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Vitamin D is an essential vitamin for normal human metabolism and plays pivotal
roles in various biological processes, such as maintaining calcium and
phosphorus balance, regulating immune responses, and promoting cell
differentiation while inhibiting proliferation. Vitamin D is obtained through
sunlight exposure and diet, and is metabolized into its active form via
hydroxylation in liver and kidney. Vitamin D deficiency is linked to various
diseases, including skeletal disorders, diabetes, and cardiovascular diseases.
Recent epidemiology and oncology research have demonstrated that serum
vitamin D level, as well as genetic polymorphisms and expression dysregulation of
genes related with vitamin D metabolism, have significantly influences on the
incidence and prognosis of various types of cancer, including breast cancer,
prostate cancer, liver cancer, gastrointestinal malignancy, and hematologic
malignancies. The mechanisms linking vitamin D metabolism dysregulation to
malignancy are multifactorial, such as the alteration in cell metabolism,
proliferation, differentiation, and tumor microenvironment. These findings
suggest potential therapeutic benefits of targeting the vitamin D signaling
pathway for the diagnosis and treatment of cancer. However, there is still a
lack of clinical applications regarding the knowledge of vitamin D metabolic
pathway, and future research is urgently needed to illustrate the underlying
mechanisms for the rationale design of clinical trials. Therefore, this review
summarizes the metabolic pathways of vitamin D and its association with
cancer, highlighting the importance of genetic polymorphisms and expression
dysregulation of genes involved in vitamin D metabolism in cancer susceptibility
and prognosis.
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1 Introduction

Vitamin D, a fat - soluble vitamin, has long been recognized for its crucial role in
maintaining bone health by regulating calcium and phosphorus homeostasis (Holick, 2004;
Bouillon et al., 2019) However, over the past few decades, an increasing body of research has
expanded our understanding of vitamin D beyond its traditional role in skeletal health. This
review aims to comprehensively summarize the current knowledge regarding the source,
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metabolism, and function of vitamin D, as well as its associations
with various diseases, with a particular focus on cancer.

The discovery of vitamin D in the early 1920s, initially linked
to the prevention of rickets, marked the beginning of a long -
standing exploration into its biological functions. Since then,
researchers have identified multiple forms of vitamin D, with
vitamin D2 and D3 being the most prominent (Dueland et al.,
1985; Mau et al., 1998; Houghton and Vieth, 2006; Baur et al.,
2020). The human body can synthesize a significant portion of
vitamin D through skin exposure to ultraviolet B (UVB)
radiation, while the remaining amount is obtained from
dietary sources. This dual source of vitamin D contributes to
its presence in various tissues and its complex metabolic
processes (Reboul et al., 2011; Baur et al., 2020).

Vitamin D metabolism involves a series of enzymatic reactions
that convert the inactive forms of vitamin D into its biologically
active metabolite, 1,25 - dihydroxyvitamin D [1,25(OH)2D]. Key
proteins, such as cytochrome P450 enzymes and the vitamin D -
binding protein (VDBP), play essential roles in these metabolic
pathways. The active form of vitamin D exerts its functions by
binding to the vitamin D receptor (VDR), a ligand - dependent
nuclear transcription factor, which then regulates the expression of
numerous target genes involved in a wide range of physiological
processes (Czogalla et al., 2020).

While the traditional role of vitamin D in bone health remains
well - established, emerging evidence has highlighted its
involvement in many other physiological and pathological
conditions. Vitamin D deficiency has been associated with an
increased risk of various diseases, including diabetes,
cardiovascular diseases, acute infections, chronic inflammatory

diseases, and asthma. These associations suggest that vitamin D
may have broader immunomodulatory, anti - inflammatory, and
homeostatic functions in the body.

Cancer is one of the most significant public health challenges
globally, and understanding its underlying mechanisms and
developing effective prevention and treatment strategies are of
utmost importance. In recent years, there has been growing
interest in the potential role of vitamin D in cancer.
Epidemiological studies have reported associations between
serum vitamin D levels and the risk of different types of
cancer. Additionally, laboratory studies have demonstrated
that vitamin D and its metabolites can influence cancer cell
proliferation, differentiation, apoptosis, migration, and the
interaction between cancer cells and the immune system
(Zhang and Naughton, 2010). Furthermore, genetic
polymorphisms and abnormal expression of key genes
involved in vitamin D metabolism have been linked to cancer
risk and prognosis. These findings not only provide insights into
the molecular mechanisms underlying the relationship between
vitamin D and cancer but also offer potential biomarkers for
cancer prediction and new therapeutic targets for
cancer treatment.

