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Objective: Nasopharyngeal carcinoma (NPC) is a malignant tumor, but the role of
ferroptosis-related genes in NPC remains unclear. This study aimed to identify
ferroptosis-related therapeutic targets and explore their mechanisms in NPC.

Method: NPC datasets and ferroptosis-related genes were obtained from GEO
and FerrDB, respectively. Ferroptosis-related differentially expressed genes
(DEGs) were identified, and Weighted Gene Co-expression Network Analysis
(WGCNA) was used to pinpoint disease-related genes. Four machine learning
algorithms screened hub genes, validated by ROC curves. Functional enrichment
(GSEA, GSVA), drug prediction (DGIdb), immune infiltration analysis (CIBERSORT),
and single-cell RNA sequencing (scRNA-seq) were performed.

Result: From 3405 DEGs, 90 ferroptosis-related genes were identified, enriched
in ferroptosis, I1L-17, and p53 signaling pathways. WGCNA revealed 34 disease-
related genes, and four hub genes (TBK1, KIF20A, SLC16A1, QSOX1) were
selected, showing high diagnostic efficacy. GSEA/GSVA highlighted pathway
differences between high/low expression groups. Eleven potential drugs were
predicted, and immune analysis indicated increased macrophage M1 and
neutrophil infiltration. scRNA-seq validated hub gene expression profiles.

Conclusion: This study identified four ferroptosis hub genes in NPC, offering
insights into its molecular mechanisms and potential diagnostic/therapeutic
targets.
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Introduction

NPC is a malignant tumor originating from the epithelial cells of the nasopharynx,
prone to metastasis, and is most commonly found in southern China (Chua et al., 2016; Su
et al., 2022). It is estimated that in 2022, there were 120,041 new cases and 73,476 deaths
globally due to NPC (Freddie et al., 2024). The primary treatment for NPC is radiotherapy
2021). Although the
chemoradiotherapy is satisfactory (85%-90% over 5 years) (Ma et al, 2012; Wirth

or chemoradiotherapy (Bossi et al, survival rate for
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The workflow chart of the whole analysis process in this study.

et al.,, 2010), 8%-10% of patients experience recurrence and tumor
metastasis (Vermorken et al., 2013; Xue et al.,, 2013). Therefore,
there is an urgent need to further explore targeted biomarkers for
NPC to assist in the development of new therapeutic strategies for
the disease.

Ferroptosis is a novel form of cell death caused by oxidative
damage, which was first proposed in 2012. It is primarily mediated
by iron ion-induced oxidative damage, lipid peroxidation, and cell
membrane damage (Stockwell et al., 2017). Through the distinctive
features of ferroptosis, iron ions can be utilized to promote
ferroptosis in cancer cells, enabling precise cancer treatment
(Hassannia et al., 2019). Ferroptosis plays a significant role in
kidney
diseases, and malignant tumors, and has become an important

various diseases, including cardiovascular diseases,
area of focus in cancer research (Lei et al., 2022; Liu et al., 2023).
Ferroptosis also plays a critical role in NPC. Chen et al. identified
that ACSL4 inhibits the pathogenesis of NPC through ferroptosis
and crosstalk with macrophages by detecting ACSL4 expression in
NPC cell lines and xenograft mice, providing a potential direction
for NPC therapy (Chen et al., 2023). Zhou et al. demonstrated that
P4HAI activates HMGCSI to promote resistance to ferroptosis and
progression in nasopharyngeal carcinoma (Zhou et al., 2023). Xu
etal. (2021) demonstrated that itraconazole could reduce the activity
of NPC stem cells by increasing the concentration of intracellular
iron and lipid peroxides in lysosomes. Lactotransferrin (LTF) has
been reported to be highly expressed in NPC cells, and its
overexpression inhibits NPC cell proliferation by regulating the
MAPK/AKT pathway, which serves as a crucial pathway for tumor
radiosensitization (Zhou et al., 2008; Zhang et al., 2011; Deng et al.,

2013; Song et al., 2019). NRF2 is recognized as a master regulator of
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antioxidant responses during ferroptosis, as numerous downstream
target genes under its control are responsible for preventing redox
imbalance in cancer cells (Dodson et al., 2019). Zhang et al. (2017)
reported that reducing NRF2 levels and promoting ROS generation
sensitized NPC cells to radiotherapy (RT). In summary, ferroptosis
plays a crucial role in the development of NPC.

