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Objective: This study aimed to leverage bioinformatics approaches to identify
novel biomarkers and characterize the molecular mechanisms underlying
hypertrophic cardiomyopathy (HCM).

Methods: Two RNA-sequencing datasets (GSE230585 and GSE249925) were
obtained from the Gene Expression Omnibus (GEO) repository. Computational
analysis was performed to compare transcriptomic profiles between normal
cardiac tissues from healthy donors and myocardial tissues from HCM
patients. Functional annotation of differentially expressed genes (DEGs) was
performed using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) enrichment analyses. Immune cell infiltration patterns were
quantified via single-sample gene set enrichment analysis (ssGSEA). A predictive
model for HCM was developed through systematic evaluation of
113 combinations of 12 machine-learning algorithms, employing 10-fold
cross-validation on training datasets and external validation using an
independent cohort (GSE180313).

Results: A total of 271 DEGs were identified, primarily enriched in multiple
biological pathways. Immune infiltration analysis revealed distinct patterns of
immune cell composition. Based on the top differentially expressed genes, a
robust 12-gene diagnostic signature (COMP, SFRP4, RASD1, IL1RL1, S100A8,
S100A9, ESM1, CA3, MYL1, VGLL2, MCEMP1, and MT1A) was constructed,
demonstrating superior performance in both training and testing cohorts.

Conclusion: This study utilized bioinformatics approaches to analyze RNA-
sequencing datasets, identifying DEGs and distinct immune infiltration patterns
in HCM. These findings enabled the construction of a 12-gene diagnostic
signature with robust predictive performance, thereby advancing our
understanding of HCM’s molecular biomarkers and pathogenic mechanisms.
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Introduction

Cardiovascular disease remains the leading cause of death
worldwide (Hartman et al., 2024). Hypertrophic cardiomyopathy
(HCM) is characterized by asymmetric ventricular septal
hypertrophy, leading to left ventricular outflow tract obstruction,
impaired diastolic filling, and reduced ventricular compliance (Xu
et al., 2021). In severe cases, HCM can result in heart failure,
myocardial ischemia, and sudden death. Therefore, early
detection of HCM is crucial. However, the mechanism
underlying cardiac remodeling in HCM remains unclear (Gu
et al., 2024).

Several transcription factors, including SP1 and EGR1, exhibit a
fetal-like pattern of binding motifs in nucleosome-depleted regions of
HCM (Gao et al., 2024). Previous studies have offered the most
extensive map of sex-specific variations in the transcriptome,
proteome, and phosphoproteome at the time of surgical myectomy
for obstructive HCM (Garmany et al., 2024). Therefore, there are
nuanced yet biologically significant differences in the multi-omics
profiles of HCM. Lu et al. comprehensively profiled the
transcriptomic programs of HCM cardiomyocytes and provided
insights into the molecular mechanisms underlying disease
pathogenesis (Lu et al., 2024). However, it is important to
emphasize the heterogeneity of cardiomyocytes in both healthy
and diseased states (Gu et al., 2023). Hence, conducting
multicenter studies involving samples from diverse ethnic groups
and regions is important to unravel the pathological mechanism of
HCM and to gain additional insights into the disease.

Comprehensive transcriptomic profiling of HCM samples using
RNA sequencing (RNA-seq) has revealed circulating miRNA
biomarkers and dysregulated pathways (Liang et al., 2023). A
combination of DNA methylation and transcriptomic profiling
has also helped identify and develop new therapeutic targets for
HCM (Li et al., 2023). Joshua et al. identified region-specific
myocardial gene transcription patterns as well as novel genes and
pathways associated with HCM (Joshua et al., 2023). Transcriptomic
analysis may provide mechanistic insights into unexplained HCM
phenotypes and offer specific genes for potential use as HCM
biomarkers or targets in future RNA-targeting therapies (James
et al., 2021). Therefore, molecular and functional profiling may
aid in guiding precise therapies for HCM (Vakrou et al., 2018). The
heterogeneity of cardiomyocytes underscores the necessity of
multicenter studies, which are critical for deepening our
understanding of HCM pathogenesis to inform clinical diagnosis
and treatment (Albulushi et al., 2025).