This review will first detail the source, metabolism, and
physiological functions of vitamin D, followed by an in - depth
discussion of the diseases associated with vitamin D deficiency.
Then, it will explore the associations between vitamin D and
different types of cancer, as well as the role of key genes in
vitamin D metabolism in cancer. Finally, it will summarize the
current state of knowledge and discuss future perspectives for
research on vitamin D in the context of human health and cancer.

TABLE 1 Association of vitamin D gene polymorphisms with cancer prognosis.

Gene Function Cancer-related research findings

CYP2R1 25-hydroxylase involved in converting vitamin D to 25(OH)D A/G and A/A: reduce the risk of death in non-small cell lung cancer (Kong et al., 2020)
G/A: decreased risk in the colon and rectum (Wen et al., 2021)

CYP27A1 25-hydroxylase involved in converting vitamin D to 25(OH)D Breast cancer: High expression is associated with a reduced risk of distant recurrence (Inasu
et al., 2021)
Bladder, Prostate, and Renal cell carcinoma: expression is reduced and act as a tumor
suppressor (Baek et al., 2017; Liang et al., 2019)
Ovarian and Breast cancer: High expression may promote tumor progression (He et al., 2019;
Ma et al., 2020)

CYP3A4 Involved in drug metabolism and chemotherapy resistance G and G/G: increased the risk of prostate cancer (Zhou et al., 2013)
C/T:reduced ability to metabolize multiple cancer drugs (Rodríguez-Antona et al., 2007; Tian
and Hu, 2015)

CYP27B1 Converts 25(OH)D to the active form 1,25(OH)2D, essential for
VDR signaling

rs10877012: associated with increased risk of colorectal cancer (Latacz et al., 2020)
Breast cancer, Non-melanoma skin cancer: low expression is associated with disease
progression and recurrence (Nemazannikova et al., 2019; Voutsadakis, 2020)

CYP24A1 Inactivates vitamin D metabolites by 24-hydroxylation,
regulating VDR signaling

Breast cancer, Colorectal cancer, Lung cancer, Ovarian cancer: high expression is associated
with poor prognosis (Davis et al., 2007; Shiratsuchi et al., 2017)
Oral squamous cell carcinoma: low expression is associated with poor prognosis (Nakamori
et al., 2024)

VDBP Binds and transports vitamin D to target tissues rs7041 and rs4588: associated with risk for lung and colorectal cancer (Maneechay et al., 2015)
Hepatocellular carcinoma、 Colorectal cancer: high expression is associated with good
prognosis (Muindi et al., 2013; Qin et al., 2024)

VDR Nuclear receptor regulating calcium-phosphorus homeostasis
and tumor suppression

Breast cancer, colorectal cancer , lung cancer: VDR expression was decreased (Marik et al., 2010;
Srinivasan et al., 2011)
Prostate cancer: rs2107301, rs2238135 were associated with an increased risk of cancer (Holick
et al., 2007)
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FIGURE 1
The sources and metabolism of vitamin D (overview of vitamin D metabolism). (A): Chemical structure of vitamin D2, (B): Chemical structure of
vitamin D3, (C): Chemical structure of 25(OH)D3, (D): Chemical structure of 1α,25-(OH)2D3. (E): Vitamin D3 is mainly produced by the conversion of 7-
dehydrocholesterol from sun-exposed skin and food intake.
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2 Source, metabolism, and function of
vitamin D

2.1 The source of vitamin D

In early 1920s, scientists discovered that exposure to sunlight or
consumption of ultraviolet-irradiated olive oil could help prevent
rickets. Further research led to the identification and naming of the
active component responsible for combating rickets as vitamin D
(Mccollum et al., 1922). Vitamin D is fat-soluble vitamin that can be
categorized into various forms depending on the structure of side
chains, such as Vitamin D2, Vitamin D3, Vitamin D4, Vitamin D5,
Vitamin D6, and Vitamin D7. Among these, VD2 and VD3 are the
primary forms found in plants and animals (Holick, 2023).

Vitamin D2 is produced from ergosterol upon ultraviolet light
exposure in plants and fungus, whereas vitamin D3 is converted
from 7-dehydrocholesterol upon ultraviolet irradiation in animals.
In humans, 80%–90% vitamin D is synthesized in skin, while the rest
is obtained from diet such as mushrooms or cod liver oil via
chylomicrons and lymphatic vessels in intestine (Dueland et al.,
1985; Mau et al., 1998; Houghton and Vieth, 2006; Reboul et al.,
2011; Baur et al., 2020).

