.5 Screening hub genes via the machine
learning algorithm

Following the identification of shared genes, we applied two
complementary machine learning algorithms to identify potential
hub genes with the highest discriminative power. First, we used
support vector machine recursive feature elimination (SVM-RFE),
which employs a linear kernel function to ensure model
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interpretability and computational efficiency (Huang et al., 2014).
Feature ranking was performed iteratively, and the optimal subset
was selected based on the minimal cross-validation error. Next, the
least absolute shrinkage and selection operator (LASSO) algorithm
was implemented via the glmnet package in R (Li and Sillanpaa,
2012). We applied 10-fold cross-validation to identify the optimal
value of the regularization parameter lambda (λ), defined as the
value minimizing the mean cross-validated error (lambda.min). To
validate the classification performance of the selected features, we
constructed multiple supervised learning models—logistic
regression (LR), linear discriminant analysis (LDA), k-nearest
neighbour (KNN), support vector machine (SVM), random forest

(RF), ridge regression, elastic net, naïve Bayes and XGBoost. Their
predictive performance was evaluated via the area under the curve
(AUC), sensitivity, specificity, positive predictive value (PPV) and
negative predictive value (NPV). The model yielding the best overall
metrics was adopted for hub gene selection.

2.6 Correlation analysis between infiltrating
immune cells and hub genes

The CIBERSORT algorithm was employed for immune cell
infiltration analysis. Spearman correlation analysis was performed

FIGURE 1
Identification of differentially expressed genes. (A)Differential expression analysis betweenMI patients with HF and non-HF; (B) A scale-free network
model was utilized to identify the optimal β value; (C) Network connectivity distribution analysis revealed a right-skewed histogram pattern; (D)WGCNA
was employed to construct modules via hierarchical clustering; (E) A heat map was generated to visualize the association betweenWGCNAmodules and
enrollment characteristics; (F) Venn diagrams were used to illustrate the overlap of DEGs associated withincident HF risk across patient cohorts.
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to examine the relationships between infiltrating immune cells and
hub genes, and the corrplot tool in R was used for visualization.

2.7 Candidate biomarker expression levels
and diagnostic value

The ggplot2 package in R was used to analyse the expression
levels of candidate biomarkers. To assess their potential diagnostic
performance, receiver operating characteristic (ROC) analysis was
conducted, with the AUC serving as a key metric for evaluating the
efficacy of these markers.

2.8 Construction of the nomogram model

Based on the selected explanatory variables, we constructed a
nomogram model employing the “rms” package. We calculated
every item’s score by projecting upwards on a small scale

(points) based on the characteristics of each variable of the
patient. The total value was calculated by adding the scores of
each item. A higher total value indicates a higher probability of HF.
To assess the model’s accuracy, we conducted an analysis of the
calibration curve, decision curve analysis (DCA) curve and clinical
impact curve (Iasonos et al., 2008).

2.9 Single-cell sequencing analysis

The data were first subjected to standardized preprocessing via
the Seurat software package (Stuart et al., 2019). The t-SNE method
was subsequently applied to model spatial relationships between
cellular clusters. Cluster annotation was then performed via the
celldex tool, with particular emphasis on key functional cell types. By
implementing the FindAllMarkers function combined with a
log2(FC). In the threshold thresholding approach, significant
marker genes for individual cell subsets were identified from the
single-cell expression data.

FIGURE 2
Features selection using machine learning algorithms. (A) Selection of characteristic genes via SVM-RFE algorithm; (B,C) Selection of characteristic
genes via LASSO algorithm.
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3 Results

3.1 Elucidating key regulatory genes in the
MI-to-HF pathway via DEGs and WGCNA

To identify the key regulatory genes associated with progression
fromMI-to-HF, we performed a genome-wide gene expression analysis
using publicly available datasets from the GEO database
(GSE59867 and GSE62646). These datasets compare gene expression
profiles between HF patients and those who remained stable post-MI.

The raw data were normalized via the “limma” package
(Supplementary Figure S1), and DEGs were identified under
stringent criteria (P value <0.05 and log-fold change |logFC| ≥
0.5). This analysis revealed 413 DEGs, including 250 upregulated
and 163 downregulated genes (Figure 1A).

