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Objective: Atherosclerosis (AS) is the underlying pathology of atherosclerotic
cardiovascular disease and a major cause of cardiovascular-related mortality.
Chronic inflammation andmitochondrial dysfunction, triggered by the infiltration
of various immune cells, are key factors in the progression of AS. However, the
interaction and crosstalk between these factors remain unclear.

Methods: Two gene expression datasets, GSE100927 and GSE43292, were
downloaded from the National Center for Biotechnology Information Gene
Expression Omnibus (NCBI GEO) database, covering carotid atherosclerosis
and control groups. After identifying the common differentially expressed
genes (DEGs), mitochondria-related DEGs (Mito-DEGs) were obtained through
Weighted Gene Co-expression Network Analysis (WGCNA) andmachine learning
approaches. Immune infiltration analysis and comparison were subsequently
performed. The single-cell dataset GSE159677 further validated the expression
proportions of relevant genes in different cell populations during the progression
of AS. Additionally, cell-cell communication and trajectory analysis within the
immune landscape were utilized to infer the pathways of cell state transitions
within AS clusters. THP-1 cells were cultured in vitro, and the foam cell model was
established by the addition of oxidized low-density lipoprotein (ox-LDL). The
expression trends of hub Mito-DEGs were confirmed via qRT-PCR.

Results: From the GSE100927 and GSE43292 datasets and the
MitoCarta3.0 database, three hub Mito-DEGs closely associated with AS were
ultimately identified: CASP8, GATM, and LAP3. Subsequent comprehensive
bioinformatics analysis of these hub genes further emphasized the importance
of the immune system in AS. Immune profiling based on the CIBERSORT
algorithm revealed significantly increased infiltration of activated mast cells,
monocytes, memory B cells, T follicular helper cells, and M0 macrophages in
the immunemicroenvironment of AS. Single-cell analysis showed thatGATM and
LAP3 were enriched in monocytes and macrophages, while CASP8 exhibited
increased expression in NK cells, T cells, and monocytes. In addition, in vitro cell
experiments demonstrated that mRNA expression levels of the hub Mito-DEGs
were significantly elevated in the lipid-laden foam cell group compared to the
control group, consistent with the expression patterns observed in the single-
cell dataset.

OPEN ACCESS

EDITED BY

Luca Ermini,
University of Camerino, Italy

REVIEWED BY

Kacper Adam Walentynowicz,
Memorial Sloan Kettering Cancer Center,
United States
M Faizan Siddiqui,
Osh State University, Kyrgyzstan

*CORRESPONDENCE

Xiuru Guan,
gxr0451@sina.com

RECEIVED 04 April 2025
ACCEPTED 25 July 2025
PUBLISHED 05 August 2025

CITATION

Liu D, Guo K, Li M, Yu X, Guan X and Guan X
(2025) The role of mitochondria-related genes
and immune infiltration in carotid
atherosclerosis: identification of hub targets
through bioinformatics and machine
learning approaches.
Front. Genet. 16:1597445.
doi: 10.3389/fgene.2025.1597445

COPYRIGHT

© 2025 Liu, Guo, Li, Yu, Guan and Guan. This is
an open-access article distributed under the
terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic practice.
No use, distribution or reproduction is
permitted which does not comply with these
terms.

Frontiers in Genetics frontiersin.org01

TYPE Original Research
PUBLISHED 05 August 2025
DOI 10.3389/fgene.2025.1597445

https://www.frontiersin.org/articles/10.3389/fgene.2025.1597445/full
https://www.frontiersin.org/articles/10.3389/fgene.2025.1597445/full
https://www.frontiersin.org/articles/10.3389/fgene.2025.1597445/full
https://www.frontiersin.org/articles/10.3389/fgene.2025.1597445/full
https://www.frontiersin.org/articles/10.3389/fgene.2025.1597445/full
https://www.frontiersin.org/articles/10.3389/fgene.2025.1597445/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2025.1597445&domain=pdf&date_stamp=2025-08-05
mailto:gxr0451@sina.com
mailto:gxr0451@sina.com
https://doi.org/10.3389/fgene.2025.1597445
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2025.1597445


Conclusion: This study revealed the interaction between Mito-DEGs and the
immune system in AS. These findings may provide new insights into therapeutic
monitoring and prognosis evaluation.
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1 Introduction

Atherosclerotic cardiovascular disease (ASCVD), which
incorporates ischaemic stroke and ischaemic heart disease (IHD)
(Zhao et al., 2019), is a prominent contributor to disability-adjusted
life-years and premature death on a global scale (Reiner et al., 2011;
GBD, 2019 Stroke Collaborators, 2021). Atherosclerosis (AS), an
important factor in the development of cardiovascular disease
(CVD), is a chronic inflammatory disease (Bjorkegren and Lusis,
2022). It is characterized by intimal plaque formation, cholesterol
accumulation in the arterial walls, endothelial dysfunction, and the
generation of pro-inflammatory cytokines (Hennekens and
Gaziano, 1993; Badimon et al., 2011; Goodman et al., 2015). The
progression of AS is accelerated by the involvement of the adaptive
immune system (Khan et al., 2024). Recent studies have found that
theranostic photoactivation technology can simultaneously assess
plaques and promote inflammation resolution in the inflammatory
process underlying AS (Kim et al., 2024). It has been demonstrated
that PCSK9 inhibitors have the ability to reduce low-density
lipoprotein (LDL) cholesterol, which is used to treat dyslipidemia
and slow the progression of AS (Gennemark et al., 2021). Despite
advances in targeting plaque inflammation and lipid deposition
from the etiological perspective of AS, studies have indicated that
global mortality from IHD and ischaemic stroke has continued to
rise over the past 20–30 years, reaching 15.69 million deaths in 2019,
accounting for about 84% of all CVD-related deaths (Roth et al.,
2020). The clinical outcomes and prognosis of IHD and ischaemic
stroke remain concerning. Therefore, there is an urgent need for
validated biomarkers as early screening tools or potential
therapeutic targets.

Changes in vascular cell function often occur before the onset of
cardiovascular disease. Mitochondria, through coordination with
other organelles, play a critical role in determining cell function (Beg
et al., 2024). Recent research has shown that mitochondria are
involved in nearly all aspects of cell biology, including cell
differentiation, inflammation, autophagy, innate immunity,
programmed cell death, redox signaling, calcium homeostasis,
and lipid metabolism (Smith et al., 2012; Murphy and Hartley,

2018; Chan, 2020; Giacomello et al., 2020; Raghu et al., 2021; Shi
et al., 2024). Due to the central role of mitochondria in cellular
function, many common diseases, even when not primarily caused
by mitochondrial dysfunction, may exhibit “secondary”
mitochondrial disorders, such as metabolic, cardiovascular,
neurodegenerative, and neuromuscular diseases (Whitaker et al.,
2016; Herzig and Shaw, 2018; Sorrentino et al., 2018; Suomalainen
and Battersby, 2018; Shi et al., 2024). A recent study by Zheng et al.
(Zheng et al., 2025) demonstrated that methyltransferase-like
protein 4 (METTL4)-mediated N6-methyldeoxyadenosine (6 mA)
modification of mitochondrial DNA (mtDNA) induces
mitochondrial damage and inflammatory responses in
macrophages, thereby promoting the development of
atherosclerosis. Therefore, integrating the transcriptomic
characteristics of AS with mitochondrial function may offer new
perspectives in this field.