Both vitamin D2 and D3 would be stored and released from
adipose tissues, skeletal muscles, brain, lung, spleen and skin, and

they serve the same physiological functions (Holick, 2004; Bouillon
et al., 2019). Their catabolism mainly occurs in liver and kidney,
with most being excreted through bile in feces, and a portion is also
eliminated through urine (Jones, 2008). The general production and
metabolic process of vitamin D is summarized in Figure 1.

2.2 Key proteins involved in the metabolism
of vitamin D

Vitamin D undergoes 2 rounds of hydroxylation reactions to
transform into 1,25(OH)2D, the ultimate biologically active form in
human, and liver is the principal site for the initial hydroxylation to
produce 25(OH)D. A variety of CYP family members with 25-
hydroxylase activity have been discovered to date, among which
CYP2R1 is considered as the key enzyme for this reaction (Cheng
et al., 2004; Thacher et al., 2015). Genetic deletion of
CYP2R1 resulted in severe symptoms of vitamin D deficiency in
mice, including hypocalcemia, hyperphosphatemia, and
osteomalacia (Roizen et al., 2018), and a multicenter genetic
association study revealed that a few CYP2R1 genetic
polymorphisms were correlated with serum 25(OH)D3 level to
varying degrees (Wang et al., 2010). Besides CYP2R1,
CYP27A1 also participates in the hydroxylation of vitamin D

FIGURE 2
Function of vitamin D. The roles of vitamin D in the human body include: regulation of metabolism; DNA repair; Antioxidant; Promoting gene
expression, promoting cell apoptosis and differentiation; Anti-inflammatory response; Promote immune balance.
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with a preference for vitamin D3 over D2 (Pikuleva et al., 1998;
Shinkyo et al., 2004), while CYP3A4 primarily catalyzes vitamin
D2 as substrate (Aiba et al., 2006). In rats, CYP2C11 also exhibits 25-
hydroxylase activity, while it is still unclear whether human possess
its homolog (Rahmaniyan et al., 2005).

After initial hydroxylation reaction, 25(OH)D is the main
circulating form in serum (Lund and DeLuca, 1966; Mawer et al.,
1969; Norlin and Wikvall, 2023), and its serum concentration is
often considered as the primary clinical indicator for evaluating
vitamin D level (Damasiewicz et al., 2015). The majority of liver-
produced 25 (OH)D is released into bloodstream forming complex
with Vitamin D Binding Protein (VDBP), a carrier protein which is
also produced by hepatocytes. VDBP greatly increases the solubility
of vitamin D metabolites and protects them from metabolic
degradation, whose serum level sometimes serves as an auxiliary
indicator for assessing an individual’s vitamin D status during
clinical practices (Haddad et al., 1993).

In kidney, 25 (OH)D/VDBP complexes are filtered by the
glomerulus and reabsorbed at proximal convoluted tubule.
Within tubular cells, 25 (OH)D is released from VDBP complex
through lysosomal degradation and transferred to mitochondria
(Nykjaer et al., 1999; Nykjaer et al., 2001), where 25 (OH)D is further
hydroxylated to 1,25 (OH)2D by CYP27B1 (Jones et al., 2014).
CYP27B1 expression level is highest in kidney, but it is also
detectable in other tissues such as epidermis and immune cells,
and 1,25 (OH)2D can still be produced in anephric rats and patients
with chronic renal failure, indicating that the activation of vitamin D
might not be exclusively limited to kidney (Zehnder et al., 2001).
Eventually, 1,25 (OH)2D is released into bloodstream and binds
again to VDBP during its circulation all over the body, but the
affinity of VDBP for 25 (OH)D is 10–100 times greater than 1,25
(OH)2D (Verboven et al., 2002).

CYP24A1 is a key enzyme regulating the circulating
concentrations of 1,25 (OH)2D, which constitutes the
degradation of the vitamin D molecules into water-soluble
calcitroic acids for excretion by catabolizing 25(OH)D and
1,25(OH)2D into 24-hydroxylated products (24,25 (OH)2D and
1,24,25(OH)3D) (Li and Tuckey, 2023). CYP24A1 is present in
all cells that contain vitamin D receptor (VDR), and its expression is
induced by sufficient vitamin D and normal calcium balance,
forming a negative feed-back loop to restrict vitamin D functions.