For network construction, we employed the WGCNA approach. A
soft threshold of 11 was selected to ensure network scalability (Figures
1B,C), resulting in the identification of eight distinct modules, each
represented by a unique colour (Figure 1D; Supplementary Figure S2A).
Among the modules, the blue, pink, and green modules were

FIGURE 3
Differential expression and values of hub genes in the training and test groups. (A) Differential analysis of variables between HF patients and non-HF
patients after MI; (B) Single-factor logistic regression analysis of variable associations with HF post-MI; (C) Feature importance assessment in the Random
Forest model; (D) Expression levels of the 10 hub genes identified in GSE168281 dataset. Statistical significance was assessed using the Wilcoxon rank-
sum test (two-sided). *P < 0.05, **P < 0.01.
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significantly correlated with MI patients at high risk of HF progression
(Supplementary Figure S2B–D). Specifically, the blue module exhibited
a positive correlation (r = 0.55, P = 0.02), as did the pink module (r =
0.56, P = 0.02), whereas the green module displayed a negative
correlation (r = −0.5, P = 0.04), suggesting a potential protective
role against HF progression (Figure 1E).

To identify candidate genes, we performed a Venn diagram
analysis of the DEGs and module genes, which yielded
98 overlapping genes (Figure 1F). These genes were identified as
potential regulatory factors driving the MI-to-HF transition.

3.2 Hub gene identification and validation in
MI-to-HF progression

To identify hub genes with significant differences between HF
patients and non-HF patients post-MI, we employed the SVM-RFE
algorithm to select 10 candidate genes (DZIP3, HIVEP2, ZNF366,
CYLD, SNORD28, GPER1, E2F5, LHFPL2, ADAMTS2 and ST14)
(Figure 2A). These genes were further refined via the LASSO
algorithm, which identified three critical hub genes (ZNF366,
HIVEP2, and E2F5) from an initial set of 98 common genes
(Figures 2B,C). The 10 candidate genes were integrated for
subsequent analyses (Supplementary Table S1).

Comparative analysis of hub gene expression revealed distinct
patterns between HF patients and non-HF patients post-MI. DZIP3,
HIVEP2, CYLD, SNORD28 and E2F5 were significantly downregulated
in HF patients compared with non-HF patients (Figure 3A). Among
these genes, ZNF366, ST14 and LHFPL2were positively correlated with
MI-to-HF progression, whereas SNORD28, HIVEP2 and CYLD were
negatively correlated (Figure 3B). Notably, HIVEP2 and CYLD
demonstrated the greatest functional importance in this progression
(Figure 3C). To validate these findings, we analysed the
GSE168281 dataset, which confirmed consistent expression trends
and statistical significance (P < 0.05) (Figure 3D), supporting the
reliability of our results.

3.3 Immune cell infiltration and correlation
with hub genes in the MI-to-HF progression

To investigate the progression from MI to HF, we performed a
KEGG enrichment analysis focusing on temporal changes in
pathways following MI (Supplementary Figure S3A-F). Heatmaps
revealed dynamic pathway alterations, highlighting key processes
such as the inflammatory response, interferon alpha signalling, E2F
targets, epithelial‒mesenchymal transition and glycolysis
(Figure 4A). KEGG pathway analysis confirmed the involvement
of immune-related pathways in the progression from MI to HF.
Using CIBERSORT, we analysed immune cell infiltration and
identified 16 immune cell subpopulations (Figure 4B). Compared
with the non-HF post-MI group, the HF post-MI group exhibited
significant dynamic changes in dendritic cells (DCs) and naïve CD4+

T cells. Hub genes, including CYLD and HIVEP2, exhibited strong
correlations with immune cells in the HF group 1 day post-MI.
These correlations persisted for most hub genes up to 6 days post-
MI, except for ZNF366, SNORD28, GPER1, and ADAMTS2. At
30 days post-MI, the hub genes (excluding HIVEP2, ADAMTS2 and
ST14) maintained close associations with immune cells. Notably,
SNORD28, LHFPL2,ADAMTS2 and ST14maintained their immune
cell correlations 180 days post-MI (Figure 5).

