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Background: Aseptic loosening (AL) of hip prostheses is one of the main reasons
for revision total hip arthroplasty (rTHA). However, the transcriptomic
characteristics of AL are scarcely understood. This study aimed to discover
candidate biomarkers for the diagnosis of AL.

Patients andmethods: The interfacemembrane from four patients with AL of hip
prostheses and the synovium samples from four patients with a periprosthetic
femoral fracture (PFF) after total hip arthroplasty (THA) were analyzed via RNA
sequencing. Integrated bioinformatics analysis was employed to identify
immune-related hub genes in AL. Immune cell infiltration analysis and
correlation analysis were performed. Connectivity map analysis was utilized to
predict the potential small-molecule compounds for AL treatment. Western
blotting and histological staining were used to verify the expression of hub
genes in AL.

Results: A total of 2,184 differentially expressed genes (DEGs) were identified in
the AL samples, including 2,050 upregulated genes and 134 downregulated
genes, and these DEGs were mainly enriched in immune cell-related signaling
pathways and immune-related processes. Immune cell infiltration analysis
showed that the proportion of M1 macrophages increased in AL. Three genes
closely related to M1 macrophages were screened, namely, CD68, CD163, and
SPP1, according to the results of correlation analysis. Hematoxylin–eosin staining
showed that the synovitis score of AL samples was significantly higher than that of
controls (average, 6.2 vs. 3.8). Western blotting and immunohistochemical
analysis showed that the expression of CD68, CD163, and SPP1 in the AL
group was significantly higher than that in the control group. The top
10 compounds with the highest negative scores were predicted to be
potential therapeutic drugs for the treatment of AL.
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Conclusion: Preliminary transcriptomic signatures suggested that CD68, CD163,
and SPP1 may serve as potential biomarkers for AL, offering a novel research
perspective for future diagnosis and therapeutic intervention of AL.
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Introduction

Revision total hip arthroplasty (rTHA) is a procedure in which
the prosthesis fails for various reasons after the primary total hip
arthroplasty (THA) and another operation is required to remove or
replace the prosthesis. With the increase in the number of primary
THA, the demand for rTHA continues to increase in nearly 20 years
(Kurtz et al., 2007). However, the incidence of complications after
revision surgery is higher, which was twice that of complications
after primary THA, and the possibility of further re-revision was five
times that of patients receiving primary THA (Mahomed et al., 2003;
Badarudeen et al., 2017). Revision surgery places a huge physical and
emotional burden on patients and increases financial pressure on
families, society, and healthcare facilities (Murphy et al., 2024;
Ashkenazi et al., 2023). The main reasons for rTHA are
prosthesis instability, periprosthetic infection, and aseptic
loosening (AL) of the prosthesis (Melvin et al., 2014). Currently,
the diagnosis of instability is relatively clear; nevertheless, a large
amount of research is focused on improving the diagnosis and
treatment of periprosthetic infections. However, AL remains a
diagnostic challenge (Anil et al., 2022). AL occurs when there is
no sign of infection in the bone surrounding the prosthesis, but the
bond between the prosthesis and the surrounding bone tissue is
weakened, resulting in displacement or instability of the prosthesis
(Abu-Amer et al., 2007). AL can be caused by a variety of factors,
such as wear and tear of the prosthesis material, bone resorption,
improper prosthesis design, surgical techniques, patient activity
level, and osteoporosis (Cherian et al., 2015).

One of the most common theories regarding the pathogenesis of
AL is that the formation of excessive wear particles creates a pro-
inflammatory state, leading to increased osteoclast differentiation
and macrophage production, which ultimately results in local bone
resorption around the prosthesis and AL (Jiang et al., 2013).
Macrophages play a crucial role in the pathogenesis of AL,
including the regulation of inflammatory responses and
associated pathological bone remodeling. The polarization of
macrophages is closely linked to the microenvironment
surrounding the prosthesis. Classically activated M1 macrophages
are known for their increased production of pro-inflammatory
cytokines, whereas activated M2 macrophages primarily function
in resolving inflammation and promoting tissue repair (Cong et al.,
2023). Consequently, investigating the molecular characteristics of
macrophage-mediated AL of prostheses holds significant clinical
importance for the prevention and treatment of AL in the future.