Although there are few studies have focused on ferroptosis-related
genes in NPC, research on the mechanisms of ferroptosis treatment
targets in NPC is still relatively scarce. Therefore, this study aims to
analyze existing datasets related to NPC to identify hub genes associated
with ferroptosis and NPC, and further investigate the relationships
between these hub genes, immune cells, and pathways. This research
seeks to provide new insights for both clinical and basic research on
NPC, potentially aiding clinicians in developing personalized treatment
plans for NPC patients.

Result

Identification of differentially expressed
ferroptosis-related genes in NPC

In this study, we systematically investigated the association
between ferroptosis-related genes and nasopharyngeal carcinoma
(Figure 1). A total of 3,405 DEGs were screened from the
GSE12452 dataset, with 1,808 genes upregulated and 1,597 genes
downregulated in NPC (Figure 2A). Ferroptosis-related genes were
downloaded from the FerrDb database, including 369 driver genes,
348 suppressor genes, and 11 marker genes. After removing
annotations, 484 ferroptosis-related genes

duplicate were
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Analysis of DE-FRGs in NPC. (A) Volcano plot showing differentially expressed genes in GSE12452. (B) Venn diagram of DE-FRGs. (C) The bar chart of

GO enrichment results. (D) The bar plot of KEGG pathway analysis.

obtained. The intersection of these 484 ferroptosis-related genes
with the 3,405 DEGs yielded 90 differentially expressed ferroptosis-
related genes (DE-FRGs), including 53 upregulated
37 downregulated genes (Figure 2B).

and

Enrich analysis on differentially expressed
ferroptosis-related genes

Gene Ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) enrichment analyses were performed on the
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differentially expressed ferroptosis-related genes. The GO
biological process (GO-BP) analysis revealed that the genes
were primarily enriched in response to oxidative stress,
cellular response to chemical stress, cellular response to
reactive oxygen species (ROS), cellular response to oxidative
stress and response to nutrient levels. The GO cellular
component (GO-CC) analysis indicated that these genes were
mainly associated with the apical plasma membrane, apical part
of cell and basal part of cell. The GO molecular function (GO-
MF) analysis showed that the genes were enriched in
activity, NAD(P)H, activity,

oxidoreductase antioxidant
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peroxidase activity, and oxidoreductase activity, acting on
peroxide as accepter (Figure 2C). Additionally, KEGG pathway
analysis demonstrated that these differentially expressed
(DE-FRGs)

pathways related to microRNAs in cancer, fluid shear stress

ferroptosis-related ~ genes were enriched in
and atherosclerosis, IL-17 signaling pathway, p53 signaling

pathway, and ferroptosis (Figure 2D).

Construction of co-expression network,
module feature selection, and identification
of differential genes associated with
ferroptosis

We performed the analysis on the standardized expression
matrix of GSE12452 using the WGCNA package, which included
14,480 genes. A scale-free network was constructed by setting the
soft threshold to 9 (R = 0.9) (Figure 3A). Dynamic tree cut was
used to identify and merge similar gene modules, resulting in
9 gene modules (Figures 3B-D). By examining the Pearson
correlation coefficients and p-values between each gene
module and nasopharyngeal carcinoma, we found the brown
module exhibited the strongest negative correlation with the
tumor (r = —0.92), while the turquoise module showed the
0.57)
(Figure 3E). This study primarily focuses on module genes

highest positive correlation with the tumor (r =

that are positively correlated with tumors. Therefore, based on
the WGCNA analysis, we identified 4,590 nasopharyngeal
carcinoma-associated genes from the turquoise module. We
intersected these with 90 differentially expressed ferroptosis-
related genes, identifying 34 differential ferroptosis-associated
genes (Figure 4A).