2.3 The physiological functions of vitamin D

Biologically active 1,25 (OH)2D is recognized by VDR, a ligand-
dependent nuclear transcription factor discovered in 1974
(Brumbaugh and Haussler, 1974). Upon 1,25(OH)2D binding,
VDR undergoes phosphorylation at serine 208 within hinge
domain (Jurutka et al., 1993; Arriagada et al., 2007), followed by
heterodimerization with retinoid X receptor (RXR) at hexametric
repeats on Vitamin D Response Elements (VDRE) in promoter
regions of target genes (Fretz et al., 2006; Meyer et al., 2006). Then
1,25(OH)2D/VDR/RXR complex recruits either transcriptional co-
activators (such as p160 and TIF2) or repressors (such as N-CoR and
SMRT) to regulate the expression of target genes (Haussler et al.,
1997; Bettoun et al., 2003; Leong et al., 2004; Dhawan et al., 2005;
Shri Preethi et al., 2023). Besides nuclear VDR (nVDR), cytoplasmic

VDR (cVDR) and membrane VDR (mVDR) have also be reported
(Barsony et al., 1997; Zhang Y. et al., 2023). A study on ovarian
cancer demonstrated that cVDR level was negatively correlated with
overall survival of ovarian cancer patients, while nVDR did not show
such prognostic potential (Czogalla et al., 2020). Till now, it is still
not thoroughly investigated whether cVDR and mVDR play distinct
functions compared to nVDR, especially in a transcription-
independent or vitamin D-independent way.

The classic function of vitamin D is to maintain the stability of
plasma calcium and phosphorus levels, which are essential for
skeletal mineralization, muscle contraction, nerve conduction, as
well as other basic functions of cells. 1,25 (OH)2D/VDBP complexes
travel all over the body via blood circulation, participating in the
regulation of calcium and phosphorus absorption, transfer, and
reabsorption (Maestro et al., 2016). In intestinal mucosal cells,
1,25 (OH)2D acts on nVDR to promote the biosynthesis of
calcium-transporting proteins such as TRPV5/6, calbindin-D9k,
plasma membrane Ca2+-ATPase1b, and NCX1 (Wongdee and
Charoenphandhu, 2015; Xu et al., 2021). Moreover, 1,25 (OH)2D
enhances calcium reabsorption by renal distal tubule by up-
regulating the expression of plasma membrane Ca2+-ATPase1b in
renal epithelial cells (Glendenning et al., 2000). In osteoblast, 1,25
(OH)2D facilitates the deposition of calcium and phosphorus in the
form of bone salts via up-regulating the expression of ALPL and
c-MYC, thus promoting the calcification of bone tissues (Anderson,
1995; Piek et al., 2010; Schwetz et al., 2017).

Other than calcium homeostasis, 1,25(OH)2D is involved in
various other biological processes. For example, 1,25 (OH)2D exerts
a protective effect on genomic integrity by upregulating the
expression of proteins associated with DNA damage repair
pathway, such as P53 and PCNA (Anapali et al., 2022; Li et al.,
2022). Moreover, animal model study showed that vitamin D
reduced the severity of cardiac hypertrophy by increasing
mitophagy and decreasing apoptosis in aging hearts (Shahidi
et al., 2023). Similarly, a study on traumatic brain injury showed
that 1,25 (OH)2D could promote autophagic process and activate
NRF2 signaling, thus exhibiting a neuroprotective role (Cui et al.,
2021). Another study on dermal wound healing process showed that
the combination of vitamin D and low concentration of
TGFβ1 synergistically increased gene expression of TGFβ1,
connective tissue growth factor, and fibronectin, which enhanced
fibroblast migration, myofibroblast formation, and collagen
production (Ding et al., 2016). Therefore, vitamin D contributes
to tissue hemostasis in various organs beyond skeleton.