To address these gaps, we analyzed the latest HCM
transcriptomic datasets from the Gene Expression Omnibus
(GEO) database. Using machine learning algorithms, we
identified key genes and evaluated model performance via area
under the curve (AUC) analysis.

Materials and methods

RNA-seq dataset acquisition and processing

The publicly accessible Gene Expression Omnibus (GEO)
database (https://www.ncbi.nlm.nih.gov/geo/) hosts datasets from

various disease investigations. RNA-seq transcriptomic data and
clinical metadata for HCM patients were obtained from GEO using
R (version 4.4.1). The GSE230585, GSE249925 (Garmany et al.,
2024), and GSE180313 datasets comprised myocardial tissue
samples from HCM patients and healthy donors. Raw data were
processed into an expression matrix, background-corrected, and
normalized using the limma R package (version 3.60.6). Batch effects
were corrected using the “ComBat” function from the sva package
(version 3.52.0) (Leek et al., 2012). Differentially expressed genes
(DEGs) between HCM and healthy tissues were identified using the
limma R package. External validation was performed using the
GSE180313 RNA-seq dataset, which included 27 HCM patients
and 13 normal controls (Ranjbarvaziri et al., 2021). Parameters for
the pheatmap package (version 1.0.12) were configured using its
official documentation (https://www.rdocumentation.org/packages/
pheatmap/versions/1.0.12/topics/pheatmap).

DEG identification and analysis

Differentially expressed genes (DEGs) were identified using the
limma package, with significant DEGs defined by |log2(fold
change)| > 2 (Ritchie et al., 2015). A false discovery rate
(FDR) < 0.05 was set as the significance threshold. Volcano
plots and heatmaps of DEGs were generated using the
ggplot2 and pheatmap R packages. Functional enrichment
analysis of DEGs included Gene Ontology (GO), Kyoto
Encyclopedia of Genes and Genomes (KEGG), and Gene Set
Enrichment Analysis (GSEA). GSEA was performed with
10,000 permutation tests, and results were visualized using the
ggplot2 R package. The top 20 DEGs (10 upregulated,
10 downregulated) were selected for machine-learning model
development. Statistical significance was defined as both
nominal and adjusted P-values <0.05.

Enrichment analyses and immune cell
infiltration

Gene Ontology (GO) analyses, including biological process
(BP), cellular component (CC), and molecular function (MF)
analyses, Kyoto Encyclopedia of Genes and Genomes (KEGG)
analysis, and Disease Ontology Semantic and Enrichment
analysis (DOSE) of differentially expressed genes (DEGs) were
performed using the R-package clusterProfiler (https://
bioconductor.org/packages/clusterProfiler). Differentially
expressed genes (DEGs) were subjected to Gene Set
Enrichment Analysis (GSEA) using several R packages:
ReactomePA, org. Hs.e.g.,.db, clusterProfiler, biomaRt, and
enrichplot. We conducted enrichment analyses to identify the
potential biological functions and pathways associated with
hypertrophic cardiomyopathy (HCM). We determined
significantly enriched KEGG pathways using the net
enrichment score, gene ratio, and P-value. A gene set was
deemed enriched if the nominal P-value <0.05 and the false
discovery rate (FDR) < 0.05. We used single - sample gene set
enrichment analysis (ssGSEA) to quantify the levels of
23 infiltrating immune cell types in each sample (Cai et al., 2022).
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Machine-learning algorithms

Twelve machine-learning algorithms were selected, including
Naive Bayes, XGBoost, Linear Discriminant Analysis (LDA), Ridge,
Generalized Boosted Regression Modeling (GBM), Support Vector
Machine (SVM), Elastic Net (Enet), StepGLM, Partial Least Squares
Regression for Generalized Linear Models (plsRglm), Lasso,
Generalized Linear Model Boosting (glmBoost), and Random
Forest (RF) (Chen et al., 2024). A systematic exploration of
113 algorithm combinations was performed on the training
dataset, integrating variable selection within a 10-fold cross-
validation framework. External validation utilized an independent
cohort (GSE180313).