In recent years, integrated bioinformatics analysis has emerged
as a powerful tool for identifying new genes associated with various
diseases, which can act as biomarkers for disease diagnosis (Rhodes
and Chinnaiyan, 2005). Previous studies have revealed the
expression patterns of circular RNAs, the situation of ceRNA

networks, and the expression patterns of exosomal microRNAs in
the pathogenesis of AL (Ni et al., 2021; Pan et al., 2023). However,
there is still limited research on identifying pathogenic genes that
can act as potential biomarkers for AL of prostheses. Thus, the aim
of this study is to identify key genes associated with AL of prostheses,
offering new perspectives for the diagnosis, treatment, and
investigation of potential pathogenic mechanisms of AL.

In this study, we obtained the interface membrane from the
vicinity of prostheses in AL patients and used synovium samples
from patients with a periprosthetic femoral fracture (PFF) after
THA as a control group. We employed mRNA sequencing
analysis to generate the gene expression profile of AL samples
and leveraged various integrated bioinformatics tools, such as
differentially expressed gene (DEG) analysis, functional
enrichment analysis, immune infiltration analysis, and
potential small-molecule compound prediction. Ultimately,
preliminary transcriptomic signatures identified the key genes
CD68, CD163, and SPP1, which are associated with macrophage-
mediated immune regulatory processes, and validated their
expression in AL samples.

Materials and methods

Acquisition of specimens

We selected patients with periprosthetic AL after primary THA
who underwent rTHA from May 2023 to May 2024 at the
Department of Orthopedics, Henan Provincial People’s Hospital,
as the study group. The diagnosis of AL was consistent with the
diagnostic criteria described in previous literature. Seven patients
with a PFF after THA from our hospital were recruited as the control
group, with the diagnosis of PFF conforming to the Unified
Classification System (UCS) (Duncan and Haddad, 2014).
Informed consent was obtained from all participants or their
families. This study was conducted in accordance with the
principles of the Declaration of Helsinki (1975) and was
approved by the Medical Ethics Committee of Henan Provincial
People’s Hospital (IRB ID: 2022-68). The interface membrane from
the AL group was obtained from the surrounding tissues of the
liner–ball–prosthetic neck, whereas the control samples were
obtained from the hyperplastic synovial tissue within the hip
joint adjacent to the prosthesis, matching the AL group’s
anatomical origin. Demographic data such as gender, age, body
mass index (BMI), smoking history, and drinking history were
recorded for both groups, and in addition, data on the prosthetic
survival period after primary THA, diagnosis, site of prosthetic
loosening, and type of implant used for primary THA were also
recorded for the AL group.
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RNA sequencing

Sample preparation: the interface membrane from the AL group
and the synovial tissues from the control group were fully ground
using a homogenizer. Total RNA is extracted from the samples using
TRIzol (Invitrogen). The mRNA is then isolated from the total RNA
using Oligo-dT magnetic beads (Invitrogen).

Fragmentation: the purified mRNA is fragmented into smaller
pieces of ~300 bp.

cDNA synthesis: the fragmented mRNA is reverse-transcribed
into cDNA using cDNA synthesis reagents (Yeasen Biotechnology).

Adapter ligation: adapters are ligated to both ends of the
cDNA fragments.

cDNA purification and fragment sorting: beads are utilized to
selectively bind and isolate the 200–300 bp of DNA fragments
(Yeasen Biotechnology).

Amplification: the adapter-ligated cDNA fragments are
amplified using PCR to generate sufficient material for
sequencing (Thermo Fisher Scientific).

Sequencing: the amplified cDNA library is loaded onto a flow
cell and sequenced using the Illumina NovaSeq X Plus platform
(Illumina, United States).

Principal component analysis (PCA)

Sangerbox tools (http://www.sangerbox.com/tool) is a user-
friendly interface that supports differential analysis and provides
interactive customizable analysis tools, including PCA, various types
of correlation analyses, and enrichment analyses, as well as some
other common tools and functions (Shen et al., 2022). The gene
expression profile data obtained from RNA sequencing were
analyzed using the “stats” package in R software. Specifically, the
z-score was first performed on the expression profile, and the
“prcomp” function was further used for dimensionality reduction
analysis to obtain the matrix after dimensionality reduction.