Besides solid organs, vitamin D and its metabolites also
contribute to the regulation of immune system due to the
expression of VDR in various types of immune populations
(Provvedini et al., 1983). Many studies have demonstrated that
1,25(OH)2D3 plays a key role in immune-inflammatory
suppression. For example, 1,25 (OH)2D3 treatment could induce
the production of IL-4 and GATA3 in CD4+ T cells in the absence of
cytokine stimulation in vitro (Boonstra et al., 2001). Furthermore,
1,25 (OH)2D3 can reduce the expression of inflammatory factors
such as IL-17A, IL-17F, and IL-22, and decrease the number of CD4+

T cells and memory CD4+ cells in stimulated peripheral blood
mononuclear cells from treatment-naive patients with early
rheumatoid arthritis (Colin et al., 2010). In patients with
intestinal inflammation, 1,25 (OH)2D3 can directly inhibit the
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overactivation of CD8+ T cells to maintain intestinal homeostasis
(Chen et al., 2014). Additionally, it can reduce the activation of CD8+

T cells by suppressing the secretion of IFN-γ and TNF-α
(Lysandropoulos et al., 2011). Recently, Marco Fraga et al.
reported that rapid membrane vitamin D signaling promoted a
regulatory Th2-like response with CCR8 expression in oral cancer
(Fraga et al., 2021).

Other than T cells, 1,25 (OH)2D3 also plays immune-
suppressive role in B cells and macrophages. More specifically,
1,25 (OH)2D3 treatment up-regulates the expression of p27 in
B cells, which inhibits proliferation and induces apoptosis, as well
as reducing the generation of plasma cells and post-switch memory
B cells (Chen et al., 2007). Moreover, B cells primed by 1,25
(OH)2D3 show reduced surface CD86, consequently impairing
their capacity to activate T cells (Drozdenko et al., 2014). Similar
to the observations on B cells, 1,25 (OH)2D3 could downregulate
pro-inflammatory mediators such as TNF-α, IL-1α, IL-1β, IL-6 and
RANKL, as well as reduce NO production and surface MHC class-II
antigens in monocyte-derived macrophages (Xu et al., 1993;
Nashold et al., 2000; Neve et al., 2014). Moreover, 1,25
(OH)2D3 also impairs NK cell development and cytotoxic
functions in a vitro umbilical cord blood hematopoietic
progenitor cell differentiation model (Weeres et al., 2014).

In general, vitamin D mainly contributes to immune
homeostasis as an immune-suppressive player, and the
association between vitamin D and immune disorders such as
autoimmune diseases and immune-suppressive tumor
microenvironment warrants further exploration and investigation.

2.4 Diseases related with vitamin
D deficiency

2.4.1 Skeletal disorders
A deficiency in vitamin D can lead to impaired calcium

absorption and bone mineralization, causing the development of
rickets and chondrosis (Liu et al., 2023). Chondrosis can present
with bone and joint problems, respiratory problems, and facial and
bone deformities, while rickets may also have effects on teeth,
hearing and vision. In children, observational studies have
demonstrated that a serum level of 25 (OH)D above 50 nmol/L
is required to prevent rickets (Yamshchikov et al., 2009).
Randomized trials support oral vitamin D supplement of 400 IU/
day as the optimal dose for the prevention of nutritional rickets
(Specker et al., 1992; Gallo et al., 2013).

2.4.2 Diabetes
Observational studies have shown an inverse association

between vitamin D levels and the risk of diabetes (Chiu et al.,
2004; Reis et al., 2007; Lu et al., 2009; Afzal et al., 2013; Gong et al.,
2024). Multiple mechanisms might be involved in such an
association. For example, animal studies have shown that 1,25
(OH)2D promotes the biosynthesis ability of pancreatic β cells
and accelerates the conversion of proinsulin to insulin (Bourlon
et al., 1999). In vitro experiments also showed that calbindin-D
(28k), a transcriptional target of 1,25(OH)2D, could prevent the
apoptosis of pancreatic β cells via directly inhibiting the activity of
caspase-3 (Christakos and Liu, 2004).

2.4.3 Cardiovascular diseases
In vivo and in vitro experiments have proved that vitamin D has

many cardiovascular effects, such as anti-hypertrophy properties
(Kim et al., 2006; Chen et al., 2011), inhibition of cardiomyocyte
proliferation, stimulation of smooth muscle cell proliferation
(Carthy et al., 1989; Rebsamen et al., 2002; Doran et al., 2008),
endothelial growth factor expression (Wong et al., 2008), inhibition
of natriuretic peptide release and renin-angiotensin-aldosterone
system (Li et al., 2002). However, randomized trials of vitamin D
supplementation do not support benefits for cardiovascular health
(Hiemstra et al., 2019). More research is required to elucidate the
relationship between vitamin D deficiency and
cardiovascular diseases.