The process began with preprocessing the raw data, which
involved removing missing values and outliers, followed by
applying Z-score normalization to transform each feature so that
its mean became 0 and standard deviation 1. This step effectively
eliminated the impact of differing feature scales.

Subsequently, the dataset was randomly split into a training
set and a test set, with 70% allocated to the training subset and
30% to the test subset. During the model training stage, various
machine learning algorithms were employed to assess their
performance. These included Elastic Net regression (λ = 0.1),
Lasso regression (λ = 0.05), Ridge regression (λ = 1.0), Support
Vector Machine (SVM, with C = 1.0 and γ = 0.01), Linear
Discriminant Analysis (LDA), Gradient Boosting Machine
(GBM, featuring a 0.1 learning rate and 100 trees), Random
Forest (RF, containing 200 trees), and XGBoost (XGB, with a
0.01 learning rate and 150 trees). Each model was trained on the
training set, and hyperparameters were optimized via cross-
validation.

For model evaluation, the area under the receiver (AUC)
value of each algorithm was computed using the test set with a
threshold set at 0.7 to gauge classification performance. Based on
the previously published literature, we determined the model
based on the average AUC value of the training set and the test
set. The model with the highest AUC value (Qin et al., 2023) and
the appropriate number of genes (Chen et al., 2024) was
identified as the optimal model. Calibration plots were
generated to evaluate the diagnostic model’s predictive
consistency and reliability.

Statistical analysis

All bioinformatics analyses and visualizations were performed
using R (version 4.4.1) on macOS. Non-normally distributed
variables were compared using the Mann-Whitney U test.
Categorical variables were assessed for statistical significance
using the chi-square test or Fisher’s exact test. Gene
correlations were quantified using Pearson’s correlation
coefficient. Receiver Operating Characteristic (ROC) curves
were constructed using the pROC package, and corresponding
Area Under the Curve (AUC) values were calculated. Enrichment
analyses were considered statistically significant when
P-values <0.05 or adjusted P-values (q-values) < 0.05. For all
other analyses, statistical significance was defined as a two-
tailed P-value <0.05.

Results

Data processing and batch effect correction

Transcriptomic datasets from HCM patients and healthy control
groups were obtained from the Gene Expression Omnibus (GEO)
repository (Table 1). Raw data were preprocessed through batch effect
correction, dataset integration, and normalization using established
bioinformatics pipelines. Following these systematic workflows, the
final processed dataset was generated, as illustrated in Figure 1A and B
(Figure 1). Supplementary Table S1 lists all genes included in the
study, while Supplementary Table S2 presents the number of
differentially expressed genes (DEGs) identified under varying
threshold conditions.

DEGs between control and HCM samples

The GSE230585 dataset included myocardial tissue samples
from 5 HCM patients and three healthy donors, while
GSE249925 contained samples from 97 HCM patients and
23 healthy donors. A total of 271 differentially expressed genes
(DEGs) were identified between HCM and normal myocardial
tissues (Supplementary Table S3). Expression levels of these
DEGs were visualized in a heatmap (Figure 1C), with 95 genes
upregulated and 176 downregulated. A volcano plot (Figure 1D) was
generated to visualize DEGs by fold change and statistical
significance, highlighting genes with the most substantial
expression differences.

DEG enrichment analysis

Disease Ontology Semantic and Enrichment analysis
additionally showed that DEGs were significantly associated with
viral infectious diseases, lower respiratory tract disease, and lung
disease (Figure 2A). Several biological functions were identified
through GO enrichment analysis of the DEGs. In the BP
analysis, DEGs were highly enriched in the regulation of
inflammatory responses and chemotaxis. In the CC analysis, the
DEGs were highly enriched in the collagen-containing extracellular
matrix, secretory granule lumen, and cytoplasmic vesicle lumen.
Moreover, MF analysis indicated significant enrichment of DEGs in
carbohydrate binding, immune receptor activity, and cytokine
activity (Figure 2B). KEGG pathway enrichment analysis of the
DEGs revealed significant enrichment, including cytokine-cytokine
receptor interaction with cytokine and cytokine-receptor, and PI3K-
Akt signaling pathways (Figure 2C).