3.4 Construction and evaluation of machine
learning models

We performed a rigorous comparative evaluation of machine
learning algorithms for post-MI HF progression risk prediction,
employing feature subsets derived from two distinct selection
methodologies: SVM-RFE (Table 1) and LASSO (Table 2).
Among the eight clinically relevant classifiers evaluated—LR,
LDA, KNN, SVM, ridge regression, elastic net, NBC and
XGBoost—the RF ensemble learning architecture demonstrated
statistically significant superiority across four critical clinical

FIGURE 4
KEGG enrichment analysis for the progression fromMI to HF. (A)Heatmap depicting the alteration of KEGG pathways in the procession fromMI-to-
HF; (B) Heatmap showing the alteration of immune characteristics in HF and non-HF after MI by CIBERSORT.
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FIGURE 5
The relationship between hub gene expression and immune cell infiltration. (A) 1 days; (B) 4–6 days; (C) 30 days and (D) 180 days after MI.

TABLE 1 Predictive model performance for HF progression risk using SVM-RFE features.

Term Training cohort (1 day after MI) Test cohort (4 days after MI)

AUC Sensitivity Specificity PPV NPV AUC Sensitivity Specificity PPV NPV

Logistic Regression 1.000 1.000 1.000 1.000 1.000 0.528 0.222 1.000 0.500 0.364

Linear Discriminant Analysis 1.000 1.000 1.000 1.000 1.000 0.704 0.889 0.500 0.750 0.455

KNN 0.938 0.875 1.000 1.000 0.900 0.750 0.500 1.000 1.000 0.750

SVM 0.938 0.875 1.000 1.000 0.900 0.778 0.667 0.889 0.800 0.800

Random Forest 1.000 1.000 1.000 1.000 1.000 0.926 0.889 0.833 1.000 0.545

Ridge 0.986 1.000 0.875 0.900 1.000 0.759 0.778 0.667 0.667 0.417

Elastric Net 1.000 1.000 1.000 0.900 1.000 0.741 0.889 0.667 0.667 0.417

Naïve Bayes Classifier 0.826 0.708 0.806 0.875 0.778 0.667 0.333 1.000 1.000 0.500

Xgboost 1.000 1.000 1.000 1.000 1.000 0.889 1.000 0.833 1.000 0.500
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performance metrics: sensitivity, specificity, positive predictive value
and negative predictive value. This optimized RF implementation
was consequently designated the principal predictive framework for
subsequent mechanistic investigations of post-MI HF progression
dynamics based on its balanced performance in terms of both
statistical accuracy and clinical interpretability.

To validate the diagnostic potential of the 10 candidate hub genes,
we conducted rigorous ROC curve analyses using independent
validation cohorts. The biomarker panel demonstrated exceptional
acute-phase discrimination capacity, achieving perfect classification
(AUC = 1.000, 95% CI 1.000-1.000) at 24 h post-MI in the training
cohort (Figure 6A). Temporal performance analysis revealed peak
diagnostic accuracy during the subacute phase (four to six days post-
MI; AUC = 0.926, 95% CI 0.722–1.000), followed by gradual
attenuation at chronic timepoints: 0.828 (95% CI 0.562–0.969) at
1 month and 0.812 (95% CI 0.547–0.984) at 6 months postinfarction
(Figure 6B‒D). This temporal performance pattern suggests strong
utility for early-stage heart failure detection in acute MI settings while
highlighting the potential need for complementary biomarkers in
chronic phase monitoring.

We developed a multivariate prognostic nomogram integrating
three critical components, (1) baseline risk score, (2) DCs
abundance and (3) naïve CD4+ T cell frequency, with each
parameter assigned weighted scores based on multivariate Cox
regression coefficients (Figure 7A). The model demonstrated
excellent calibration fidelity and clinical utility across the
validation cohorts (Figures 7B–D). Notably, the combined model
incorporating DCs, naïve CD4+ T cells, and hub gene expression
profiles achieved exceptional diagnostic accuracy in non-HF
patients (AUC = 0.976, 95% CI 0.901–1.000) and maintained
robust performance in established HF patients (AUC = 0.852,
95% CI 0.684–0.957) (Figure 7E‒F). Comparative analysis
demonstrated significant predictive improvement when immune
cell biomarkers were combined with genomic signatures versus
individual modalities (Supplementary Figure S4).