Differentially expressed gene analysis

The gene expression profile data were analyzed using the
“limma” package in R software to identify DEGs; |log2FC| ≥ 1 and
adjusted p-value <0.05 were considered statistically significant. The
expression patterns of DEGs were visualized in the form of volcano
plots and heatmaps.

Functional enrichment analyses

The DEGs were imported into Sangerbox tools, and Kyoto
Encyclopedia of Genes and Genomes (KEGG) enrichment
analyses and Gene Ontology (GO) enrichment analyses,
including biological process (BP), molecular function (MF), and
cellular component (CC), were completed based on the latest subset
gene annotation. An adjusted p-value <0.05 and FDR < 0.05 were
considered indicative of significant signaling pathways. The
enrichment analysis results were visualized using bubble plots or
Circos plots.

Protein–protein interaction network
analysis and cluster analysis

The top 250 DEGs were selected using the STRING database
(https://string-db.org) for protein–protein interaction (PPI)
network analysis, and the data were visualized using Cytoscape
software and its Molecular Complex Detection (MCODE) plugin
(version 3.8.2, San Diego, United States). The MCODE function in
Cytoscape was further utilized to screen gene clusters, which are
ranked according to their scores.

Immune cell infiltration analysis

Gene expression profile data were analyzed using Sangerbox tools
immunoinfiltration analysis function. The R software “CIBERSORT”
package was used to calculate the proportion of 22 types of immune
cells in each sample with the Wilcoxon test (Newman et al., 2015); a p-
value <0.05 was considered statistically significant, and stacked
histogram visualization was performed. Spearman’s correlation
coefficient was employed to analyze the correlation between the
proportion of infiltrating immune cells and immune-related DEGs; a
p-value <0.05 or −log (p-value) >1.3 was considered statistically
significant, and a heatmap was used for visualization.

Western blotting

The interface membrane and synovial tissues of the same quality
were cut into 1-mm3 pieces using eye scissors, fully cracked at 4°C
for 30 min according to the ratio of 20 mg tissue:200 μL lysate, and
completely shaken once every 10 min. The cracked sample was
centrifuged at 14,000g at 4°C for 10 min, the supernatant retained,
the protein concentration determined, and the protein
concentration of different samples adjusted to be consistent.
Western blot analysis was performed after the loading buffer was
added. The following primary antibodies were used: anti-CD68 (1:
4,000, Proteintech), anti-CD163 (1:500, Proteintech), anti-OPN (1:
2,000, Proteintech), and anti-β-actin (1:1,000, PTM). The intensity
of each band was quantified using AlphaEaseFC software, and the
expression was calculated relative to the β-actin level.

Histological staining

The interface membrane and synovial samples were fixed with
10% neutral formalin, and paraffin sections were performed. After
dehydration, hematoxylin–eosin (HE) staining was carried out to
evaluate the inflammatory infiltration of synovial tissue by the
synovitis score (Krenn et al., 2006). For immunohistochemical
(IHC) analysis, after dehydration, the paraffin sections were
repaired with citric acid, and endogenous peroxidase blocker was
added to seal the sections with bovine serum albumin. The following
primary antibodies were used: anti-CD68 (1:2,000, Proteintech),
anti-CD163 (1:1,000, Proteintech), and anti-OPN (1:250,
Proteintech). The average optical density (AOD) of CD68,
CD163, and OPN was statistically analyzed using ImageJ (version
1.8.0). AOD (%area) = integrated option density (IOD)/area.
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Connectivity map analysis

The top 150 upregulated DEGs were screened using the criteria of |
log2FC| > 1.5 and adjusted p-value <0.05 and then were analyzed using
the CMap database (https://clue.io) to search for potential small-
molecule compounds. The top 10 small-molecule compounds with
the highest negative connectivity scores (CSs) were identified as small-
molecule compounds with potential therapeutic effects, and the results
were visualized in the form of heatmaps and Sankey maps.