Immune cell infiltration analysis

Single-sample gene set enrichment analysis (ssGSEA) was
utilized to characterize the composition of immune cell subsets
within these cohorts. The boxplot in Figure 3 reveals that the HCM
cohort exhibits a higher proportion of activated CD8+ T cells, while
the abundance of activated B cells, CD4+ T cells, activated dendritic
cells, and other cell types is lower (Figure 3).
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GSEA of the top five DEGs

Further analysis was performed to characterize the specific
signaling pathways enriched with differentially expressed genes
(DEGs) and the molecular mechanisms underlying their roles in
hypertrophic cardiomyopathy (HCM). Enriched pathways included
dual incision in transcription-coupled nucleotide excision repair
(TC-NER), formation of the TC-NER pre-incision complex, gap-
filling DNA repair synthesis, and ligation processes in both TC-NER
and nucleotide excision repair (all P < 0.05; Figure 4A). The
enrichment fraction curve indicated that these genes exhibited a

left-tailed peak, signifying their enrichment at the top of the ranked
gene list (adjusted P-value = 0.044; Figure 4B).

Identification of the most top 10 regulated
genes with diagnostic value and developing
a diagnostic model for HCM via
machine learning

Twelve machine learning algorithms were integrated within a
10-fold cross-validation framework to develop a robust diagnostic

TABLE 1 Basic information of GEO datasets used in the study.

GSE series Diseasea Samples Source types Platform Group

GSE230585 HCM 5 HCM and 3 normal controls Cardiac tissue GPL21697 Discovery cohort

GSE249925 HCM 97 HCM and 23 normal controls Cardiac tissue GPL24676 Discovery cohort

GSE180313 HCM 27 HCM and 13 normal controls Cardiac tissue GPL24676 Validation cohort

aHCM, hypertrophic cardiomyopathy.

FIGURE 1
The integration of datasets and differentially expressed genes (DEGs) between heart healthy donors (control) and hypertrophic cardiomyopathy
(HCM) patients. (A) PCA of two original HCM datasets prior to (A) and after (B) batch-effect correction. (C) Heatmap of DEGs between the control and
HCM groups. (D) Volcano plot of the DEGs. Significant DEGs (|fold-change| > 2; False discovery rate <0.05) are indicated in red (upregulated) or blue
(downregulated).
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FIGURE 2
Disease Ontology, Gene ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis of the differentially
expressed genes (DEGs). (A) Bubble plot showing the DO enrichment results. (B) Bubble plot showing that DEGs between the control and HCM groups
were enriched in several biological processes (BP), cell components (CC), and molecular functions (MF). (C) Bubble chart illustrating the DEG-enriched
KEGG pathways. The terms are shown on the y-axis and their enrichment scores are shown on the x-axis. The size of each bubble positively
correlates with the number of associated genes, with a higher pathway enrichment P-value intensifying the pink hue of the bubble.

FIGURE 3
Immunological characteristics. Boxplots comparing immune cell abundances between HCM vs. controls. ***P < 0.001, **P < 0.01, *P < 0.05.
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model using the top 20 differentially expressed genes (DEGs). The
model development process was performed on the training dataset
and independently validated using an external cohort (GSE180313),
as outlined in Figures 5A–E. The optimal model, exhibiting superior
predictive performance, was constructed by integrating the Lasso
and Stepglm[both] algorithms. This hybrid approach identified
12 critical genes (COMP, SFRP4, RASD1, IL1RL1, S100A8,
S100A9, ESM1, CA3, MYL1, VGLL2, MCEMP1, and MT1A),
with the StepGLM algorithm refining the prediction framework
for reliability. Calibration plots (Figures 5F,G) demonstrated strong
agreement between predicted probabilities and observed clinical
outcomes across all cohorts, characterized by near-ideal diagonal
distributions. This close correspondence indicates excellent model
calibration and consistent performance in estimating disease
probabilities.