Correlation and functional enrichment
analysis of differential ferroptosis-
related genes

We performed a correlation analysis on the 34 genes obtained by
intersecting the NPC-related module genes with DE-FRGs to
explore the potential role of these ferroptosis-related differential
genes in NPC progression. Some ferroptosis-related differential
genes exhibited varying effects. For example, APQ5 and
QSOX1 showed strong negative correlations, while NRAS and
TBK1 (Figure 4B).
Additionally, we conducted functional enrichment analysis on
these ferroptosis-related differential genes. The results indicated

displayed strong positive correlations

that GO-BP was primarily associated with cellular response to
chemical stress, response to nutrient levels, tissue remodeling,
response to decreased oxygen levels and response to hypoxia.
GO-MF revealed significant enrichment in mRNA 3'-UTR
binding and chaperone binding. GO-CC showed that the genes
were mainly associated with secretory granule membranes,
endocytic vesicle membranes, basal plasma membrane, basal part
of cell, and tertiary granules (Figure 4C). KEGG pathway analysis
further demonstrated that these genes were significantly enriched in
microRNAs in cancer, lipid and atherosclerosis, and Kaposi
sarcoma-associated herpesvirus infection (Figure 4D).
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Identification of ferroptosis-related
hub genes

We employed four distinct machine learning algorithms,
including Random Forest (RF), Supported Vector Machine
(SVM), Networks (NNET), Neighbor
(KNN), to assist in identifying the core genes within the

Neural K-nearest
ferroptosis gene set. ROC curves were utilized to evaluate the
performance of these four models (Figure 5A), all of which
demonstrated high diagnostic efficiency. The AUC values for
RF, SVM, KNN, and NNET were 0.963, 0.926, 0.944, and 1.000,
respectively. Additionally, we assessed the stability of the
models by plotting residual distribution and residual box
plots (Figures 5B,C). These visualizations indicate that all
four models are stable and hold practical value. The top
10 important feature genes for each model were ranked
according to the root mean square error (RMSE) (Figure 5D).
Furthermore, we extracted the top 20 significant feature genes
from each model and performed an intersection, ultimately
identifying four core genes: TBKI, KIF20A, SLC16A1, and
QSOX1 (Figure 5E). Subsequently, we validated the
diagnostic value of these four genes and the models using the
GSE13597 and GSE53819 datasets (Figures 5F-H).

Gene set enrichment analysis and gene set
variation analysis

We conducted GSEA and GSVA and found that ubiquitin
mediated proteolysis and non homologous end joining, cell cycle,
DNA replication were activated in the TBK1 high-expression group,
p450,
Glycosaminoglycan Biosynthesis Keratan Sulfate were activated

while metabolism of xenobiotics by cytochrome
in the TBKI1 low-expression group (Figures 6A,C). In the
KIF20A high-expression group, pathways such as cell cycle,
parkinsons disease and other pathways were activated. In the
KIF20A low-expression group, no significant differences were
observed in GSEA, whereas in GSVA, phosphatidylinositol
signaling system and B cell receptor signaling pathway were
activated (Supplementary Figure S2A,C). Additionally, cysteine,
methionine  metabolism, selenoamino acid metabolism,
Pyrimidine metabolism, DNA replication and ribosome were
activated in the SLC16A1 high-expression group, while long term
potentiation and Gnrh signaling pathway were activated in the
SLC16A1 group 6B,D). In the
QSOX1 upregulation group, pathways such as glycosaminoglycan

biosynthesis keratan sulfate and calcium signaling pathway were

low-expression (Figures

activated. In the QSOX1 downregulation group, pathways such as
cell cycle and proteasome were activated
Figure S2B,D).

(Supplementary

Immune infiltration analysis

To further investigate the correlation between the four hub
genes and immune cells. In this study, the CIBERSORT algorithm
was employed to infer immune cell characteristics and explore
the relationship between immune regulation in NPC and
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diagnostic biomarkers with immune cell infiltration. Figure 7A
illustrates the proportion of 22 immune cell types in each sample.
Compared to the normal group, the NPC group exhibited higher
proportions of CD4"  memory-activated T  cells,
MI1 macrophages, and neutrophils, whereas the proportions of
naive B cells, memory B cells, CD4" memory resting T cells, and
monocytes were lower (Figure 7B). Further analysis of the
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correlation between the expression of the four hub genes and
the proportion of differentially infiltrated immune cell types
revealed that TBKI1, KIF20A, and SLC16A1 were strongly
associated ~ with ~ CD4*  memory-activated T  cells,
M1 macrophages, and neutrophils, while QSOX1 showed a
higher correlation with naive B cells, CD4" memory resting
T cells, and monocytes (Figure 7C). These findings suggest

frontiersin.org


https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2025.1595456

Gu et al.