Statistical analysis

All data between the two groups were analyzed statistically and
plotted using GraphPad Prism software (version 8.0, San Diego). The
categorical variables were assessed using Fisher’s test. Descriptive statistics
are expressed asmean with standard deviation. The normality of the data
distribution was evaluated using the Kolmogorov–Smirnov test. Levene’s
test was used to assess the homogeneity of variance. Independent samples
t-tests were applied to analyze normally distributed values. Data with
non-Gaussian distribution were analyzed using the non-parametric
Mann–Whitney U test. Two-tailed values of p < 0.05 were considered
statistically significant.

Results

Demographic characteristics of AL patients
and controls

A total of five patients with AL of hip prostheses and five patients
with a PFF after THA were studied. Three patients in the AL group had

the diagnosis of avascular necrosis of the femoral head (ANFH) at
primary THA, and two patients had a fracture of the femoral neck. The
control group is the same as the AL group. The frictional interface of the
primary THA prostheses in both AL and control groups includes two
cases of ceramic–polyethylene and three cases of ceramic–ceramic
bearings. The mean survival time of the prosthesis in the AL group
was 6.8 ± 2.59 years when rTHA was performed, including one case of
simple acetabular prosthesis loosening, two cases of simple femoral stalk
prosthesis loosening, and two cases of both acetabular and femoral
prosthesis loosening. The mean survival time of the prosthesis in the
control group was 4.6 ± 3.13 years. There were no significant differences
in age, sex, BMI, operative site, friction interface, and drinking and
smoking history between the two groups. The demographics of the two
groups are shown in Table 1.

Identification of DEGs for the diagnosis of AL

A total of 2,184DEGswere identified inAL samples with an adjusted
p-value <0.05, including 2,050 upregulated genes and 134 downregulated
genes (Figure 1A). The PCA results showed significant differences
between the two samples within the group (Figure 1B). The volcano
plot was used to describe the expression pattern of DEGs in the AL
samples and controls (Figure 1C), and the heatmap showed the top
50 upregulated DEGs and the top 50 downregulated DEGs (Figure 1D).

Enrichment analysis and PPI network
analysis of AL samples

GO-BP enrichment analysis showed enrichment of these
DEGs in immune-related signaling pathways such as “immune

TABLE 1 Demographics of the AL patients and controls.

Group Control AL p-value

Number 5 5 -

Gender (male/female) 3/2 2/3 >0.9999

Age (year) 65.40 ± 5.18 67.80 ± 4.60 0.6032

BMI 25.28 ± 1.42 25.58 ± 1.61 0.6905

Operative site (left hip/right hip) 3/2 4/1 >0.9999

Preoperative diagnosis Periprosthetic fracture after THA Aseptic loosening of prostheses after THA -

Preoperative diagnosis of
primary THA

Avascular necrosis of the femoral head/fracture of the neck
of the femur (3/2)

Avascular necrosis of the femoral head/fracture of the neck
of the femur (3/2)

>0.9999

Types of surgery Primary THA Revision THA -

Prosthesis survival after primary
THA (year)

4.6 ± 3.13 6.8 ± 2.59 0.2937

Prosthetic loosening site Acetabular side/femur side (0/5) Acetabular side/femur side (3/4) 0.2045

Friction interface of primary THA Ceramic–polyethylene/ceramic–ceramic (2/3) Ceramic–polyethylene/ceramic–ceramic (2/3) >0.9999

Drinking history (yes/no) 2/3 2/3 >0.9999

Smoking history (yes/no) 1/4 2/3 >0.9999

Data are numbers or the mean ± SD.

BMI, body mass index.
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system process,” “immune response,” “leukocyte activation,”
“immune effector process,” “cell activation involved in
immune response,” and “leukocyte activation involved in
immune response” (Figure 2A). In terms of GO-CC analysis,
these DEGs were mainly enriched in “bounding membrane of
organelle,” “cytoplasmic vesicle,” and “intracellular vesicle”
processes (Figure 2B). GO-MF enrichment analysis suggested
that these DEGs were mainly enriched in “enzyme binding,” “Ras
GTPase binding,” and “small GTPase binding”
processes (Figure 2C).