Discussion

Hypertrophic cardiomyopathy (HCM) is a complex genetic
disorder characterized by myocardial hypertrophy and fibrosis,
yet its molecular pathogenesis remains not fully understood (Lee
et al., 2025). This study identified 271 differentially expressed genes
(DEGs) between HCM patients and healthy controls, highlighting
dysregulated pathways, including extracellular matrix (ECM)

organization, immune response, and calcium signaling. These
findings align with recent studies that have demonstrated the
critical role of ECM remodeling in HCM progression (Viola
et al., 2023). Additionally, enrichment of immune-related
pathways, including cytokine-cytokine receptor interaction,
underscores the emerging role of inflammation in HCM
pathogenesis, corroborating a study by Pay et al., which
identified pan-immune inflammatory markers as a useful
screening tool for identifying HCM patients at increased risk of
adverse outcomes (Pay et al., 2024).

Immunological profiling via ssGSEA revealed distinct immune
cell infiltration patterns between HCM and control groups,
particularly elevated levels of activated CD8+ T cells. The
activation of these cells may reflect an autoimmune response
against aberrant myocardial antigens, such as mutant sarcomeric
proteins (Massie et al., 2025). This misdirected immune attack can
induce cardiomyocyte death and fibrosis, thereby perpetuating
cardiac remodeling (Garmany et al., 2023). These findings
suggest that targeting inflammatory pathways may represent a
novel therapeutic strategy for HCM, as highlighted by Fonfara
et al. (2021).

Moreover, elevated activated CD8+ T cells in HCM, alongside
reduced activated B cells and dendritic cells (DCs), link to clinical
phenotypes including fibrosis and obstruction (Zhao et al., 2022).
Activated CD8+ T cells, characterized by cytotoxic activity, may

FIGURE 4
Gene set enrichment analysis (GSEA) of the top five differentially expressed genes (DEGs) between the control and hypertrophic cardiomyopathy
(HCM) samples. (A) Significant GSEA sets of DEGs. (B) Ridge plots showing enrichment of different gene sets.
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FIGURE 5
Diagnostic performance of our model. (A) 113 machine learning algorithm combinations evaluated via 10-fold cross-validation. (B,C) The receiver-
operating characteristic (ROC) curves for two distinct validation cohorts (GSE230585 and GSE249925), assessing algorithmic accuracy in these datasets.
(D) The ROC curves for an external independent validation cohort (GSE180313), testing themodel’s generalizability beyond primary datasets. (E) The ROC
curves for the training cohort, evaluating in-sample model fit. (F) The calibration curve assesses the alignment between predicted and observed
outcomes to ensure accuracy. (G) Clinical decision-curve analysis evaluates the net clinical benefit at different threshold probabilities for the Lasso and
Stepglm[both] algorithm within the model. The x-axis represents the threshold probability (0–1) and the y-axis represents the net benefit.
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induce myocardial injury and fibrotic remodeling, which is a key
driver of left ventricular stiffness and outflow obstruction. Reduced
B cells and DCs—critical for adaptive immunity—suggest immune
dysregulation, potentially impairing inflammation resolution or
antigen presentation rather than indicating global
immunosuppression (Tursi et al., 2025). These patterns, validated
across cohorts, likely reflect a myocardial stress-induced immune
response to sarcomeric dysfunction or fibrosis, though causality
remains unestablished. Future studies integrating immune profiling
with fibrosis severity scores or functional assays will clarify whether
these signatures predict disease progression or represent targets for
immunomodulatory therapies. The findings highlight a
dysregulated adaptive immune landscape in HCM, warranting
exploration of cell-type-specific pathways in fibrosis-
immunity crosstalk.