10.3389/fgene.2025.1595456

o0

Sensitivity

0.4

FIGURE 5

0.6

0.2

0.0

T 1000
o0 ae o8 w0
Rl
Boxplots of |residual|
C Red dot stands for root mean square of residuals
Model B3 nneT B3 rF B3 o B3 s
- F
L F—
KNN
sw
000 0% oms

—— TBK1, AUC=0.707
~— KIF20A, AUC=0.987
—— SLC16A1, AUC=0.880
— QSOX1, AUC=0.853

T T T T
06 04 0.2 0.0

Specificity

000

Feature Imy
KNMN for the KNN, NNET, RF, SVM model

3

2

2

ik
:

5
3

of esidual

Model — NNET — RF L s

02 050
[resicuall

rtance

F

f

021 024 027 030
Root mean square error (RMSE) loss after permutations

10

Sensiovay

g 4
—— RF:0.861
— SWM: 0.782
—— KNN:0819
S 4 NNET:0.632
Dvﬂ 02 04 ﬂ:ﬂ 08 10
1 - Specificty
S
=
o
=
% i
o 3 -
o — TBK1, AUC=0.747
© S/ KIF20A, AUC=0.744
i —— SLC16A1, AUC=0.704
o | — QSOX1, AUC=0.515
=

Identification and validation of hub genes. (A) ROC curves of four machine learning models. (B) Residual distribution plot of the machine learning

models. (C) Boxplot of residual values from the machine learning models. (D) Histogram of feature contribution in the machine learning models. (E) Venn
diagram of the four machine learning models. (F) ROC curve of the model validated on the combined dataset of GSE13597 and GSE53819. (G) ROC curves
of hub genes in GSE13597. (H) ROC curves of hub genes in GSE53819.

T T T T T
08 06 04 02 0.0

Specificity

Frontiers in Genetics

07

frontiersin.org


https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2025.1595456

10.3389/fgene.2025.1595456

Gu et al.
A B — KEGO_CELLCYOLE
Keoa_caL eveLs — KEGO DA REPUCATION
KEG oA mEPUCATION M — KEGG_PARKNGONS_ DSEASE
s A SIS § L it
13 ~ct omcun KEGD_ SAUCEOSOME
2 i
.g_. g
£ L
H
.
o
!‘\I\””\IIIII 10 [ I I N | | Il 11
‘ : 1 ] o b 1Ll F | I‘,\‘ |
R e | | ! il
LU L UL T R TR T A ] el 1 | [ Wi |
7 %
i 1
P £
3.,
Rank in Ordered Dataset
Rank in Ordered Datasot
c D SLC16A1-enriched Subtype
Cpstains A ettioins Weutorse: [
. Soamoamno Ackd Metaboss
TBK1-enriched Subtype " -
Non Homologous End Joini
Progesterone Mediated Oocyte Mmmm
,e0s0me
Gpi Anchor
some
Ubiquitin Mediated Proteolys: P53 Signaing Pathway
Parkinsons Disease Hedgehog Signalng Pathwey
Pyrmssine Metaboksm
Tousine And Hypolaurine Melabolsm
Ubiaun Medated Proseoyss _
Cystine And Wethioning ieatotar w“““‘C"
ine lethionine
G'yo-yyfsa And Dicarboxylale Metabolism SomPaseptor isnastion
P53 Signaing Patway Spiceoscre _
bon
Gricabe Phosphonyaton —
Nuclepie Excion Repar N - o v
Pt ‘“m":n'”"" I .o o Miscie Contracton
Basal Transcrpton Fac D C:ocsine 5o Putvaey
Ao Nuclo 513t Cycle Tca Cycle Y et Anc Coaguiaton Cascades
ucleatide Sugar ism
= anine hepartate And Glutamate Metabotsm Dibeclion I - Metstciam
a3 rine Metabolism D G:coici Bcsyniness Gangho Seres
o zhemers D | XX () o Acks ot ooy
H Selencaming Acid Metabolism g ] o
& Mtor Signaiing Pathway w § R O e Cocreme Paso w
Base Excision Repar
enal Cell Carci I - ¢ atetes Metns
Ecm n.mw ieacion SN I G-+ Sosyness Korsian Sutote
holipid Metabolism I '~ i Pty
Gwmoo.f;’sg P . Gap Juncoon
ermomc Am anohsm Long Term Depression
Lmr
R - ocism
mm Tlanundcmslnal Migraton Y T Co: Rocesc Sining Putucy
synthesis
i) N - o
B%e" lea S»cgnal-m Patomy [ -y e Acid Bomyrivesis
_ I <im0 Xencbctics By Cochrome PAS0
— &anus By Ctochvome P450 R - o= et Lin Cancer
| ' asculav Smocm Muscle Contre I - Ovsradaton
— s i ] s+ yirosic Sqrang Sysiem
I B I
an Biosynthesis
Gr,:xahmgm(p‘d Bnosynlhesls Globo Series I %% Beosyrtness Giot Seres
. 05 l? plof Interaction N ' 5o Putwey
] ) €= Cod Sgratrg inHokcotacter Pyior ndocdion
R it it co v —
Cakumswmwi’ [ © -+ fecestor Sgnakeg Patwey
_ Keratan Sultte N < s P
2 [ pe—
-log10(P.Value) of GSVA score [ - = ot Puty
[ g
_ Long Term Putertaton
~iog10(P Value) of GSVA score
FIGURE 6