To further uncover the potential enrichment pathways of
DEGs, PPI network analysis was performed. Cluster analysis
was further carried out via the MCODE function in Cytoscape
software based on the PPI network (Figure 2D; Table 2). The top
gene cluster included many immune-related genes, such as CD68,

CD163, CD4, CD80, and CD86, other immune cell markers, and
inflammation-related genes such as CCL3, CCL4, CCR1, and CCR5
(Figure 2E). GO-BP enrichment analysis showed that the genes
included in the cluster with the highest score were mainly enriched
in immune-related processes such as “immune response,” “positive
regulation of immune system process,” “defense response,”
“immune system process,” “regulation of immune system
process,” and “positive regulation of immune response” and
inflammation-related signaling pathways such as “cellular
response to cytokine stimulus” and “response to cytokine”
(Figures 2F, G). KEGG enrichment analysis showed that these
genes were mainly enriched in “Toll-like receptor signaling
pathway,” “rheumatoid arthritis,” “cell adhesion molecules,”
“cytokine–cytokine receptor interaction,” and “NF-κB signaling
pathway” (Figures 2H, I).

FIGURE 1
Identification of DEGs for the diagnosis of AL. (A) Venn chart representing the total number of genes and the number of DEGs in the AL samples (n =
4), with red representing upregulated genes and green representing downregulated genes. (B) PCA was performed to classify the samples as the AL and
control groups. (C) Volcano plots representing the expression pattern of AL DEGs, with red representing upregulated genes, green representing
downregulated genes, and black representing genes with no significant differences. (D) Heatmap representing the expression patterns of the top
50 significantly upregulated or downregulated DEGs in the AL samples, with each row representing a DEG and each column representing a sample of AL
cases or controls.
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FIGURE 2
Enrichment analysis and PPI network analysis of AL samples. The bubble plots represent the results of GO enrichment analyses including (A) BP, (B)
CC, and (C) MF for DEGs of the AL samples with an adjusted p-value <0.05 and FDR < 0.05. (D) PPI analysis of the top 250 DEGs of AL samples was
performed using the STRING database, and cluster analysis was performed via theMCODE function in Cytoscape software. (E) The PPI network ofmodule
geneswith the highest score contained 32 genes based onMCODE analysis. (F)Circos plot and the (G) bubble plot displaying theGO-BP enrichment
analysis of genes included in the cluster with the highest score. (H) Circos plot and the (I) bubble plot displaying the KEGG enrichment analysis of genes
included in the cluster with the highest score.
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Immune cell infiltration and correlation
analysis of AL samples

The enrichment analyses suggested that DEGs in AL samples were
closely related to immune-related signaling pathways. Therefore, the
CIBERSORT algorithm was employed to obtain the immune cell
characteristics to explore the immune regulation and the correlation
between DEGs and infiltrating immune cells in AL. Immunoinfiltration
analysis displayed the proportion of 22 types of immune cells in each
sample (Figure 3A). Compared with the control group, the proportion
of M1 macrophages increased in the AL samples, whereas
M2 macrophages tended to increase, but there was no statistical
difference (Figure 3B). Immune-related genes in the top
20 upregulated genes were screened, and correlation analysis was
performed with 22 types of immune-infiltrating cells. The
correlation analysis showed that M1 macrophages were significantly
positively correlated with CD177, SIGLEC1, HLA-DQA1, ADA2, SPP1,
CD163, and CD68. M2 macrophages were significantly positively
correlated with CD177, HLA-DQA1, SIGLEC1, ADA2, and
NCKAP1L. Plasma cells were significantly negatively correlated with
CD163, MSR1, FCGR3A, and CD68 (Figure 3C).