The construction of a diagnostic model using 12 machine-
learning algorithms and 10-fold cross-validation represents a
significant advancement in HCM biomarker discovery. The
identified 12-gene signature demonstrated robust performance in
both training and external validation cohorts, outperforming
previous models that relied on single-omics datasets (Sheng et al.,
2025). Notably, RASD1, a regulator of G-protein signaling, has been
implicated in β-adrenergic hyper-responsiveness, a hallmark of
HCM (Kuang et al., 2024). Studies also found that RASD1 had
important implications for the early diagnosis and treatment of
HCM (Gu et al., 2024; You and Dong, 2023). The COMP gene was
significantly expressed in distinct hypertrophic obstructive
cardiomyopathy (HOCM) subtypes, highlighting its potential role
in the molecular classification and pathogenic processes of HOCM
(Qin et al., 2021). Most importantly, S100A8 and S100A9 were
identified as potential biomarkers for distinguishing HCM from
healthy controls, primarily expressed by infiltrating
M1 proinflammatory macrophages in the cardiac immune
microenvironment (Zhao et al., 2022). Their enrichment in HCM
suggests a role in driving proinflammatory pathways, potentially
contributing to myocardial fibrosis and immune-mediated
injury—critical pathological features of HCM. In addition,
SFRP4 was significantly upregulated in HCM patients,
demonstrating good predictive value for HCM. Functional
enrichment analysis linked SFRP4 to pathways critical for HCM
pathogenesis, including extracellular matrix remodeling and
fibrosis: hallmark processes in myocardial structural and
functional dysfunction (Ma et al., 2021). ESM1 may contribute to
HCM pathogenesis by inducing coronary vasculature
developmental defects and reducing compact zone cardiomyocyte
proliferation (Wang et al., 2022), potentially impairing myocardial
blood supply and compensatory growth, which could lead to
ischemic stress and abnormal ventricular wall thickening
characteristic of HCM. A novel miR-138-5p/CA3 axis involved in
the pathogenesis of cardiomyocyte hypertrophy, suggesting
potential therapeutic avenues for this heart disease (Chu et al.,
2025). Moreover, IL-33/IL1RL1 signaling could activate TGF-β-
mediated fibroblast activation and epithelial-mesenchymal
transition in the myocardium, promoting extracellular matrix
(ECM) production, thereby driving myocardial fibrosis and
structural remodeling characteristic of HCM (Zhu et al., 2023).
In addition, the genes potentially related to myocardial cell fibrosis
include MYL1 (Srivastava et al., 2024), and MCEMP1 (Perrot et al.,

2024). Furthermore, MT1A contribute to metabolic regulation and
oxidative stress resistance (Hassan et al., 2024), protecting
cardiomyocytes from energy depletion and metal ion imbalance.
VGLL2 plays a direct role in regulating mitochondrial function
(Honda et al., 2024), and thus may have a potential association with
the onset of mitochondrial HCM (Zhuang et al., 2023). Collectively,
these genes highlight the multi-factorial nature of HCM
pathogenesis, with future studies warranted to validate their roles
in functional assays and clinical cohorts.

The integration of the Lasso and Stepglm[both] algorithms
enhanced model interpretability by reducing overfitting, a
common limitation in machine learning studies. These results
validate the utility of multialgorithmic approaches in precision
medicine. Previous bioinformatics studies on HCM have
primarily focused on small sample sizes (Wang et al., 2023) or
single-omics datasets, limiting generalizability (Qin et al., 2021). In
contrast, this study utilized two independent RNA-seq datasets
(GSE230585 and GSE249925), with external validation in
GSE180313 further strengthening the robustness of the findings.
Moreover, the inclusion of immune infiltration analysis adds a novel
dimension to HCM biomarker discovery, complementing the recent
work by Hou et al., which identified immune-related genes in the
diagnosis and management of HCM (Hou et al., 2024).

To address gene selection stability, we have used 10-fold cross-
validation, we evaluated the stability of the 12 candidate genes and
found that all 12 genes are consistently included in cross-validation
folds. This is attributed to the L1 regularization of the Lasso
algorithm, which penalizes irrelevant genes by shrinking their
coefficients to zero, ensuring that key genes remain selected
across different data partitions. These analyses confirm that the
12-gene signature is not coincidental but strongly associated with
HCM across multiple data resamplings, providing empirical
evidence for the model’s robustness. Therefore, the 12-gene
signature reported here not only improves diagnostic accuracy
but also provides mechanistic insights into HCM pathogenesis,
particularly regarding the interplay among fibrosis, inflammation,
and calcium homeostasis.