GSEA and GSVA of hub genes. (A-B) GSEA results of TBK1 and SLC16A1 genes. (C-D) GSVA results of TBK1 and SLC16A1 genes.

that ferroptosis-related genes may contribute to the pathological
process of NPC through immune regulation.

Single-cell analysis

To further investigate the expression patterns of four
ferroptosis-related genes in cells and validate their associations
with immune cells, we performed single-cell analysis (Figure 8).
The results demonstrated that TBK1 and QSOX1 were widely
distributed across the entire cell population, with expression
observed CMP, GMP, Pro B_ cell CD34+, DC,
Macrophages, NK_cell, T «cells, and B_cell. In contrast,
KIF20A and SLCI16A1 exhibited more restricted expression
patterns. KIF20A showed modest expression in Epithelial
cells, GMP, Macrophages, and T_cells, while SLC16A1 was

in
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highly expressed in GMP and weakly expressed in epithelial
cells, Osteoblasts, Endothelial cells, Macrophages, T_cells, and
B_cells (Figures 8C-F).

Drug prediction

Based on the DGIdb database, we identified potential targeted
drugs associated with the four hub genes and analyzed the
relationships between these drugs and the genes. Through
database retrieval, we selected eight drugs related to TBKI,
including Chembl:chembl 197335, NVP-TEA684, Entrectinib,
Adavosertib, PF-56227, Cenisertib, CYC-116, and Tamatinib. For
the SLC16A1 gene, three related drugs were identified: Sodium
butyrate, Tetradecanoylphorbol acetate, and Butyric acid. No
related drugs were found for the other two genes.
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Materials and methods
Dataset extraction and pre-processing

The data used in this study were obtained from the Gene
Expression Omnibus (GEO; https://www.ncbi.nlm.nih.gov/geo/)
database. The GEO database includes three NPC-related
microarray datasets (GSE12452, GSE13597, GSE53819) and
one NPC-related single-cell sequencing dataset (GSE150825,
GSE150430). Specifically, GSE12452 contains 31 NPC samples
and 10 normal healthy nasopharyngeal tissue samples.
GSE13597 includes 25 NPC patient samples and 3 samples
from patients with no evidence of malignancy.
GSE53819 includes 18 primary NPC tumor samples and
18  non-cancerous  nasopharyngeal  tissue  samples.
GSE150825 contains single-cell sequencing data from 14 NPC
patients and GSE150430 Contains 15 primary nasopharyngeal
carcinoma tumor samples and one normal sample. The raw data
were processed using R (version 4.2.2). Initially, the microarray
data were processed to remove batch effects, resulting in an
expression matrix. Ferroptosis-related genes, including driver
genes, inhibitor genes, and marker genes, were downloaded

from the FerrDb database (www.zhounan.org/ferrdb/), totaling

Frontiers in Genetics

484 ferroptosis-related genes. This study adhered to the usage
guidelines of both the GEO and FerrDb databases.