Evaluation of synovitis and validation of the
expression of macrophage-associated
key genes

As bioinformatics analysis and immunoinfiltration analysis
suggested significant abnormal immune and inflammatory
responses in the AL group, HE staining was used to evaluate the
inflammatory infiltration of synovial tissue by the synovitis scores of
the two groups. The results showed that the synovitis score of the AL
group was significantly higher than that of the control group
(average 6.2 vs. 3.8; AL group vs. control group) (Figure 4A). In
order to further explore the role of M1macrophages in the AL group
interface membrane, we screened the genes closely related to
M1 macrophages in the above correlation analysis, which
revealed three key genes CD68, CD163, and SPP1 [encoding
protein osteopontin (OPN)]. IHC results showed that the

expression of CD68, CD163, and OPN in the AL group was
significantly higher than that in the control group (AOD; CD68,
average 30.03% vs. 5.85%; CD163, average 29.05% vs. 10.27%; OPN,
average 31.28% vs. 9.41%; AL group vs. control group) (Figures
4B–D). Western blot analysis revealed that the expression of CD68,
CD163, and OPN significantly increased in the AL samples
compared with that in the controls (Figure 4E).

Prediction of candidate small-
molecule compounds

To predict the potential small-molecule compounds that might
play a role in therapeutic intervention of AL patients, the top
150 DEGs (all upregulated genes) were analyzed via the CMap
database. The top 10 compounds with the highest negative scores
were predicted to be potential therapeutic drugs for the treatment of
AL: desoxypeganine, metyrapone, MRS-1220, valproic acid, actarit,
warfarin, fluoropyruvate, caffeic acid, talampicillin, and
tetrabenazine (Figure 5A). The Sankey diagram showed the
targeted pathways of these 10 compounds (Figure 5B), and the
chemical structure is visualized in Figure 5C. These compounds
represent computational predictions, and their biological relevance
to AL needs further in vitro/in vivo validation.

Discussion

AL is one of the main reasons for the failure of THA and the
need for revision surgery. Given the high incidence of complications,
complex technical requirements, and substantial economic burden
associated with revision procedures (Delanois et al., 2017; Tarazi
et al., 2021), extensive research focusing on the pathogenesis of AL is
urgently needed to seek more sensitive and effective diagnostic and
therapeutic approaches. Our study employed various bioinformatics
methodologies to delineate the transcriptomic characteristics of AL,
reveal the features of immune cell infiltration, and screen potential
diagnostic biomarkers, providing new insights for the diagnosis and
treatment of AL patients.

TABLE 2 Cluster analysis via the MCODE function in Cytoscape software.

Cluster Score Node Edge Node ID

1 27.613 32 428 CCL3, PTPRC, CTSS,MRC1, CD163, TLR4, CD86, IRF5, TLR7, CSF1R, SIGLEC1, TNFSF13B, CD83, CD68,HLA-DRA, TLR1,
CD4, CD74, CD209, CD28, CCR5,MMP9, ITGB2, CD80, ITGAM,MYD88, IL10RA, BTK, C3AR1, CCR1, CCL4, and FCGR3A

2 7.143 8 25 MLXIPL, PLIN1, GPD1, THRSP, FABP4, LIPE, DGAT2, and PLIN4

3 4.8 6 12 EPSTI1, SAMHD1, TRIM22, SAMD9L, DDX60L, and SAMD9

4 4.5 5 9 COL11A1, MMP11, THBS2, COL10A1, and LRRC15

5 4.333 7 13 HLA-DMA, DOCK2, PLEK, HLA-DPA1, HLA-DQB1, HLA-DQA2, and HLA-DQA1

6 4 4 6 TNNT3, SLN, CASQ2, and TNNT1

7 3.6 6 9 HCK, CD14, LYN, SYK, CD53, and LILRB2

8 3.5 5 7 WAS, DOCK8, CD300A, LCP2, and SASH3

9 3 3 3 INPP5D, FYB1, and VAV1

10 3 3 3 CYTH4, MYO1F, and NCKAP1L
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FIGURE 3
Immune cell infiltration and correlation analysis of AL samples. (A) Stacked histogram displaying the proportion of 22 types of immune cells between
the AL and control groups. (B) Violin plot showing the comparison of 22 types of immune cells between the AL and control groups. (C) Heatmap
displaying the correlation between immune-related genes in the top 20 upregulated genes and 22 immune cell type compositions. The horizontal axis
demonstrates DEGs, and the vertical axis demonstrates immune cell subtypes. Data represent mean ± SD. *p < 0.05.
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The initial enrichment analysis in our study suggested that the
pathogenesis of AL may focus on immune system regulation and
immune cell activation. Wear particles in AL trigger dual immune
responses: 1. innate immunity via macrophage phagocytosis
through PRRs, releasing inflammatory cytokines and
osteoclastogenic factors while causing particle cytotoxicity; 2.
adaptive immunity involving lymphocyte infiltration and metal