The validation cohort, in which 48% of participants carried
pathogenic sarcomeric variants (predominantly MYBPC3, MYH7)
and 52% had variants of unknown significance (VUS) or no
mutations, reflects the genetic heterogeneity of HCM
(Ranjbarvaziri et al., 2021). The training cohort focused on
obstructive HCM, the most prevalent symptomatic subtype
(Saddique et al., 2025), with genetic specificity controlled by an
independent MYBPC3 truncation mutation subgroup and
secondary hypertrophy excluded by ruling out aortic stenosis-
related left ventricular hypertrophy (LVH) (Ananthamohan et al.,
2024). This design rigor—integrating diverse genetic profiles
(known mutations, VUS, non-mutation cases)—mitigates bias
and demonstrates the signature’s robustness across heterogeneous
populations, a critical feature for translating findings into clinical
utility. The inclusion of healthy controls further validates the
signature’s ability to distinguish HCM, underscoring the
stringency of cohort selection in isolating disease-specific
molecular signals. While the current study focused on obstructive
HCM, the 12-gene signature’s generalizability to non-obstructive
subtypes remains untested. HCM’s phenotypic diversity, driven by
genetic and anatomical variation, may lead to distinct
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transcriptomic profiles in non-obstructive forms. For example,
apical HCM is associated with unique remodeling patterns and
clinical outcomes, which could alter the expression of genes related
to fibrosis (Gasior, 2024). Future studies should validate the
signature in well-characterized non-obstructive and mixed HCM
cohorts to assess its robustness across subtypes, ensuring clinical
utility beyond the obstructive phenotype.

This study establishes a foundation for future research in HCM
diagnostics and pathogenesis. However, the external validation
cohort did not report detailed demographic data, which could
influence transcriptomic profiles and model generalizability.
Gender- and age-specific differences in HCM pathogenesis (Ji
et al., 2025) or ethnic disparities in genetic variants (Kraus et al.,
2024) may alter gene expression patterns. To address this, future
studies should include diverse populations and systematically
evaluate demographic impacts on the 12-gene signature.
Additionally, integrating the signature into multi-center cohorts
with mixed HCM subtypes (obstructive, non-obstructive, apical)
will clarify its utility across the phenotypic spectrum. Prospective
trials in familial HCM screening programs, which often include
asymptomatic carriers and early-stage patients, could further assess
its value in early detection. Furthermore, functional investigations,
such as CRISPR-mediated gene editing in cardiomyocytes, can
elucidate the role of genes like VGLL2 in HCM pathogenesis
(Dutton et al., 2024). Integrating multi-omics datasets (e.g.,
proteomics, metabolomics) may uncover novel therapeutic targets
(Wu et al., 2025). In clinical practice, incorporating the diagnostic
model into risk stratification algorithms could enhance HCM
diagnosis. Concrete steps include initiating collaborations with
multinational clinical centers to prospectively validate the
signature in large, ethnically and clinically diverse cohorts, ensuring
reliability across varied patient demographics. Standardized protocols
for sample collection, RNA extraction, and data analysis would be
established to maintain methodological consistency. For assay
development, partnerships with diagnostic technology providers
could expedite the creation of high-throughput, cost-effective
platforms optimized for detecting the 12-gene expression signature,
facilitating its translation into clinical practice.

A researcher’s selection of algorithms can be strongly shaped by
individual preferences and inherent biases (Qin et al., 2023; Liu et al.,
2022). To address this, we integrated various machine learning
techniques and compared their diagnostic capabilities to identify the
optimal model, therebyminimizing bias stemming from such subjective
factors. An integrated approach using 12 algorithms across
113 combinatorial evaluations determined that a hybrid model
combining Lasso and Stepglm[both] was best suited for analyzing
the 12 key genes. This strategy effectively reduced dimensionality
and uncovered underlying patterns, enabling the development of a
simplified, clinically translatable model. Although our model includes a
larger gene set than some existing HCMmodels (Pavic et al., 2024; Ma
et al., 2024), this increased complexitymay present challenges for clinical
implementation. As a result, future research should focus on creating
parsimonious gene signatures that maintain predictive accuracy while
comprising fewer genes. Such streamlined models would better balance
precision with clinical practicality, facilitating broader adoption in real-
world healthcare settings.