The objective of this study was to identify the correlation
between AS and mitochondria-related genes utilizing data
obtained from the Gene Expression Omnibus (GEO) database.
Hub genes were identified by the intersection of differentially
expressed genes (DEGs), weighted gene co-expression network
analysis (WGCNA), and mitochondrial-related gene sets. In
addition, various machine learning (ML) methods were employed
to identify key biomarkers and assess their diagnostic value in AS.
The percentage of immune cell infiltration linked to these
biomarkers was then ascertained. Finally, single-cell analysis was
adopted to identify the distribution of key biomarkers, followed by
validation through in vitro analyses. By finding potential biomarkers
for risk assessment in AS patients, this study aims to shed light on
the basic mechanisms underlying the disease.

2 Materials and methods

2.1 Data collection and preprocessing

From the NCBI GEO public database (https://www.ncbi.nlm.
nih.gov/geo/), the AS datasets were acquired. The
GSE100927 dataset, annotated via the GPL17077 platform
(Agilent), encompasses RNA expression profiles from 104 human
arterial samples, including carotid, femoral, and infra-popliteal
arteries. For this study, carotid artery samples (most suitable for
early diagnosis of atherosclerosis) were selected for analysis,
consisting of 29 human carotid atherosclerotic samples and
12 carotid artery control samples. The GSE43292 dataset was
selected to validate the hub genes. The dataset is annotated using
the GPL6244 platform (Affymetrix) and includes 32 carotid
atherosclerosis samples and 32 carotid artery control samples
from humans (Table 1). In order to standardize the raw data

Abbreviations: AS, Atherosclerosis; ASCVD, Atherosclerotic cardiovascular
disease; BP, biological process; CC, cellular component; CCDS, cerebral
creatine deficiency syndromes; CVD, cardiovascular disease; DEGs,
differentially expressed genes; FBS, fetal bovine serum; FC, fold change;
GEO, Gene Expression Omnibus; IHD, ischaemic heart disease; LAP3,
Leucine aminopeptidase 3; LASSO, least absolute shrinkage and selection
operator; LDL, low-density lipoprotein; MF, molecular function; ML, machine
learning; NAFLD, non-alcoholic fatty liver disease; ox-LDL, oxidized low-
density lipoprotein; RF, random forest; ROC, receiver operator
characteristic; TOM, topological overlap matrix; WGCNA, weighted gene
co-expression network analysis.
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from these datasets, CEL files were imported using the “Affy”
package, with background correction performed via Robust
Multi-Array Average (RMA), followed by log2 transformation for
normalization. The R program “limma” was employed for
subsequent analysis. In the Affymetrix dataset, 22 mitochondrial
genes were detected (Supplementary Material S1). A comprehensive
set of 1,136 mitochondria-related genes was retrieved from the
MitoCarta3.0 database at http://www.broadinstitute.org/mitocarta.

2.2 Analysis of DEGs

With the “limma” package (3.60.4) in R, DEGs between the AS
samples and normal controls were identified (Ritchie et al., 2015),
with adjusted P < 0.05 and fold change (FC) > 1.3 as the criteria. To
visualize the DEGs, hierarchical clustering heatmaps and volcano
plots were generated by the “ggplot2” package (3.5.1). To identify
commonDEGs between the GSE100927 and GSE43292 datasets, the
“VennDiagram” package (1.7.3) was adopted, with the results
described accordingly.

2.3 Functional enrichment analysis via GO
and KEGG

Based on the official websites of the GO and KEGG databases
(at http://geneontology.org/, https://www.genome.jp/KEGG/,
respectively) (Kanehisa and Goto, 2000), the R packages
“enrichplot” (1.24.2), “clusterProfiler” (4.12.1) (Yu et al., 2012),
and “org.Hs.eg.db” (3.19.1) were utilized to analyze the significant
functions and pathways of the DEGs. DEGs screened from the
GSE100927 and GSE43292 datasets were first mapped from gene
symbols to Entrez IDs using the “org.Hs.eg.db” package, with
unmapped genes excluded to ensure that all genes included in
subsequent analyses had valid annotations. All DEGs were
included in the analysis, and the background gene set was
defined as the complete human genome annotation provided by
org.Hs.eg.db. Gene functions were evaluated using Gene Ontology
(GO) analysis, covering biological process (BP), cellular
component (CC), and molecular function (MF). Enrichment
analysis was performed using the enrichGO function, and
enriched terms with P < 0.05 were retained. Significant
pathways were ultimately visualized using bubble plots. To
identify signaling pathways, KEGG analysis was conducted
using the enrichKEGG function, restricted to human pathways.
Pathways were selected based on an adjusted P < 0.05 as the cutoff.
The enrichment results for significantly enriched pathways were

visualized using bubble plots generated by the “ggplot2” package
(version 3.5.1).

2.4 Identification of significant modules
based on WGCNA

Co-expression modules linked to AS were identified using
WGCNA analysis with the “WGCNA” package (1.72–5) in R
(Langfelder and Horvath, 2008). The top 25% of genes showing
the highest variance in the dataset were chosen (Chen S. et al., 2020;
Feng S. et al., 2022), and the pickSoftThreshold function was used to
calculate the optimal soft-threshold power (β), followed by the
adjacency matrix transformation. Next, the topological overlap
matrix (TOM) was computed. A hierarchical clustering
dendrogram was then generated to segment genes exhibiting
comparable expression patterns into separate modules, with a
minModuleSize of 30. A dynamic tree-cutting method was
applied to identify modules of highly correlated genes. At last,
module eigengenes (MEs) were used to consolidate the
expression profiles of each module, allowing the computation of
the correlation between MEs and clinical traits. The most pertinent
modules obtained were chosen for additional analysis (Rezaei et al.,
2022; Gao et al., 2023; Wang et al., 2023b; Wang Q. et al., 2024).

2.5 Feature gene screening

To identify hub Mito-DEGs in AS, three algorithms were
employed: least absolute shrinkage and selection operator
(LASSO), random forest (RF), and support vector machine-
recursive feature elimination (SVM-RFE) (Qin et al., 2023; Qin
et al., 2024). LASSO is a commonly used data mining method for
multivariate linear regression (Bai et al., 2022), and LASSO
regression analysis was conducted by the package “glmnet”
(4.1–8). LASSO improves both the predictive performance and
interpretability of statistical models by incorporating a
regularization term into the loss function, allowing for feature
screening. This enables feature selection by shrinking coefficient
estimates towards zero, with the regularization parameter λ
determining the extent of shrinkage. The optimal values of λ and
γ were obtained through 10-fold cross-validation to prevent model
overfitting (Kang et al., 2021; Liu et al., 2024). SVM-RFE is a linear
classifier used for the binary classification of data through supervised
learning (Li et al., 2024). RF, an algorithm provided by the
“randomForest” package (4.7–1.1), is a randomized method
designed to prevent the overfitting of individual decision trees

TABLE 1 Baseline information for three data sets in this study.