ion-induced hypersensitivity reactions (Athanasou, 2016).
Histopathological analysis by Vasconcelos et al. (2016) has shown
that compared to those in the osteoarthritis synovial tissue, AL
patients exhibit distinct tissue architecture and immune cell profiles
in the aseptic interface membrane, with significant differences in the
distribution of macrophages, T cells, and B cells, and the
inflammation is largely confined to the vicinity of the

FIGURE 4
Evaluation of synovitis and validation of the expression of macrophage-associated key genes. (A) Representative images of HE staining of the
samples in the AL group or controls (t-test, n = 5); scale bars, 200 μm and 400 μm. The synovitis score of the synovium was evaluated according to HE
staining. Representative images of IHC staining of (B) CD68, (C) OPN, and (D) CD163 in the AL and control groups (t-test, n = 5); scale bars, 200 μm and
400 μm. The expression of CD68, OPN, and CD163 was quantified using ImageJ. (E) Western blot analysis of CD68, CD163, and OPN in the AL
samples or controls (t-test, n = 5). The protein gray values were measured using AlphaEaseFC, and the expression was calculated relative to the β-actin
level (t-test, n = 5). The data represent mean ± SD. *p < 0.05, **p < 0.01, ***p < 0.001, and ****p < 0.0001.
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osteoarthritis synovium, whereas macrophages infiltrate the entire
AL tissues.

Our results showed a significantly higher proportion of
infiltrated M1 macrophages observed in AL patients than in
control synovial tissue. Macrophages are a key population of
tissue-resident mononuclear phagocytes that play essential roles
in bacterial recognition and clearance, as well as in innate and
adaptive immune processes (Hirayama et al., 2017). Macrophages
are the predominant immune cells in the AL interface membrane
and exhibit polarized phenotypes: pro-inflammatory M1 (sustaining
inflammation and osteoclast activation) versus anti-inflammatory
M2 (Muñoz et al., 2020). These cells phagocytose wear particles,
forming multinucleated giant cells and triggering bone resorption
(Hodges et al., 2021; Nich et al., 2013).

Additionally, the study by Panez-Toro et al. (2023) discussed the
role of non-myeloid monocytes in the periprosthetic tissue exposed
to wear particles, including the coexistence of T cells (CD3+, CD4+,
and CD8+) and B cells (CD20+) with CD68+/TRAP− multinucleated
giant cells associated with polyethylene and metal particle
infiltration of the repair tissue membrane. Our study also found
that T-cell-related markers, including CD4, CD28, CD80, CD86, and
CD53, and B-cell-related markers, including CD72 and CD83, were
significantly upregulated in AL. T cells play dual roles: regulatory
T cells inhibit osteoclastogenesis via IL-4 (Kim et al., 2007), whereas
Th1 cells promote macrophage activation (Wu et al., 2022). Metal
particles may induce T-cell hypersensitivity reactions (Niki et al.,
2005). B-cell infiltration suggests adaptive immunity activation,
though typically more prominent in infections.

FIGURE 5
Prediction of candidate small-molecule compounds. (A) Heatmap presenting the top 10 compounds with the most significantly negative
enrichment scores in cell lines based on CMap analysis. (B) Sankey diagram showing the description of the top 10 compounds. (C) Three-dimensional
chemical structure visualization of the top 10 compounds.
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Macrophage polarization is regulated by multiple pathways,
primarily through Toll-like receptors (TLRs; e.g., TLR2/4), which
activate NF-κB via MyD88/IRAK/TRAF6 signaling (Jang et al.,
2017). TLR2 is notably expressed in periprosthetic tissues and
mediates local inflammation (Naganuma et al., 2016). NF-κB
activation (by LPS/RANKL) promotes M1 polarization and
osteoclastogenesis (Maehara and Fujimori, 2020; Liu et al., 2019);
however, MAPK, JAK/STAT, and Ca2+ pathways also contribute to
the process (Cong et al., 2023). The enrichment analysis in our study
also showed that DEGs were mainly enriched in the “Toll-like
receptor signaling pathway” and “NF-κB signaling pathway.”
Consequently, the abnormal regulation of the immune response
process and immune cells (especially macrophage polarization) may
be the primary pathogenic mechanism of AL.