Simultaneously, collaboration with bioinformatics experts and
electronic health record (EHR) system developers would facilitate

the integration of the signature into existing risk-stratification
algorithms. Clinician-friendly interfaces, coupled with continuous
validation using real-world clinical feedback, would enhance the
tool’s diagnostic accuracy and clinical utility. This multi-pronged
approach—encompassing collaborative validation, assay
optimization, and algorithmic integration—would systematically
translate the 12-gene signature from research discovery into a
practical clinical diagnostic tool, thereby enhancing its clinical
relevance and impact. While the 12-gene signature demonstrates
robust diagnostic performance in clinically diagnosed HCM cases,
its utility for early detection in asymptomatic mutation carriers or
early-stage patients remains unproven. Transcriptomic changes in
pre-symptomatic individuals may differ from overt disease, as
compensatory mechanisms could mask dysregulated pathways
like fibrosis or inflammation. Prospective studies in familial
HCM cohorts—where asymptomatic at-risk individuals undergo
regular screening—are essential to validate the signature’s ability to
identify early-stage disease. Such studies would clarify whether the
signature precedes clinical symptoms, enhancing its potential for
preemptive intervention.

Limitations

Despite these advancements, several study limitations warrant
consideration. First, reliance on publicly available datasets restricts
analysis to transcriptomic data, precluding validation at the protein
and epigenetic levels (Guo et al., 2023). Second, the external
validation cohort (GSE180313) had a small sample size,
necessitating replication in larger, ethnically diverse populations.
Third, the diagnostic model’s clinical utility remains untested in
real-world settings, and its capacity to predict disease progression or
inform therapeutic decisions must be prospectively validated (Pavic
et al., 2024).

Targeted experimental approaches are proposed for further
analysis: (1) Immunohistochemistry (IHC) on human myocardial
tissue microarrays to validate protein expression of key signature
genes and correlate with transcriptomic data, enabling spatial and
cellular localization; (2) Western blotting in human cardiomyocytes
harboring HCM mutations to assess protein levels under stress
conditions, linking transcriptional changes to functional
phenotypes; (3) Enzyme-linked immunosorbent assay (ELISA)-
based quantification of circulating biomarkers in patient serum to
evaluate non-invasive diagnostic potential; and (4) Quantitative
proteomics on matched samples to integrate protein abundance
data with RNA-seq, identifying post-translational regulators for
mechanistic investigations. These methods would validate
findings at the protein level, resolve transcriptome-protein
discordances, and prioritize candidates for functional validation,
bridging the gap between transcriptional signatures and
biological relevance.

Although 10-fold cross-validation and an independent external
cohort (GSE180313) were employed to assess model generalizability,
the high-dimensional nature of transcriptomic data inherently poses
overfitting risks. A critical limitation is the lack of formal overfitting
evaluations, such as learning curves and permutation tests. Without
these, it is not possible to fully exclude that the observed high AUC
values stem from chance correlations in the data, particularly given
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the small sample size in the external validation cohort. Moreover,
while Lasso regularization reduced the feature space, feature
importance was not explicitly quantified using methods such
as permutation importance or SHapley Additive exPlanations
(SHAP) values, which are essential for interpreting model
reliability in high-dimensional contexts. Additionally, the
study did not perform a priori power calculations to
determine the optimal sample size for detecting differential
gene expression or model performance, which may have
influenced the robustness of statistical comparisons and the
reliability of machine learning results. Future studies should
incorporate power analyses to ensure adequate sample sizes
for key objectives. Finally, the study did not account for
confounding variables such as medication use or comorbidities,
which may influence transcriptomic profiles.

Conclusion

In summary, this study integrated bioinformatics and machine
learning approaches to identify a novel 12-gene signature for HCM,
elucidating the interplay between fibrosis, inflammation, and genetic
dysregulation in HCM pathogenesis. The model’s robust diagnostic
performance and the mechanistic insights derived from it mark
significant advancements in HCM research. However, translational
validation and functional studies remain essential to fully realize its
clinical potential. Overall, these findings contribute to the growing
evidence base for precision medicine in HCM, with implications for
early diagnosis and targeted therapy.
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