Screening of ferroptosis-related
differential genes

The limma package in R was used to screen for differentially
expressed genes in GSE12452, with the selection criteria set as
|[Log2 fold change| > 0.5 and an adjusted P-value <0.05 for
differential genes (Li et al., 2022). The results of the differential
the
intersection of these differential genes with ferroptosis-related

analysis were visualized using ggplot2. Subsequently,
genes was identified, yielding the ferroptosis-related differential
genes, which were visualized using a Venn diagram.

Functional enrichment analysis

The clusterProfiler package in R was used to perform GO and
KEGG enrichment analysis on the selected DE-FRGs (Yu et al,
2012). A P-value <0.05 was considered statistically significant for
differential enrichment.
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Weighted gene co-expression
network analysis

The WGCNA package (Langfelder and Horvath, 2008) was used
to perform sample clustering on the normalized microarray
expression matrix, followed by the removal of outlier samples.
After constructing a scale-free network based on the optimal soft
threshold, gene clustering analysis was performed to form gene
modules, represented by different colors. Gene modules were
identified using dynamic tree cut methods, and modules highly
positively correlated with NPC were selected. The intersection of the
selected module genes and ferroptosis-related differential genes was
then analyzed to obtain DE-FRGs which were strongly associated
with disease characteristics.

Construction and validation of diagnostic
models based on four machine learning
algorithms

This study utilized four machine learning models: support
vector machine model (SVM), random forest model (RF),
k-nearest neighbors (KNN), and neural network (NNET). The
DALEX package in R was used to interpret the residual
distribution and feature importance of the machine learning
models. To assess the reliability of the disease diagnostic models,
ROC curves were constructed using the pROC package, and the
intersection of genes identified by the four machine learning
algorithms was visualized using the VennDiagram package,
which hub genes. Finally, the diagnostic
performance of these four hub genes was validated using ROC

revealed four

curves in an independent validation cohort.

GSEA and GSVA of hub genes

To more accurately investigate the pathway activation
differences caused by the differential expression of hub genes in
diseases, this study divided the samples into two groups based on the
median expression level of the hub genes: high expression and low
expression. GSEA and GSVA enrichment analyses were performed
using pathway datasets from the MSigDB database (Kuang et al.,
2023) (https://www.gsea-msigdb.org/gsea/msigdb). Both the GSEA
and GSVA algorithms are based on gene expression levels and
calculate the differences in pathway activation between the
two groups.

Construction of gene-drug
regulatory network

The Drug-Gene Interaction database (DGIdb) is a free

database that provides information on the interactions
between genes and known or potential drugs. The four key
ferroptosis-related genes identified in this study were input
into DGIdb to obtain drug information related to their
interactions. This information was then used to construct a

gene-drug regulatory network.
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Immune infiltration analysis

The CIBERSORT algorithm was used to analyze the infiltration
proportions of 22 common immune cell types in different samples
(Newman et al., 2019). Differential analysis of immune infiltration
between the normal and disease groups was performed, and violin
plots were generated using the vioplot package, with a threshold of
P < 0.05. The correlation between key ferroptosis-related genes and
the 22 immune cell types was analyzed using the limma, reshape2,
tidyverse, and ggplot2 packages, and a correlation heatmap was
constructed.

Single-cell analysis

We integrated transcriptomic data from the GSE150825 dataset.
Single-cell analysis was conducted using the R packages including
Seurat, tidyverse, Nebulosa, and Matrix.

Statistical methods

Categorical variables were analyzed using either the Chi-square
test or Fisher’s exact test, as appropriate. The diagnostic accuracy of
the four hub genes was evaluated by receiver operating characteristic
(ROC) curve analysis, with results expressed as the area under the
ROC curve (AUROC) and 95% confidence intervals (CIs). The
associations between hub genes and immune cells or immune
rank

All
statistical analyses were performed using R software (version
4.2.2). A two-tailed P-value less than 0.05 was considered
statistically significant.

checkpoint genes were examined using Spearman’s

correlation or Pearson correlation coefficient analysis.