2.4.4 Acute infection
Vitamin D reduces the risk of microbial infection and death by

many mechanisms, including physical barrier, cellular natural
immunity, and adaptive immunity (Rondanelli et al., 2018).
Laboratory study have showed that 1,25 (OH)2D reduces the
proportion of rotavirus replication in vivo and in vitro (Zhao
et al., 2019). Experimental data have also proved that vitamin D
supplementation can reduce the risk of influenza and COVID-19
infection and death (Urashima et al., 2010; Hastie et al., 2020; Ilie
et al., 2020). Clinical trial showed that supplementation with
4000 IU/d of vitamin D can reduce dengue virus infection
(Martínez-Moreno et al., 2020). Moreover, an analysis of data
from 25 randomized controlled trials of vitamin D
supplementation for the prevention of acute respiratory
infections demonstrated that the overall protective effect was
stronger in people with baseline 25 (OH)D concentrations below
25 nmol/L, compared to those with baseline 25 (OH)D
concentrations of 25 nmol/L or higher (Li-Ng et al., 2009;
Manaseki-Holland et al., 2010; Urashima et al., 2010).

2.4.5 Chronic inflammatory diseases
Multiple sclerosis (MS) is a chronic inflammatory demyelinating

disease of the central nervous system (CNS) that leads to
neurodegeneration (Thompson et al., 2018). A prospective study
of more than 7 million military personnel in the United States.
Military repository found that a lower serum vitamin D level was
correlated with a higher risk of MS (Munger et al., 2006). Vitamin D
plays an important role in the pathogenesis of MS by participating in
the regulation of immune response (Mahon et al., 2003;
Lysandropoulos et al., 2011; Grau-López et al., 2012).

Other than MS, vitamin D deficiency is also correlated with a
higher risk for chronic inflammatory diseases of liver and intestine.
For example, the high prevalence of vitamin D deficiency in patients
with autoimmune hepatitis indicates its importance as an
immunomodulator (Smyk et al., 2013). Similarly, a study on a
cohort of 203 treatment-naïve patients with chronic hepatitis B
virus (HBV) demonstrated that low 25(OH)D level was associated
with higher HBV replication rate (Farnik et al., 2013). Moreover,
in vitro experiment demonstrated that vitamin D deficiency
promoted the proliferation and activation of hepatic stellate cells,
which might contribute to hepatic fibrosis, a common hepatic
pathological change resulted from chronic inflammatory diseases
(Sun et al., 2021). Besides liver diseases, animals lacking vitamin D
diet are more likely to develop experimental colitis due to increased
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intestinal permeability (Du et al., 2017). Mechanistic study showed
that vitamin D/VDR signaling could induce the expression of
Claudin-2, a key gene involved the epithelial integrity (Fujita
et al., 2008).

2.4.6 Asthma
Low serum 25 (OH)D level has been found to be associated with

asthma in both adults and children (Confino-Cohen et al., 2014;
Hattangdi-Haridas et al., 2019). In terms of asthma recurrence rates,
children with asthma who took vitamin D supplements have
significantly lower recurrence rate than those in the placebo group
(Korn et al., 2013; Ozturk Thomas et al., 2019). Recent studies have
shown that vitaminDhas important immunomodulatory effects, which
can inhibit airway inflammation (El Abd et al., 2024), improve airway
hyperreactivity (Wang et al., 2022), improve airway remodeling, reduce
glandular secretion, reduce bronchial smooth muscle cell proliferation,
and increase the body’s response to hormones (Britt et al., 2016).

3 The association between vitamin D
and cancer

Vitamin D participates in the physiological processes of life as a
precursor to steroid hormones, and recent studies have found that
vitamin D also plays a key role in the prevention and treatment of
cancer via regulating cancer cell metabolism, proliferation,
differentiation, migration, as well as its dynamic interaction
between immune system and tumor microenvironment
(Figure 2) (Zhang and Naughton, 2010; Jeon and Shin, 2018;
Sheeley et al., 2022; Seraphin et al., 2023).

3.1 Vitamin D and breast cancer

Breast cancer is a common malignant tumor that threatens the
life and health of women and its incidence rate ranks first among all
types of cancer worldwide (Sung et al., 2021). A population-based
case-control study comprising 289 breast cancer cases and
595 matched controls showed that a high level of serum 25 (OH)
D significantly reduced the risk of developing breast cancer in
premenopausal population in the region of southern Germany
(Abbas et al., 2009). Moreover, a meta-analysis on 44,165 cases
from 64 studies worldwide demonstrated that a higher serum 25
(OH)D concentration was associated with better prognosis for
breast cancer patients (Vaughan-Shaw et al., 2017).