The superior predictive capacity of this immune‒genomic
combination model may reflect the dual role of DC-mediated
inflammatory responses and CD4+ T cell-regulated adaptive
immunity in post-MI ventricular remodelling. Future single-cell

sequencing studies could elucidate the spatial‒temporal interplay
between these immune subsets and myocardial gene expression
patterns during HF progression.

3.5 Single-cell transcriptomic profiling of the
hub genes

To elucidate the cellular specificity of the hub genes, we
performed integrated analysis of single-cell RNA sequencing
(scRNA-seq) data from two independent myocardial infarction
cohorts (GSE226794 and GSE269269). Following batch effect
correction via the Harmony integration algorithm
(Supplementary Figure S5), we identified six major cellular
compartments: basal cells, epithelial cells, erythrocytes, immune
cells, platelets and proliferating cells (Figure 8A). Immune cell
subclustering revealed seven functionally distinct subtypes,
including neutrophils, γδ T cells, cytotoxic T cells, B cells,
macrophages, DCs and plasma cells, with substantial
compositional shifts between the MI and HF states (Figures 8B–D).

Hub gene expression mapping revealed cell type-specific
enrichment patterns: CYLD exhibited predominant expression in
immune subsets, whereas SNORD28 was excluded from further
analysis due to a lack of cell type specificity (Supplementary
Figure S6). Strikingly, CYLD expression was markedly
downregulated in HF-derived immune cells compared with that
in MI samples (Figures 8E,F).

3.6 Functional and diagnostic validation of
the CYLD

Gene Ontology (GO) enrichment analysis of CYLD-associated
pathways revealed differential immune regulation between the MI
and HF microenvironments. In MI samples, CYLD+ T cells were
enriched in positive regulation of T-cell activation and the Wnt
signalling pathway (Figure 9A), whereas HF-associated CYLD+

T cells were enriched in small molecule catabolic processes
(Figure 9B). A similar dichotomy was observed in B-cell

TABLE 2 Predictive model performance for HF progression risk using LASSO features.

Term Training cohort (1 day after MI) Test cohort (4 days after MI)

AUC Sensitivity Specificity PPV NPV AUC Sensitivity Specificity PPV NPV

Logistic Regression 0.986 1.000 0.875 0.889 0.875 0.796 0.778 0.833 0.800 0.500

Linear Discriminant Analysis 0.986 1.000 0.875 0.875 0.778 0.815 0.889 0.667 1.000 0.500

KNN 0.938 0.875 1.000 1.000 0.900 0.722 0.611 0.733 0.667 0.778

SVM 0.882 0.875 0.889 0.875 0.889 0.667 0.625 0.664 0.571 0.750

Random Forest 1.000 1.000 1.000 1.000 1.000 0.787 1.000 0.500 1.000 0.462

Ridge 0.986 1.000 0.875 0.875 0.778 0.833 0.889 0.667 1.000 0.500

Elastric Net 0.986 1.000 0.875 0.875 0.778 0.815 0.889 0.667 1.000 0.500

Naïve Bayes Classifier 0.826 0.778 0.875 0.875 0.778 0.611 0.222 1.000 1.000 0.462

Xgboost 0.001 0.001 0.001 0.001 0.889 0.796 0.667 0.833 1.000 0.462
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populations, with MI samples showing leukocyte cell‒cell adhesion
versus HFs exhibiting lymphocyte differentiation (Figure 9C‒D).

The diagnostic potential of CYLDwas validated through receiver
operating characteristic (ROC) analysis (AUC = 0.817, 95% CI
0.647–0.940) in an independent validation cohort (Supplementary
Figure S7). CYLD is a novel biomarker reflecting immune
dysregulation.

4 Discussion

Despite therapeutic advances, post-MI HF remains a critical
clinical challenge, with 45% of cases emerging within the first year
postevent (Carberry et al., 2024). While early mortality rates have
halved since the 1990s, chronic HF development continues to

increase mortality risk compared with that of non-HF
counterparts (Docherty et al., 2023; Carberry et al., 2024). These
findings underscore the importance of early predictive biomarkers.
We report that markers of HFs from MIs can be identified and that
an HF warning can be issued.