Discussion

Ferroptosis, as a unique form of cell death, plays a critical role in
the development of NPC. Inducing ferroptosis not only suppresses
tumor growth but also has the potential to enhance the response to
immunotherapy and overcome resistance to existing cancer
treatments (Lei et al., 2024). However, the exact role and specific
molecular mechanisms of ferroptosis in NPC remain unclear and
require further investigation.

In this study, we performed bioinformatics analysis by
combining NPC microarray data with ferroptosis-related genes.
We identified 34 ferroptosis-related differential genes associated
with NPC. Enrichment analysis revealed that these genes are
predominantly involved in pathways related to the response to
hypoxia, the response to reduced oxygen levels, the response to
chemical stress, and lipid metabolism and atherosclerosis pathways.
Subsequently, four machine learning methods were employed to
screen for hub genes associated with ferroptosis, resulting in the
identification of four ferroptosis-related hub genes: TBK1, KIF20A,
SLC16A1, and QSOXI. Further exploration of the relationships
between these hub genes and immune cells was conducted, followed
by drug prediction to investigate their interactions with drugs. NPC
is known to be associated with immune system dysfunction (Chen
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etal., 2018). The CIBERSORT method was used to evaluate changes
in immune infiltration, revealing that TBKI1, KIF20A, and
SLC16A1 were strongly correlated with CD4 memory-activated
T cells, M1 macrophages, and neutrophils. CD4 memory T cells
possess an activated phenotype, enhanced proliferation potential,
and rapid cytokine secretion capability (Stockinger et al., 2004).
M1 macrophages are capable of promoting inflammatory responses
by producing pro-inflammatory factors such as IL-6, IL-12, and
tumor necrosis factor (TNF) (Murray et al., 2014). M1 macrophages
are typically considered tumor-killing macrophages, primarily
contributing to anti-tumor immunity and immune enhancement
(Yunna et al, 2020). Neutrophils play roles in inducing DNA
damage, promoting angiogenesis, immune suppression, and
inhibiting cancer growth (Xiong et al., 2021). Therefore, through
the involvement of immune cells, we can gain a more intuitive
understanding of the role of the hub genes we identified in the
tumor context.

Immunoinfiltration analysis revealed that the expression of
TBK1, KIF20A, and SLC16A1 was positively correlated with
CD4" cells, Ml
neutrophils. Further single-cell analysis confirmed that TBK1 and
QSOX1 were predominantly expressed in CMP, GMP, Pro_B_ cell_
CD34+, DC, macrophages, NK_cell, T_cells, and B cells, while
SLC16A1 was mainly expressed in GMP. TBK1 has been shown
to mediate the ORF5/IRF4 axis during M-CSF-induced macrophage
polarization (Li et al., 2024). Elevated TBK1 levels may promote
linking TBK1 to
macrophages. SLC161, by facilitating immunosuppressive cell

memory-activated T macrophages, and

proinflammatory signaling, inflammatory
infiltration, acts as a bridge between tumor metabolism and
immune evasion (Zhu et al., 2022), which may further explain its
pro-tumorigenic role. Although experimental validation is required,
these findings suggest that ferroptosis-related genes may shape the
immune landscape of nasopharyngeal carcinoma (NPC) through
metabolic and immunoregulatory pathways. This provides valuable
insights for future research and could aid clinicians in developing
precision treatment strategies for patients.

Studies have shown that TBK1 inhibition not only suppresses
cancer progression by directly inhibiting cancer cell proliferation
and survival but also suppresses cancer development by activating
anti-tumor T cell immunity (Runde et al., 2022). TBK1 is a critical
node in the innate immune pathway and mediates anti-tumor
immunity by activating innate immune responses. TBKI is
involved in various aspects of

tumorigenesis, including

supporting tumor angiogenesis, mediating tumor-associated
autophagy, regulating the cell cycle and mitosis, and inducing
epithelial-mesenchymal transition (EMT) (WanG et al., 2024). In
both GSEA and GSVA analyses, pathways such as cell cycle, DNA
replication, metabolism of xenobiotics by cytochrome p450,
ubiquitin mediated proteolysis and non homologous end joining
were activated in TBKI, indicating that TBK1 plays an important
role in NPC by mediating NPC-associated autophagy, regulating cell
cycle and mitosis, and inducing epithelial-mesenchymal transition.
KIF20A suppresses cancer cell proliferation, migration, and
invasion. As a member of the kinesin family, KIF20A contributes
to cancer progression by regulating cell division (Jin et al., 2023). In
GSEA analysis, we found that the cell cycle pathway was activated in
the high-expression group of KIF20A, further validating the role of