GEO GPL Sample N Type

GSE100927 GPL17077
Agilent-039494 SurePrint G3 Human GE v2 8 × 60K Microarray 039381

AS/Control 69/35 Microarray

GSE43292 GPL6244
Affymetrix Human Gene 1.0 ST Array

AS/Control 32/32 Microarray

GSE159677 GPL18573
Illumina NextSeq 500

AC/PC 3/3 single cell RNA-seq
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and enhance the model performance built from multiple correlated
decision trees obtained from the identical training set (Guan et al.,
2024). We initially set the number of trees to ntree = 500 to generate
a random forest. The optimal number of trees was identified based
on the smallest cross-validation error, and gene importance was
then ranked. Genes that had an importance score greater than 1 were
selected for further analysis. After that, the intersection of results
from the three algorithms was determined, and a Venn diagram was
generated with “VennDiagram” (1.7.3) in R. The packages “pROC”
(1.18.5) and “InpROC” function were selected to draw receiver
operating characteristic (ROC) curves and to compute the
corresponding area under the curve (AUC) to find out the
predictive performance of these feature genes in both the
validation and training sets. The “rms” (6.8–1) and “rmda” (1.6)
packages were used to generate a nomogram based on the identified
feature genes. After that, a calibration curve was created to evaluate
the nomogram’s accuracy. Also, the clinical impact curve of the
model was graphed and assessed. Finally, the clinical utility of the
nomogram was assessed with the help of decision curve analysis.

2.6 Analysis of the relationship between
Mito-DEGs and immune cells

The relative abundance of each immune cell subtype was
determined based on the LM22 reference matrix of the
CIBERSORT algorithm, using sequencing data from human
carotid artery samples with or without atherosclerosis (Newman
et al., 2015). The aforementioned subtypes correspond to the cellular
makeup of the immunological microenvironment. A p-value was
then calculated by CIBERSORT with Monte Carlo sampling for
sample deconvolution, which indicated the confidence level in the
results. Samples with estimated immune cell fractions were
considered accurate if P < 0.05 (Chen et al., 2023; Pan et al.,
2023). Comparative analysis of immune cell populations among
groups was conducted using the Wilcoxon test. The Spearman
correlation coefficient was then applied to ascertain the
connection between immune cells and hub genes. The findings
were then graphically represented using a lollipop plot (Li and
Cai, 2024).

2.7 Single-cell analysis

The GSE159677 dataset was acquired to conduct additional
studies on model genes (Alsaigh et al., 2022). The package
“Seurat” (5.1.0) (Gribov et al., 2010) was utilized to analyze the
scRNA-seq data. Low-quality cells were eliminated by applying
specific criteria: genes were required to be expressed in at least
three cells, the number of genes detected per cell was limited to
between 500 and 8,000, and the proportion of mitochondrial genes
was set at less than 20%. For principal component analysis (PCA),
we selected the top 8,000 genes with the highest expression
variability. The merge function was used to integrate single-cell
data, and the NormalizeData function was applied for
normalization. Then, t-distributed stochastic neighbor embedding
(t-SNE) and principal component analysis were applied. Uniform
manifold approximation and projection (UMAP) was adopted for

dimension reduction and cell cluster identification. The cell types
within various clusters were annotated using the “SingleR” in R (Pan
et al., 2023; Yang et al., 2023). At last, to find marker genes for every
cell cluster, the FindAllMarkers was utilized. After that,
incorporated cell-cell communication analysis and pseudotime
trajectory analysis. Monocle 3 was used with UMAP/v0.3.2 to
project the data into a low-dimensional space (Cao et al., 2019;
Jean-Baptiste et al., 2019) to enable pseudotime trajectory analysis.
Cell-cell communication analysis was performed using the R
package CellChat (Jin et al., 2021).

2.8 Cell culture

Cell culture was performed using the THP-1 cell line, which was
kindly provided by Wuhan Pricella Biotechnology Co., Ltd. THP-1
cells were cultured in RPMI 1640 (Gibco, United States) medium
supplemented with 10% heat-inactivated fetal bovine serum (FBS,
FSP500, Excell, China) (incubation conditions: 5% CO2, 37°C).
Differentiation into macrophages was induced by treating THP-1
cells with 100 ng/mL phorbol 12-myristate 13-acetate (PMA, MCE,
United States) for 48 h. Following induction, cells were exposed to
oxidized low-density lipoprotein (ox-LDL, YB-002, Yiyuan
Biotechnologies, China) at a concentration of 50 μg/mL and
cultured for 48 h (foam group), or maintained in complete
medium for 48 h (control group).

2.9 In vitro generation of foam cells

THP-1 cells were seeded onto cell climbing slides and
differentiated into macrophages by treatment with PMA for
48 h, followed by stimulation with ox-LDL to induce
transformation into foam cells. To analyze lipid droplet content
in THP-1 cells, BODIPY 493/503 (C2053S, Beyotime Institute of
Biotechnology, Jiangsu, China) staining was performed: cells were
incubated with the dye for 30 min, then the stained cell climbing
slides were mounted on coverslips with mounting medium.
Fluorescence microscopy (EUROStar III Plus) was used for
observation, images were captured with the EUROPattern II
fluorescence imaging system, and fluorescence intensity was
quantitatively measured using Image.

TABLE 2 Primer sequences of homo sapiens genes by RT-qPCR.

Target genes Primer sequences

GAPDH 5′-GAGTCAACGGATTTGGTCGT-3′ (forward)

5′-GACAAGCTTCCCGTTCTCAG-3′ (reverse)

CASP8 5′-GCTGACTTTCTGCTGGGGAT-3′ (forward)

5′-GACATCGCTCTCTCAGGCTC-3′ (reverse)

GATM 5′-GACAAAGCCACTGAGCCTCT-3′ (forward)

5′-CTCGATGGTGAACGGTGGAA-3′ (reverse)

LAP3 5′-AAGCCGGGGGATGTTGTTAG-3′ (forward)

5′-AGTGGCACCTGATCCCAAAG-3′ (reverse)
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2.10 RNA extraction and qRT-PCR

Total RNA from the two groups of cells was extracted from
cultured cells with RNAiso Plus from TaKaRa (9109, Beijing,
China). The extracted RNA was reverse transcribed into cDNA
with the 5× PrimeScript™ RT Master Mix from TaKaRa (RR036A,
Beijing, China). Subsequently, qPCR was carried out with 2× SYBR
Green qPCR MasterMix II (Sevenbio, SM143-01, Beijing, China).
For subsequent mRNA qPCR, GAPDH served as the internal
control, and target gene expression was quantified relative to
GAPDH with the 2−ΔΔCT method. Statistical analysis of differences
was performed using independent sample t-tests, with statistical
significance set at P < 0.05. The gene primer sequences identified are
provided in Table 2.