To further explore the role of macrophages in the interface
membrane of the AL group, three key genes closely related to
macrophages, namely, CD68, CD163, and SPP1 [encoding
osteopontin (OPN)], were screened. IHC and Western blotting
results showed higher levels of CD68, CD163, and SPP1 in AL,
providing potential novel serum biomarker candidates for the
diagnosis of AL. Resident macrophages in the synovium are
identified as CD68+ and CD163+ cells, which remain relatively
quiescent but become activated during disease flares. CD68 is a
highly glycosylated glycoprotein that is highly expressed in
macrophages and other mononuclear phagocytes and used as a
valuable cytochemical marker for immunostaining of monocytes/
macrophages in inflammatory tissues, tumor tissues, and other
immunohistopathological applications (Chistiakov et al., 2017).
In the treatment of rheumatoid arthritis, changes in the number
of CD68+ macrophages are associated with clinical outcomes
assessed by DAS28 and are considered a reliable biomarker for
assessing the efficacy of rheumatoid arthritis treatments
(Haringman et al., 2005). CD163 is a hemoglobin scavenger
receptor that is highly expressed in tissue-resident macrophages,
aids in anti-inflammatory local responses, reduces hemoglobin
levels, and promotes anti-inflammatory heme metabolism
products (Kristiansen et al., 2001).

Osteopontin (OPN), encoded by SPP1, is a multifunctional
glycoprotein secreted by immune cells (macrophages and T
lymphocytes) and present in inflammatory and mineralized tissues
(Si et al., 2020). It mediates osteoclast adhesion via αvβ3 integrin/
CD44 interactions and recruits immune cells to inflammation sites
(Gravallese, 2003). Studies have shown that OPN regulates
osteoclastogenesis through NF-κB and cytokine modulation (Icer and
Gezmen-Karadag, 2018), with macrophage-expressed OPN influencing
inflammation through cytokine production and phagocytosis (Rittling,
2011). Shimizu et al. (2010) showed that OPN expression was enhanced
in human periprosthetic osteolysis tissues compared to osteoarthritis
synovial tissues. In the particle-induced model of calvarial osteolysis,
bone resorptionwas significantly suppressed byOPNdeficiency through
the inhibition of osteoclastogenesis. Tang et al. (2023) showed that OPN
regulated pro-inflammatory cytokines and promoted macrophage
polarization toward the M1 phenotype in rosacea-like skin
inflammation. Similarly, our study found SPP1 to be highly expressed
in AL, indicating that activated macrophages may regulate osteoclast
function through the secretion of OPN and participate in the
pathological process of AL.

Our study also has the following limitations: first, the sample
size of this study is small, and we are currently expanding the
cohort for future validation. Second, our study used PFF patients
as controls, which may not fully represent a healthy synovial
state. Fracture-related acute inflammation or trauma-induced
biological processes could introduce confounding effects.
Future studies should validate our findings using additional
healthy control groups. Third, although our connectivity
graph analysis identified potential compounds, their efficacy
and safety in the treatment of AL are still needed to be tested
in future studies. Therefore, future studies should prospectively
compare AL that occurs after THA arising from diverse
etiologies. Finally, although our samples were derived from
the liner–ball–neck interface, future studies should analyze
direct bone-implant membranes.

Conclusion

This study based on AL interface membrane and PFF synovial
samples demonstrated the gene characteristics of AL through
transcriptomic and integrated bioinformatics analyses and
preliminarily identified CD68, CD163, and SPP1 as potential
biomarkers for AL, providing new insights for the diagnosis and
treatment of AL.
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