KIF20A in NPC progression through its involvement in cell division.
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SLC16A1 plays an important role in cancer metabolism, promoting
cancer progression and metastasis (Zhang et al., 2021). Through
GSEA and GSVA analyses, we observed activation of pathways such
as cysteine, methionine metabolism, selenoamino acid metabolism,
pyrimidine metabolism, DNA replication and ribosome in the high-
expression group of SLC16Al. These findings indicate that
SLC16A1 contributes to NPC metabolism and metastasis by
influencing DNA replication, ribosome, and metabolic pathways
like cysteine and methionine metabolism, selenoamino acid
metabolism, and pyrimidine metabolism. QSOXI expression is
associated with tumor cell invasion, tumor grading, and
abnormal extracellular matrix protein deposition (Millar-Haskell
etal., 2022). The QSOX1 gene plays a role in the progression of NPC
by glycosaminoglycan biosynthesis keratan sulfate and calcium
signaling pathway in NPC.

Accumulating evidence indicates that these four hub genes play
critical roles in various cancers. Chen et al. demonstrated that
TBK1 regulates malignant behaviors of bladder cancer cells via
Akt signaling, providing novel insights into potential therapeutic
targets for this disease (Chen et al., 2017). Yamashita et al. identified
KIF20A as a melanoma-associated antigen with diagnostic and
prognostic potential (Yamashita et al, 2012). Zou et al. further
established KIF20A as both a prognostic factor and therapeutic
target for endocrine therapy-resistant breast cancer (Zou et al,
2014). Huang et al. revealed the oncogenic role of SLC16A1 in
cholangiocarcinoma, highlighting its therapeutic relevance (Huang
et al., 2024). Zhang et al. reported that SLC16A1 overexpression
serves as a biomarker for poor prognosis in urinary system cancers
(Zhang et al, 2021). Baek et al
QSOX1 expression with tumor aggressiveness and high-grade
prostate cancer, suggesting its utility as a biomarker and

associated elevated

therapeutic target (Baek et al, 2018). Pernodet et al. proposed
QSOXI1 as a favorable prognostic biomarker in breast cancer and
effects
carcinogenesis (Pernodet et al,, 2012). In summary, future studies

demonstrated its tumor-suppressive in mammary
should validate our findings in non-NPC models and different
populations to assess broader applicability.

Through drug prediction base on the four hub genes, several
potential therapeutic agents were identified as follows: Chembl:
chembl 197335, NVP-TEA684, Entrectinib, Adavosertib, PF-
56227, Cenisertib, CYC-116,

(Rozlytrek®) is an oral selective inhibitor of the tyrosine kinases

and Tamatinib. Entrectinib

tropomyosin receptor kinases (Trk)A/B/C [encoded by the genes
neurotrophic tyrosine receptor kinase (NTRK) 1, 2 and 3,
respectively], c-ros oncogene 1 (ROSI) and anaplastic lymphoma
kinase (ALK) with central nervous system (CNS) activity developed
by Roche for the treatment of various solid tumours harbouring
NTRK1/2/3 or ROS1 gene fusions (Al-Salama and Keam, 2019). The
other drugs are still unapproved and will require further validation
through clinical trials.

In summary, we employed bioinformatics approaches to identify
four hub genes related to ferroptosis and explored their roles in
disease development through a literature review. However, due to
the lack of critical clinical characteristics associated with patients, we
were unable to perform survival analysis or further investigate the
relationship between these four hub genes and prognosis, which
limits their utility in assisting clinicians with NPC prognosis
prediction. We recommend that subsequent studies incorporate
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clinical data from nasopharyngeal carcinoma patients to facilitate
more comprehensive analyses, thereby enabling more accurate
the
personalized treatment strategies for clinical practice. Overall, our

prognostic  prediction and development of precisely
research enhances the understanding of the molecular mechanisms
of ferroptosis in the development of NPC and provides valuable
insights to help clinicians develop personalized treatment strategies

for patients.
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