2.11 Mitochondrial expression in foam cells

Following the aforementioned culture and treatment protocols,
both control and foam groups were incubated with Mito-Tracker
Green (C1048, Beyotime Institute of Biotechnology, Nantong,
China) at 37°C for 30 min and subsequently analyzed using a
FACSLyric flow cytometer (BD Biosciences).

2.12 Statistical analysis

For statistical analysis, R (4.4.1) and GraphPad Prism 9 were
utilized, including “limma”, “ggplot2”, “VennDiagram”,
“clusterProfiler”, “WGCNA”, “glmnet”, “randomForest”,

FIGURE 1
Workflow of strategies targeting mitochondria-related hub genes in AS.
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FIGURE 2
Results of DEG and GO-KEGG Analysis in AS. (A,B) Volcano plots of DEGs in GSE100927 and GSE43292; (C,D) Heatmaps of DEG clustering for
GSE100927 and GSE43292; (E,F) Enriched GO terms for DEGs in GSE100927 and GSE43292; (G,H) KEGG pathway enrichment results for GSE100927 and
GSE43292; (I) Venn diagram of upregulated DEGs in the GSE100927 and GSE43292 datasets; (J) Venn diagram of downregulated DEGs in the
GSE100927 and GSE43292 datasets.
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“VennDiagram”, “pROC”, “rms”, and “rmda”. To determine the
significance of differences, independent sample t-tests were utilized,
and data were expressed as mean ± standard deviation. Statistics
were considered significant when P < 0.05.

3 Results

3.1 DEGs in AS and functional
enrichment analysis

The overall workflow of the study is illustrated in Figure 1. Two
AS-related GEO datasets, GSE100927 (including 41 samples) and
GSE43292 (including 64 samples), were analyzed (Supplementary
Figure S1). Differential expression analysis revealed 1,390 genes

upregulated and 1,237 genes downregulated in carotid plaque
samples from the GSE100927 dataset, while the
GSE43292 dataset included 1,168 upregulated and
993 downregulated genes. Heatmaps and volcano plots were used
to display the DEGs (Figures 2A–D). Functional enrichment
analysis of DEGs was subsequently performed using GO and
KEGG pathway analyses. GO analysis, encompassing BP, CC,
and MF terms, showed major enrichments in cell adhesion, the
external side of the plasma membrane, actin binding, integrin
binding, and cytokine binding (Figures 2E,F) (Supplementary
Figure S2). Significant enrichment was found in the PI3K−Akt
signaling pathway, immune-related pathways, and lipid and
atherosclerosis pathways, according to KEGG pathway analysis
(Figures 2G,H). Recognizing that genes exhibiting distinct trends
under varying regulatory conditions may hold distinct biological

FIGURE 3
Construction of Weight Gene Co-Expression Network and Identification of the Key Module. (A) Sample dendrogram and trait heatmap; (B)
Hierarchical clustering dendrogram of co-expression modules, with different colors representing distinct modules. (C) Hierarchical clustering of
eigengenes summarizing the identifiedmodules in the clustering analysis. (D) Stacked box plots of pathway-count for eachmodule (E)WGCNAmodule-
trait relationship heatmap showing correlations between modules and traits. The turquoise and pink modules are highly correlated with
atherosclerosis. (F) Scatterplot showing the relationship between module membership in the two modules and gene significance (turquoise and
magenta). (G) Venn diagram illustrating the overlap between genes in two modules highly correlated with AS in WGCNA and DEGs.
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implications, we performed GO and KEGG pathway analyses
separately for the upregulated and downregulated gene sets
derived from two distinct datasets. It was found that upregulated
genes are significantly enriched in functions related to cytokine
production and immune responses. Furthermore, these genes play
crucial roles in pathways including Lysosome, Phagosome, and
lipid-related processes. In contrast, downregulated genes are
enriched in pathways associated with muscle and focal adhesion
(Supplementary Figures S2, S3). After intersecting the DEGs from
the two datasets, 815 common DEGs were identified (Figures 2I,J).

3.2 WGCNA

This study employed WGCNA to identify module genes linked to
carotid AS. First, the top 25% of genes with the highest expression
variability were selected from 32 carotid atherosclerotic plaque samples
and 19 control samples for hierarchical clustering analysis. Euclidean
distance was used to calculate similarity between samples, and average
linkage was applied to construct the clustering dendrogram (Figure 3A).
To achieve high connectivity and scale independence among genes
within each module, the optimal soft-threshold power was set to 20,
forming a scale-free co-expression network (Supplementary Figure S4).
Eleven co-expression modules of various colors were created by
hierarchical clustering of the samples using a dynamic tree-cutting
algorithm. (Figures 3B,C). The composition of pathway-related genes
among different modules was analyzed (Supplementary Figure S3).
Most pathways in the purple and grey modules were primarily
associated with cellular processes, including cell differentiation,
regulation of activation, cell adhesion, and responses to various
stimuli (such as positive regulation of T cell differentiation, positive
regulation of cell activation, positive regulation of cell–cell adhesion,
and cellular response to hypoxia). In contrast, the yellow module was
predominantly linked to developmental processes (such as pathways
related to kidney development), the black module was mainly enriched
in immune-related pathways (such as lymphocyte differentiation and
regulation of T cell activation), and the green module was largely
associated with metabolic processes (such as aldosterone biosynthetic
process). The GO terms for each module were visualized as stacked box
plots (Figure 3D). Next, we analyzed the co-expression similarity and
adjacency of modules, and their associations with clinical traits (carotid
control and AS groups). Finally, the turquoise module, which showed
the strongest correlation with AS, was identified (Figure 3E), containing
1,391 genes (Figure 3F). The magenta module, comprising 61 genes,
showed a very similar correlation coefficient (0.88 for turquoise versus
0.84 for magenta). Therefore, genes from these two most significant
modules were combined and intersected with the 815 DEGs, resulting
in the identification of 482 overlapping genes (Figure 3G).

3.3 Identification of Mito-DEGs in AS and
feature gene screening

As a central regulator of metabolism, mitochondria play a
pivotal role in cellular energy metabolism, stress response, and
the maintenance of internal homeostasis, thereby governing cell
fate (Harrington et al., 2023). In recent years, targeting
mitochondrial dysfunction has emerged as a novel therapeutic

strategy for the prevention and treatment of atherosclerotic
cardiovascular diseases, yielding significant progress (Bravo-San
Pedro et al., 2017; Becker et al., 2023; Zheng et al., 2025). To
systematically and scientifically screen for potentially actionable
mitochondria-related genes in atherosclerosis, a total of
1,136 mitochondria-related genes were selected from the
MitoCarta3.0 database. The intersection of WGCNA-derived
DEGs and these mitochondria-related genes was obtained. The
overlapping genes were deemed as mitochondria-related DEGs
(Figure 4A). Twelve mitochondria-related DEGs were identified,
including PPIF, SLC25A19, ME2, GATM, LAP3, CYP27A1, KMO,
UCP2, BID, C15orf48, CASP8, and PABPC5. These DEGs were
enriched in BP terms such as regulation of mitochondrial
membrane potential, in CC for the mitochondrial inner
membrane, and in MF for death receptor binding and
oxidoreductase activity (Figure 4B). KEGG pathway analysis
suggested enrichment of these genes in apoptosis, arginine and
proline metabolism, and Alzheimer’s disease (Figure 4c). To further
screen for hub genes, ML algorithms were employed. First, LASSO
analysis identified four genes: CASP8, GATM, LAP3, and PPIF
(Figures 4D,E). Next, the SVM-RFE algorithm selected 11 genes:
UCP2, CASP8, LAP3, GATM, PPIF, KMO, PABPC5, BID, CYP27A1,
SLC25A19, and ME2 (Figures 4F,G). Simultaneously, the RF
algorithm detected seven genes, namely, GATM, CASP8, UCP2,
ME2, BID, LAP3, and KMO, that had a relative importance score
above 1, (Figures 4H,I). Finally, the intersection of the genes selected
by all three algorithms yielded three hub Mito-DEGs: CASP8,
GATM, and LAP3 (Figure 4J).