Through integrative bioinformatics combining differential
expression analysis and WGCNA, we identified 98 candidate
genes linked to post-MI HF. By utilizing the machine learning
algorithms LASSO and SVM-RFE, we successfully identified hub
genes, namely, GPER1, E2F5, DZIP3, CYLD, ADAMTS2, ZNF366,
ST14, SNORD28, LHFPL2 and HIVEP2, from a panel of
98 candidate genes.

By utilizing a random forest model, which has proven to be
highly effective, we were able to successfully predict the progression
of MI patients to HF. Notably, the hub genes demonstrated robust

FIGURE 6
Prognostic Capability of Random Forest Model in Predicting HF Post-MI. (A) Ten hub genes distinguish MI patients at risk of HF from non-
progressors within 1 day post-MI (training cohort); (B–D) Prognostic accuracy of hub genes in test cohort at 4–6 days, 1 month and 6 months post-MI.
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predictive accuracy for HF subsequent toMI, maintaining consistent
performance across diverse time points. This consistency suggests
that these hub genes play critical roles in the underlying biological
processes leading to HF development post-MI. However, with
increasing time post-MI, the model’s predictions for HF become
increasingly less precise. The progression to HF following MI is
attributed to a multitude of complex pathological mechanisms,
which encompass myocardial cell necrosis, inflammatory
responses, fibrosis and the regulation of myocardial repair
(Akhtar et al., 2024); therefore, this elevated level of uncertainty
can be attributed to multiple factors, such as the intricacy of disease
progression, alterations in patient health status over time, and the

plausible interplay between diverse genetic and environmental
factors. Nevertheless, our findings underscore the potential of
hub genes as pivotal diagnostic tools for the early and precise
identification of HF in patients with MI.

In our pathway enrichment analysis, we examined the alterations in
pathways at various time points post-MI and their possible associations
with the progression of HF. Notably, the inflammatory response plays a
pivotal role in this context. Consistent with the findings of the present
study, research has shown that individual variations in themagnitude of
the inflammatory response following acute MI, which involves one or
multiple inflammatory-modulating pathways, may play pivotal roles in
promoting adverse left ventricular remodelling (Prabhu and

FIGURE 7
Prognostic performance of combined signatures in predicting HF progression post-MI. (A) Nomogram model integrating riskScore, DCs and
CD4+T cells; (B) Calibration plot assessing model accuracy by comparing predicted and observed probabilities; (C)Decision curve analysis: identification
of high-risk individuals at varying thresholds; (D) Decision curve analysis: net benefit across threshold probabilities; (E) Prognostic performance of
combined signatures in predicting non-HF progression post-MI; (F) Prognostic performance of combined signatures in predicting HF progression
post-MI.
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Frangogiannis, 2016; Kufazvinei et al., 2024). This maladaptive process
is closely associated with the progressive development of HF(Westman
et al., 2016; Del Buono et al., 2022). Following MI, the resulting
ischaemic injury elicits the mobilization and influx of a diverse
spectrum of innate and adaptive immune cells to the infarcted
myocardium, encompassing macrophages, DCs, T cells and various
other cellular entities (Kretzschmar et al., 2012; Swirski andNahrendorf,
2018; Jung et al., 2022; Delgobo et al., 2023). Simultaneously,
inflammation plays a pivotal role in the progression of various
aetiologies underlying HF(Carlisle et al., 2019; Paulus and Zile,
2021). Despite the mixed outcomes observed in clinical trials, the
modulation of inflammation continues to hold promise as a target
for therapeutic intervention in the management of HF(Riehle and
Bauersachs, 2019). Thus, it can be inferred that immune cells play
crucial roles in the progression of HF following MI.

Within the immunological axis, DCs, professional antigen-
presenting cells expressing high levels of MHC class II,
orchestrate post-MI adaptive immunity through three primary
mechanisms: (1) neoantigen presentation via cross-dressing with
cardiomyocyte-derived exosomes, (2) cytokine-mediated T-cell
polarization, and (3) regulation of tertiary lymphoid structure
formation in peri-infarct zones (Balan et al., 2019). Single-cell
transcriptomics revealed that DC subpopulation dynamics
correlate with HF progression rates, suggesting that DC
activation states may serve as early prognostic indicators. Their
activation status and functional proficiency within the post-MI
milieu may critically influence the trajectory of HF progression.
In addition to DCs, naïve CD4+ T cells are at the heart of adaptive
immunity (Luckheeram et al., 2012). Inflammation plays a dual role
in regulating the progression of HF post-MI by either promoting or