A number of hypotheses have been proposed to explain the
relationship between vitamin D and breast cancer carcinogenesis in
a variety of cell lines and animal models (Ooi et al., 2010). As
demonstrated by several in vitro studies on breast cancer cell lines,
1,25 (OH)2D influences multiple signaling pathways, such as RAS/
MEK/ERK pathway and AMPK pathway, thus inducing differentiation,
cell cycle blockage and apoptosis in both normal and malignant breast
cells, as well as inhibiting cell proliferation and angiogenesis (LaPorta
and Welsh, 2014; Zheng et al., 2019). Moreover, vitamin D is able to
inhibit invasion and metastasis of breast cancer cells by decreasing
N-cadherin and vimentin expression in breast cancer cells while
upregulating the expression of E-cadherin (Blasiak et al., 2020).
Interestingly, 24,25 (OH)2D3, which is often considered as a

functionally inactivated vitamin D metabolite, could also exhibits
anti-cancer properties in ER+ breast cancer cells, but not in ER−

breast cancer cells, suggesting that the anti-cancer effect of 24,25
(OH)2D3 may be ER-dependent (Verma et al., 2021).

In animal experiments, a study on a rat mammary hyperplasia
model revealed that nipple diameter, height, and mammary thickness
decreased with increasing vitamin D dosage, and the expression of
estrogen receptor alpha (ERα) and progesterone receptor (PR) in tissues
also declined with increasing vitamin D dosage. Immunocompromised
mice bearingMCF-7 breast cancer xenografts showed significant tumor
shrinkage (>50%) after ingestion of a vitamin D3-supplemented diet
(5000 IU/kg) compared with a control diet (1000 IU/kg) (Swami et al.,
2012). Mice with higher vitamin D levels were more immune resistant
to transplanted cancers and responded better to checkpoint blockade-
based cancer immune therapy, which was related to the action of
vitamin D on gut microbiota particularly Bacteroides fragilis
(Giampazolias et al., 2024). Moreover, Esma Karkeni et al. reported
that vitamin D supplement could decrease tumor growth by increasing
tumor infiltrating CD8+ T cells in a murine orthotopic breast cancer
model fed with normal diet. Interestingly, such protective effect of
vitamin D would be reversed in high-fat diet conditions, suggesting the
involvement of other metabolism factors in this process (Karkeni
et al., 2019).

3.2 Vitamin D and prostate cancer

Prostate cancer is one of the most common tumors in men, and
its incidence rate ranks second in male malignant tumors (Sung
et al., 2021;Wei et al., 2021). Haojie Li et al. reported that Men with a
low serum vitamin D status and a less active VDR genotype were at
approximately two-fold higher risk for prostate cancer than men
with the active VDR allele and a high serum 5 (OH)D3 in a
prospective study involving 18 years of follow-up of 14,916 men
initially free of diagnosed cancer in United States (Li et al., 2007).
However, Yonghua Xu et al. conducted a meta-analysis of
21 observational studies on cohorts of various countries, and
found that men with a high level of serum 25 (OH)D had a
significantly increased risk of prostate cancer (Xu et al., 2014).
These controversial epidemiological observations suggest that
vitamin D might play complicated roles in prostate cancer.

However, vitamin D and its metabolites mostly exhibit anti-
proliferative effects against prostate cancer in laboratory studies. For
example, 1,25 (OH)2D3 reduces the expression of anti-apoptotic
proteins and induces insulin-like growth factor binding protein
(IGFBP3), thus leading to apoptosis in prostate cancer cell lines
(Boyle et al., 2001; Guzey et al., 2002; Washington and Weigel,
2010). Similarly, 1,25 (OH)2D3 reduces the expression of
cyclooxygenase-2 (COX-2) and 5-prostaglandin dehydrogenase
(15-PGDH), two critical enzymes involved in the metabolism of
prostaglandin, which consequently inhibits proliferation of prostate
cancer cells. (Moreno et al., 2005).

3.3 Vitamin D and liver cancer

Hepatocellular carcinoma (HCC) is the third most lethal
malignant tumor in the world (Sung et al., 2021; Wu et al., 2022;
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Jiang et al., 2023), and an increasing number of studies have found
that there is an indirect relationship between serum vitamin D levels
and the risk of HCC (Markotić et al., 2022). For example, Veronika
Fedirko et al. reported that in a European population cohort study of
204 cases, individuals with serum vitamin D levels below a certain
threshold (25(OH)D < 75 nmol/L) had a significantly increased risk
for HCC compared to those with higher levels (Fedirko et al., 2014).