3.4 Analysis of gene co-expression and
diagnostic accuracy in samples of AS

Our analysis of the GSE100927 datasets noted a significant
upregulation of three genes (GATM, CASP8, and LAP3)
expression in the carotid AS group compared to the controls
(Figure 5A). The diagnostic performance of the three hub genes
in the GSE100927 dataset as biomarkers for AS was assessed
using ROC curves (Figure 5C). Notably, the AUC values for
GATM and CASP8 were 1, and the AUC for LAP3 was 0.981,
demonstrating strong diagnostic potential for these three genes.
A nomogram was then constructed based on these three feature
genes, demonstrating their strong capability to predict the risk of
AS (Figure 5G). The calibration curve (Figure 5D) showed that
the nomogram had a high degree of accuracy in predicting the
risk of AS. Similarly, upregulated expression of these genes in the
AS group was validated in the GSE43292 datasets (Figure 5B),
with the AUC for all gene datasets exceeding 0.7, further
supporting their diagnostic performance (Figure 5E). The
nomogram was used to further predict the risk of AS
(Figure 5H), and the calibration curve confirmed the
nomogram’s high predictive accuracy (Figure 5F).

3.5 Immune cell landscape in AS

Evidence suggests that the development of atherosclerotic
plaques is a persistent inflammatory process, involving both
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innate and adaptive immune systems (Wolf and Ley, 2019). To
further elucidate the involvement of the immune system in the
progression of AS, the LM22 signature matrix from the CIBERSORT
algorithm, which contains characteristic gene expression profiles of
22 human immune cell subtypes, was utilized. Based on microarray
data, supervised deconvolution analysis was performed to infer the
relative proportions of different immune cells in plaque and control
groups (Wang et al., 2023a). First, we examined the immune cell
type abundance in carotid AS and control samples from the
GSE100927 dataset (Supplementary Figure S5). Results indicated
that the abundance of activated mast cells, monocytes, memory

B cells, T follicular helper cells, and M0 macrophages was higher in
the carotid AS samples (Figure 6A), whereas resting mast cells,
plasma cells, CD4 memory resting T cells, eosinophils,
M1 macrophages, and naive B cells were less abundant. Lastly,
correlation analysis was executed between hub genes and immune
cells. CASP8 exhibited a positive correlation with memory B cells
(r = 0.512, P < 0.001) and a negative correlation with resting mast
cells (r = −0.593, P < 0.001) and plasma cells (r = −0.575, P < 0.001)
(Figure 6B). GATM was positively correlated with activated mast
cells (r = 0.634, P < 0.001) and memory B cells (r = 0.506, P < 0.001),
and negatively correlated with resting mast cells (r = −0.592, P <

FIGURE 4
The final hub MitoDEGs were identified using three machine learning (ML) algorithms. (A) Venn diagram showing the overlap between genes in
WGCNA-DEGs and MitoCarta3.0; (B,C) GO and KEGG enrichment analyses of mitochondria-related DEGs; (D) LASSO coefficient path diagram, where
each curve represents a single gene; (E) Lasso regression cross-validation curve. The optimal λ values were determined using 10-fold cross-validation,
identifying a total of 4 hub genes; (F) The SVM-RFE algorithm identified the highest accuracy when using 11 genes; (G) The SVM-RFE algorithm
determined the lowest error rate when using 11 genes; (H) The relationship between the number of Random Forest trees and the error rate; (I) Genes
ranked in descending order of importance; (J) Venn diagrams showing the overlap of genes identified by the three algorithms.
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0.001) and eosinophils (r = −0.511, P < 0.001) (Figure 6C). LAP3
showed a positive correlation with T follicular helper cells (r = 0.491,
P < 0.001), memory B cells (r = 0.446, P < 0.001), and activated mast
cells (r = 0.431, P < 0.001), while being negatively correlated with
resting mast cells (r = −0.557, P < 0.001) (Figure 6D).

3.6 Single-cell data analysis

Previous analyses identified three hub Mito-DEGs: CASP8,
GATM, and LAP3, which have been shown to have a positive
relationship with mast cells, memory B cells, and follicular helper
T cells through immune infiltration analysis. All three genes were
also linked to monocyte-macrophages. Given the significant role of
the inflammatory phenomenon, particularly monocyte-
macrophages, in the development and progression of AS

(Neupane et al., 2019), we proceeded to analyze the single-cell
dataset from the GSE159677.

UMAP dimensional reduction analysis revealed the annotation
of scRNA-seq data, identifying 6 major cell clusters: macrophages,
endothelial cells (ECs), vascular smooth muscle cells (VSMCs),
natural killer T (NKT) cells, T lymphocytes, and B lymphocytes.
The differential gene expression between the six major cell types was
evaluated using marker genes from previous studies (Wirka et al.,
2019; Alsaigh et al., 2022) (Figures 7A,B). The same cell types were
identified in both the atherosclerotic core (AC) group and the
patient-matched proximal adjacent (PA) group Supplementary
Table S1, but the proportions of each cell type differed markedly,
with the PA group exhibiting a higher proportion of endothelial
cells. This may be attributed to the ability of macrophages to
promote tissue repair and proliferation of vascular smooth
muscle cells during disease progression, thereby increasing plaque