FIGURE 8
Single-cell analysis of cell populations. (A) UMAP visualization of annotated cell types; (B) Subclustering and annotation of immune cells; (C) The
relative proportions of immune cell subtypes; (D) Feature plots used for cell type annotation; (E)UMAP distribution of target geneCYLD expression across
groups; (F) Quantitative analysis of CYLD expression levels. Statistical significance was assessed using the Wilcoxon rank-sum test (two-sided).
***P < 0.001.
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inhibiting the processes of tissue repair and fibrosis in the injured
myocardium (Lafuse et al., 2020; Wang et al., 2023).

CYLD is a specialized deubiquitinating enzyme with substrate
specificity for lysine 63 (K63)- and methionine 1 (M1)-linked
ubiquitin chains and exhibits minimal catalytic activity towards
canonical K48-linked polyubiquitination marks critical for
proteasomal degradation (Sato et al., 2015). Mechanistic studies
have established its role as a master regulator of inflammatory
signalling through targeted deubiquitination of key adaptor
proteins, including NF-κB essential modulator (NEMO/IKKγ),
TNF receptor-associated factors (TRAF2/6) and receptor-
interacting protein kinase 1 (RIPK1), thereby attenuating both
NF-κB and MAPK pathway activation (Brummelkamp et al.,
2003; Kovalenko et al., 2003; Trompouki et al., 2003; Wright
et al., 2007). Emerging evidence further implicates CYLD in Wnt/
β-catenin signalling modulation via dishevelled (DVL) protein
deubiquitination, suggesting broad-spectrum regulatory functions
across developmental and oncogenic pathways (Tauriello et al.,
2010; Fernandez-Majada et al., 2016). This pleiotropic enzyme
orchestrates a delicate balance between proinflammatory
responses and cellular homeostasis, with dysregulation implicated
in pathological processes spanning chronic inflammation, immune
dysregulation, and tumorigenesis (Marin-Rubio et al., 2023).

The pleiotropic nature of these biomarkers, particularly CYLD’s
dual regulation of inflammatory and fibrotic pathways, positions
them as promising candidates for both diagnostic stratification and
targeted therapeutic intervention. The compartment-specific
dysregulation of CYLD, a known regulator of T-cell receptor
signalling and NF-κB activation, may underlie the transition
from acute inflammatory responses to maladaptive immune
remodelling during HF progression; its dual role in
cardiomyocyte survival pathways and lymphocyte activation
could explain its superior diagnostic performance compared with
that of conventional myocardial stress markers.

Our findings indicate that the CYLD provides a more accurate
prediction of the onset of HF after MI. However, our study has
several limitations. Due to the challenges encountered in data
collection and the practical difficulties associated with long-term
patient follow-up for prognosis, our research results have not
been validated in clinical patient samples. Furthermore, the
mechanisms underlying the associations between these
biomarkers and cellular targets in HF following MI remain to
be fully elucidated. Future research should focus on
understanding the biological pathways and interactions among
these factors, as well as exploring potential therapeutic
interventions that target these pathways.

FIGURE 9
Functional enrichment analysis of target genes in T cells and B cells. (A–B)GO enrichment analysis ofCYLD in T cells: (A)MI group and (B)HF group;
(C–D) GO enrichment analysis of CYLD in B cells: (C) MI group and (D) HF group.
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5 Conclusion

In conclusion, our integrative multiomics investigation
identified CYLD as a critical determinant of post-MI HF
pathogenesis, serving a role as a prognostic biomarker. The
CYLD-centred 10-gene signature enables early HF risk
stratification with >80% accuracy post-MI, outperforming
conventional biomarkers. Single-cell resolution reveals the
immune-modulatory function of CYLD. The developed
nomogram, which integrates CYLD expression, DC activation
states and naïve CD4+ T cell counts, demonstrated superior
predictive value. These findings fundamentally shift our
understanding of post-MI, positioning CYLD-mediated
ubiquitination as a linchpin mechanism governing the transition
from MI to HF.
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