FIGURE 5
Analysis of the three feature genes. Expression levels of hub genes in (A) GSE100927 and (B) GSE43292. Upregulated genes in the AS group are
highlighted in red. ROC curve analysis of hub genes in (C) GSE100927 and (E) GSE43292. Alignment diagram for predicting AS in (G) GSE100927 and (H)
GSE43292. Calibration curve assessing the predictive accuracy of the model in (D) GSE100927 and (F) GSE43292.
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stability. However, advanced atherosclerotic plaques are
characterized by a high abundance of pro-inflammatory
macrophages, which secrete matrix-degrading enzymes, induce
cell death in surrounding tissues, and lead to plaque instability
and rupture (De Meyer et al., 2024). Consistent with this, the single-
cell transcriptome of the AC group showed higher numbers of
T cells and macrophages, although the phenotypes of these cells may
vary depending on the stage and location of the disease (Figure 7C).
To further investigate the regulatory network variations in coronary
artery plaques, we used the Hallmark gene sets to evaluate pathway
differences between the corresponding cell populations. The analysis
revealed that multiple pathways, including reactive oxygen species
pathway, inflammatory response, TNF-α/NF-κB pathway,
complement activation, and IL-6 signaling, were upregulated in
macrophages (Figure 7D). We subsequently observed significant
expression proportions of GATM and LAP3 in macrophages, while
CASP8 showed significant expression in NK cells and T cells in the
dot plots (Figure 7E). Quantitative analysis further revealed that the
expression levels of all three DEGs differed significantly between the
AC and PA groups (Figure 7F). This was additionally confirmed by
UMAP and violin-scatter plots, which illustrated the level of
expression and dispersion of these genes among immune clusters
(Figures 7G,H). Studies have demonstrated that LDL and other
factors infiltrating the arterial wall stimulate endothelial cells to
produce pro-inflammatory molecules, including E-selectin,
P-selectin, intercellular adhesion molecule-1, and vascular cell

adhesion molecule-1. This facilitates the attachment and
migration of immune cells, including monocytes, T cells, B cells,
NK cells, and also dendritic cells (DCs), to the vessel wall (Thorp
et al., 2011; Tacke et al., 2007; Libby et al., 2008). After macrophages
engulf lipids and form foam cells, they, along with recruited T cells,
accumulate in the arterial wall, therefore playing a role in the
inflammatory response and progression of plaque (Gotsman
et al., 2008). DCs are directly involved in cholesterol homeostasis
and immune responses, and thus offer a new avenue for research
into atherosclerotic plaques (Gautier et al., 2009; Paulson
et al., 2010).

3.7 Cell-cell interaction analysis and
pseudotime trajectory

The single-cell analysis of carotid artery plaques identified
6 major cell clusters, among which T cells, endothelial cells, and
macrophages demonstrated enriched intercellular
communication (Figure 8A). A total of 59 signaling pathways
were detected between these cell clusters, with T cells and
macrophages exhibiting the most signaling pathways. Notably,
the SPP1 signaling pathway displayed a prominent signaling
pattern in macrophages (Figure 8B). In addition, the
macrophage cell cluster exhibited high expression within the
SPP1 signaling pathway (Figure 8C). To further investigate the

FIGURE 6
Visualization of immune cell infiltration distribution and the correlation between hub genes and infiltrating immune cells. (A) Comparison of
22 immune cell subtypes between carotid atherosclerosis samples and carotid artery control samples. Red represents AS samples, and blue represents
normal samples. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001 (Wilcoxon–Mann–Whitney test); Correlation betweenCASP8 (B),GATM (C), LAP3 (D)
and infiltrating immune cells. Gene expression values for biomarkers were obtained from the GSE100927 dataset for correlation analysis.
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FIGURE 7
Identification of the expression and distribution ofmitochondria-related hub genes by single-cell analysis. (A)UMAP dimension reduction analysis of
major cell types in the GSE159677 dataset; (B)marker genes of 6 clusters of cells (C)Cluster distribution of cell types in the AC and PA groups; (D) Pathway
enrichment analysis of the corresponding cell populations; (E) Dot plots showing the expression proportions of hub Mito-DEGs in the annotated
6 clusters of cells; (F) The expression profiles of the 3 hub Mito-DEGs between AC and PA (G,H) Violin-scatter plots and UMAP showing the
distribution of the 3 hub Mito-DEGs across major immune cell types.
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FIGURE 8
Cell communication analysis and developmental trajectory. (A) Communication hubs and weights among various cell types in the annotated
6 clusters of cells; (B) Relative intensity of incoming and outgoing signaling patterns in different cell clusters; (C) Inferred SPP1 signaling pathway network;
(D) Main communication pathways between macrophages and other cell types; (E) Relative contribution of receptor-ligand pairs; (F) UMAP plot of
different states of macrophages; (G) Pseudotime analysis of macrophages; (H) Predicted expression patterns of Mito-DEGs during the
pseudotime process.
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biological functions of macrophages, receptor-ligand analysis
was performed. The contribution of each ligand-receptor pair
to the signaling pathway was visualized, revealing that SPP1 −
(ITGA8+ITGB1), SPP1 − CD44, and SPP1 − (ITGA4+ITGB1)
made significant contributions (Figures 8D,E). Subsequently,
pseudotime trajectory analysis was performed to infer the
pathways of macrophage state transitions and developmental

trajectories within the AS clusters (Figures 8F,G). Cellular
developmental relationships were reconstructed, revealing an
orderly progression of cell states over pseudotime. For the
selected Mito-DEGs, LAP3 exhibited fluctuations over time,
indicating dynamic changes during the developmental process,
while CASP8 and GATM remained relatively stable throughout
development (Figure 8H).

FIGURE 9
In vitro Analyses. (A) BODIPY 493/503 staining of THP-1 cells in the control group. Scale bar, 100 μm, and the foam cell group (B) Validation of hub
Mito-DEG expression, with relative mRNA levels of CASP8, GATM, and LAP3 in THP-1 cells. **P < 0.01, ***P < 0.001, ****P < 0.0001. (C) The mean
fluorescence intensity (MFI) of mitochondria in the two groups was analyzed by flow cytometry using Mito-Tracker Green-labeled cells.
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3.8 In vitro analyses

To validate the role of hub genes in foam cell formation (a key
pathological feature of AS, given that the lipid core of AS primarily
consists of foam cells), an in vitro model was developed. In this
study, THP-1 cells were stimulated with 50 μg/mL ox-LDL for 48 h,
followed by staining with the green fluorescent probe BODIPY 493/
503 to visualize intracellular lipid droplets, thereby confirming
successful foam cell formation. Results showed a significant
increase in BODIPY 493/503 staining in ox-LDL-treated THP-1
cells compared to the control group, indicating a greater
accumulation of intracellular lipid droplets and the formation of
foam cells (Figure 9A). In comparison to the control
(Supplementary Table S2), the foam cell group exhibited
significantly elevated mRNA expression of CASP8 (P = 0.0008),
GATM (P < 0.0001), and LAP3 (P = 0.0029) (Figure 9B), consistent
with the earlier analysis. Finally, flow cytometry was used to assess
mitochondrial mean fluorescence intensity (MFI), revealing
increased mitochondrial abundance/mass in the foam group (P =
0.048) (Figure 9C).

4 Discussion

Mitochondria are essential subcellular organelles in mammalian
cells. Perturbations in mitochondrial homeostasis and dynamics can
induce reactive oxygen species (ROS), accelerating cellular
senescence (Madamanchi and Runge, 2007; Ježek et al., 2018;
You et al., 2023). In our in vitro experiments, THP-1 cells
stimulated with ox-LDL exhibited increased mitochondrial
fluorescence signals compared to controls, suggesting
mitochondrial biogenesis or fission events that expedite foam cell
formation. Natarajan et al. proposed that chronic inflammatory
stimuli in AS enhance mtDNA synthesis, promoting mitochondrial
biogenesis and thereby exacerbating AS (Natarajan et al., 2024).
Moreover, in hypoxic rats, Drp1-mediated mitochondrial fission
induces myocardial aging (You et al., 2023). Thus, mitochondria
play a pivotal role in the pathogenesis of the disease. AS is one of the
major diseases that threaten human health. Typically, the subclinical
stage of AS persists without being noticed until a significant
cardiovascular event occurs in an individual (Singh et al., 2018;
Merida et al., 2024). Carotid intima-media thickness (Yang et al.,
2020) and the presence of carotid plaques (Sillesen et al., 2012) are
currently known early markers of AS. Therefore, selecting an
appropriate disease model is crucial for identifying biomarkers in
the subclinical stage of AS. In this study, carotid plaque samples and
controls from the GSE100927 dataset were analyzed, along with
64 carotid artery samples with or without AS plaques from the
GSE43292 dataset, so as to identify mitochondria-related hub genes
involved in the progression of AS.

The present work successfully identified 815 genes with similar
expression trends across both datasets. KEGG pathway enrichment
analysis of the DEGs highlighted remarkable enrichment in the
PI3K−Akt signaling pathway, lipid and atherosclerosis, as well as
immune-related processes. After intersecting these DEGs with the
most significant module genes identified through WGCNA, twelve
mitochondria-related genes were identified (PPIF, SLC25A19, ME2,
GATM, LAP3, CYP27A1, KMO, UCP2, BID, C15orf48, CASP8, and

PABPC5). GO and KEGG enrichment analyses indicated that these
genes were remarkably enriched in pathways related to apoptosis,
arginine and proline metabolism, p53 signaling pathway, regulation
of mitochondrial membrane potential, mitochondrial inner
membrane, death receptor binding, and oxidoreductase activity.
The findings suggested that abnormalities in lipids and
immunity, apoptosis, impaired mitochondrial membrane
function, and oxidoreductase activity may play crucial roles in
the disease process. Mitochondria, as regulators of key processes
including ATP production, ROS homeostasis, and apoptosis, play a
central role in determining cell fate, with mitochondrial-encoded
genes accounting for less than 1% of the genome (Fontana and
Gahlon, 2020). Functional abnormalities in this small subset of
mitochondrial genes can amplify pathological effects. Studies have
shown that the NLRP3 inflammasome senses mitochondrial
dysfunction, thereby amplifying inflammatory responses and
triggering a cascade of downstream effects (Zhou et al., 2011). In
atherosclerotic tissues, the prevalence of certain individual
mitochondrial mutations is relatively high (Sobenin et al., 2012).
These findings suggest that although mitochondrial genes represent
a numerically minor fraction and may not appear advantageous in
terms of disease progression at first glance, their critical regulatory
functions and cascade effects may accelerate disease development.
Accordingly, further analysis of these 12 mitochondria-associated
genes was conducted.

Three mitochondria-related hub genes, CASP8, GATM, and
LAP3, were identified using 3 ML algorithms. Caspase-8 (CASP8)
encodes a protein in the cysteine-aspartic acid protease (caspase)
family. This enzyme is involved in initiating the intrinsic apoptotic
pathway when cells are exposed to DNA-damaging stressors such as
UV or γ-radiation, cytotoxic agents, or cytokine deprivation, either
from internal or external sources (Mandal et al., 2020). Upon
activation, CASP8 promotes the activation of the BH3 interacting
domain death agonist, which induces mitochondrial outer
membrane permeabilization. This process can lead to cytochrome
c release and subsequently trigger the apoptotic cascade (Hung et al.,
2021; Moldoveanu, 2023). Cytochrome c release and the subsequent
activation of caspase-3 have been shown to occur in cardiomyocytes,
in cases of human cardiomyopathy, during hypoxia-induced
apoptosis in adult rat ventricular myocytes, in the induction of
monocyte inflammation, and in the development of AS,
contributing to peripheral arterial occlusive disease (PAOD)
(Narula et al., 1999; de Moissac et al., 2000; Chen Y. C. et al.,
2020; Zhang et al., 2021). Recent studies have shown that caspase-8
deficiency in macrophages exposed to oxidized low-density
lipoprotein (ox-LDL) leads to increased MLKL phosphorylation
and reduced apoptotic signaling. However, in caspase-8-deficient
(Casp8komac) mice, lack of MLKL phosphorylation results in
increased susceptibility to necroptosis within atherosclerotic
plaques. These findings indicate that caspase-8 exerts a dual
regulatory effect, facilitating apoptosis while suppressing
necroptosis, which actively contributes to plaque progression and
instability in AS (Pilot et al., 2025). These findings underscore the
significance of the CASP8-mediated apoptotic cascade in CVD.

The glycine amidinotransferase gene (GATM, chromosome
15q15.3) is also known as L-Arginine:amidinotransferase (AGAT,
EC 2.1.4.1). Its primary function is to facilitate the initial crucial
stage of endogenous creatine biosynthesis by transforming
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L-Arginine (Arg) and glycine into ornithine and guanidinoacetate
(GAA) (Humm et al., 1997; Tsikas and Wu, 2015; Khan et al., 2016;
Haghikia et al., 2017; Baker et al., 2021). Creatine is an organic
compound that is reversibly phosphorylated by creatine kinase
(CK), functioning as a buffer to maintain intracellular ATP levels
(Joncquel-Chevalier Curt et al., 2015), which is why most research
on GATM has focused on its role in kidney diseases and cerebral
creatine deficiency syndromes (CCDS) (Reichold et al., 2018;
Goldstein et al., 2024; He et al., 2024). Arg serves as a substrate
in the biosynthesis of nitric oxide (NO), a potent endogenous
vasodilator (Moncada and Higgs, 1993; Leiper and Vallance,
1999). Increased GATM expression and creatine synthesis have
been reported in the myocardium of patients with heart failure
(Cullen et al., 2006). Additionally, certain expression quantitative
trait loci (eQTL) of GATM have been reported to be significantly
associated with statin-induced myopathy (Mangravite et al., 2013;
Norata et al., 2014), which might offer new insights into the
considerable interindividual variability in the response to statins
for lowering plasma LDL concentrations in cardiovascular disease
patients (Simon et al., 2006). Studies have found that GATM
expression is enhanced in polarized M2 macrophages, indicating
its potential involvement in the etiology of associated inflammatory
disorders (Yu et al., 2022).

Leucine aminopeptidase 3 (LAP3), a key member of the LAP
family, is closely linked to tumor cell proliferation, migration, and
malignancy grade (He et al., 2015; Fang et al., 2019; Kuhara et al.,
2021). LAP3 is remarkably upregulated in hyperinflammation-
related diseases and is deemed a potential target for anti-
inflammatory drugs (Didangelos, 2020). An in vivo study
indicated an upregulated LAP3 expression in the hepatocytes and
serum of rats fed a high-fat diet, which induces non-alcoholic fatty
liver disease (NAFLD) and inhibits autophagy in LO2 cells (Feng L.
et al., 2022). These findings denoted that LAP3may be important in
inflammation and lipid accumulation, providing a promising avenue
for further exploration.

Inflammatory responses are involved throughout the entire
progression of AS. In the GSE100927 dataset, CIBERSORT was
applied to assess the immune cell infiltration in the peripheral blood
of individuals with coronary artery disease. In AS samples, the
abundance of activated mast cells, monocytes, memory B cells, T
follicular helper cells, and M0 macrophages was higher. This aligns
with previous findings (Xiong et al., 2022; Wang F. et al., 2024),
where inflammatory and immune cells (macrophages, T cell subsets,
and mast cells) coordinate the development of intimal
atherosclerotic lesions (Poto et al., 2024). Recent research (Xiang
et al., 2023) has shown that in patients with atherosclerosis,
increased expression of Morrbid in monocytes and arterial walls
promotes the differentiation of monocytes into M0 macrophages,
suggesting enhanced recruitment of M0macrophages to plaque sites
in the AS microenvironment. From a functional perspective,
M0 macrophages can undergo polarization into different
subtypes with distinct roles. Mast cells are involved in promoting
neutrophil recruitment and the formation of extracellular traps,
exacerbating the inflammatory response, which can lead to plaque
rupture and thrombosis (Elieh-Ali-Komi et al., 2024). Additionally,
a study by Kritikou et al. demonstrated that adoptive transfer of
CD1d−/− or control mast cells into mast cell-deficient apoE−/−KitW-

sh/W−sh mice, followed by an atherogenic diet, resulted in larger

atherosclerotic plaques and increased secretion of inflammatory
factors in reconstituted apoE−/−KitW-sh/W−sh mice, indicating that
mast cells exacerbate the progression of atherosclerosis through
their pro-inflammatory activity (Kritikou et al., 2019). T follicular
helper cells activate B2 cells, which could express IgG antibodies,
and elevated IgG levels have been confirmed to be linked to the
progression of AS (Wolf and Ley, 2019; Wang F. et al., 2024).
Maintaining the balance of various macrophage phenotypes is
crucial in AS formation and progression, as it determines the
outcome of the inflammatory response (Mantovani et al., 2009).
M0 macrophages play a key role in maintaining this balance and can
be polarized into either the pro-inflammatory M1 subtype or the
anti-inflammatory M2 subtype, depending on cytokines and
chemokines present in the microenvironment (Adamson and
Leitinger, 2011). Prior research has shown that a key feature of
AS regression is the overall reduction of plaque macrophages and
the enrichment of selectively activated M2 macrophage markers
(Rahman et al., 2017). In this study, among all differentially enriched
immune cells, the abundance of M0 macrophages were negatively
correlated with M2 macrophages, which may indicate persistent
inflammation during the disease’s progression. This aligns with
findings in advanced AS lesions, showing that M2 macrophages
were less abundant and that the relative abundance of macrophage
phenotypes for M1, Mox, and M2 was approximately 40%, 30%, and
20%, respectively (Kadl et al., 2010). The hub Mito-DEGs identified
in this study exhibited a strong positive correlation with memory
B cells, activated mast cells, and T follicular helper cells. Advances in
single-cell RNA sequencing (scRNA-seq) technology have provided
unprecedented opportunities for identifying cellular populations
and their markers in various diseases (Sun et al., 2022). Further
single-cell level analysis confirmed that two of the hub Mito-DEGs,
GATM and LAP3, were enriched in macrophages, while CASP8
showed increased expression in NK cells and T cells. Additionally,
cell-cell communication analysis and developmental trajectory
exploration identified relevant regulatory mechanisms. In
subsequent in vitro analysis, we used THP-1 cells to construct an
atherosclerotic plaque model, where foam cells exhibited higher
expression of CASP8,GATM, and LAP3. These results are consistent
with our earlier analyses, further supporting the role of these hub
Mito-DEGs in AS.

4.1 Future perspectives for low- andmiddle-
income countries (LMICs)

In the past, atherosclerosis was regarded as an inevitable,
progressive, and degenerative condition associated with aging,
primarily affecting developed countries. However, improvements
in sanitation, widespread vaccination, and effective treatment of
acute infections have reduced the burden of communicable diseases
in developing countries, resulting in increased survival and a
corresponding rise in chronic conditions such as atherosclerosis
(Libby, 2021). Concurrently, the westernization of lifestyles has led
to a marked increase in the burden of atherosclerosis among women,
young adults, individuals from diverse ethnic backgrounds, and
older populations in LMICs (Fowkes et al., 2017; Libby, 2021;
Nedkoff et al., 2023). Unlike the age-associated form once
deemed unavoidable, this type of atherosclerosis is preventable
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and modifiable through lifestyle changes and medical interventions.
The application of polygenic risk scores can help identify young
individuals who may derive particular benefit from early preventive
strategies. The mitochondrial-immune regulatory network
identified in this study provides a novel approach for low-cost
screening and intervention in LMICs. With continued validation
of AS-related mechanisms and refinement of clinical diagnostics,
these findings are expected to offer substantial benefits to LMICs.

Strengths and limitations: The present work is the first that we
are aware of that integrates mitochondrial-related genes with AS
using bioinformatics to identify hub Mito-DEGs, and to validate the
expression of hub genes at the in vitro cellular level. However, there
are certain limitations. Firstly, since the carotid artery is a superficial
vessel and often the first choice for early AS detection, our study
focused on datasets from carotid AS and control groups. The
identified related genes were able to distinguish between the
disease group and the normal group; however, comparative
testing with other diseases was lacking, resulting in limitations
regarding the definitive diagnosis of AS. Therefore, blood, body
fluids, and other samples will subsequently be collected from clinical
AS patients for further validation. However, due to the limited
availability of databases, future studies should aim to validate these
findings using larger expression cohorts. Finally, while we identified
hub Mito-DEGs, further validation is required to explore the
detailed mechanisms of these genes in AS.

5 Conclusion

This study, through integrated bioinformatics analysis,
identified three mitochondrial-related hub genes in AS: CASP8,
GATM, and LAP3. CASP8 promotes plaque instability by
modulating the balance between macrophage apoptosis and
necroptosis; GATM is involved in arginine metabolism and
M2 macrophage polarization; LAP3 contributes to AS
progression by regulating inflammation and lipid accumulation.
Immunoinfiltration analysis demonstrated significant enrichment of
M0macrophages, activated mast cells, and T follicular helper cells in
AS plaques, all positively correlated with hub gene expression. In
vitro experiments confirmed that the expression levels of all three
genes were significantly elevated in foam cells. This study is the first
to identify a mitochondrial-immune regulatory network, offering
novel targets for the identification of early biomarkers in AS.
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SUPPLEMENTARY FIGURE 3
Results of DEG and GO-KEGG Analysis in Downregulated Genes. (A, C)
Enriched GO terms for downregulated genes in GSE100927 and GSE43292;
(B, D) KEGG pathway enrichment results for downregulated genes in
GSE100927 and GSE43292.

SUPPLEMENTARY FIGURE 4
Visualization of the scale-free fit index (left) and mean connectivity (right) for
different soft threshold powers (β). The red line indicates a correlation
coefficient of 0.85.
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Percentage stacked bar chart showing the relative composition of immune
cell proportions in each sample.
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