In vitro studies have shown that 1,25 (OH)2D3 inhibits the
proliferation of HCC cell lines by multiple mechanisms, such as
induction of apoptosis and cell cycle blockage at G1 phase (Chiang
et al., 2011; Wang et al., 1996). Besides directly acting on the
proliferation of HCC cells, vitamin D also exerts synergistic anti-
HCC effects with existing drugs. For example, astemizole enhanced
the anti-tumor effect of Vitamin D in HCC both in vitro and in vivo
(Xu et al., 2018). Additionally, vitamin D is an anti-fibrotic agent
which can inhibit collagen expression, which also contributes to the
suppression of HCC development and progression (Chen
et al., 2016).

3.4 Vitamin D and the cancer of
gastrointestinal tract

As a key transcriptional factor regulating calcium absorption,
VDR expression is high in gastrointestinal tract, especially intestine,
and a number of research have demonstrated that vitamin D/VDR
signaling axis exerts regulatory functions in the malignant
transformation of colon and stomach. For example, an
epidemiological investigation showed an inverse relationship
between solar radiation (latitude) and colorectal cancer (CRC)
mortality and incidence in the United States, indicating that
vitamin D might be a protective factor for CRC (Garland and
Garland, 1980; Sui et al., 2018; Chen et al., 2019; Zou Y. et al.,
2024). Numerous in vitro and in vivo studies have demonstrated that
1,25 (OH)2D could not only inhibit proliferation, but also induce
epithelial differentiation, apoptosis, and detoxification metabolism
by regulating the expression of target genes such as CST5 and
JMJD3 in CRC cells (Alvarez-Díaz et al., 2009; Pereira et al., 2011).
Moreover, vitamin D inhibits Wnt signaling by blocking cross-talk
between tumor epithelial cells and their microenvironment.
Specifically, VDR downregulates the expression of β-catenin,
cyclin D1 and LEF-1 in vitro, and xenografts established by
VDR-overexpressing SW480 cells shows suppression of tumor
growth and decreased expression of β-catenin, cyclin D1 and
LEF-1 (Yu et al., 2023). Vitamin D also inhibits the nuclear
translocation of β-catenin by downregulating the expression of
Wnt ligands (Wnt1 and Wnt3a), which further reduces the
expression of the downstream target gene cyclin D1 (Zou M.
et al., 2024). Vitamin D also represses the cell cycle regulator
MYC gene directly and indirectly through the Wnt/β-catenin
pathway (Liu et al., 2008). A recent study reported that acidosis,
a common feature of CRC microenvironment, could induce VDR
nuclear exportation, which tuned down the VDR-dependent anti-
malignant signaling and consequently led to phenotypic
transformation towards CRC stem cell (Hu et al., 2020).

Similar to CRC, many studies have demonstrated that vitamin D
and its metabolites exert protective effects against gastric cancer.
Analysis of serum 25 (OH)D level in gastric cancer patients have

demonstrated that both clinical stage and lymph node metastasis
classification are significantly inversely associated with vitamin D
level (Ren et al., 2012). Bao et al. found that 1,25 (OH)2D3 treatment
induced apoptosis in gastric cancer cells in vitro (Bao et al., 2013).
Vitamin D acts through the hedgehog signaling pathway and
reduces cell viability by inhibiting the expression of many
hedgehogs signaling target genes in gastric cancer cells, including
Patched1 and Gli1 (Baek et al., 2011). Moreover, functional VDR
elements have been identified in the promoters of phosphatase and
tensin homologues (PTEN), a potent tumor suppressor, suggesting
that vitamin D may be involved in the regulation of PTEN
expression (Bao et al., 2013). Vitamin D significantly promotes
apoptosis in undifferentiated gastric malignant cells (especially
hCG-27) (Ren et al., 2012). Recent studies have revealed that
vitamin D plays a role in modulating the expression of various
genes associated with extracellular matrix remodeling, which may
impede the progression of gastric cancer by regulating the
extracellular matrix microenvironment. Specifically, vitamin D
decreases the expression of profibrotic factors, including
TGFB1 and SERPINE1, as well as collagen types I and III, and
other collagen isoforms, while it also increases the expression of
antifibrotic factors such as BMP7, MMP8, and follistatin. These
effects suggest that vitamin D could potentially prevent the
progression of gastric cancer by balancing the pro-fibrotic and
anti-fibrotic factors within extracellular matrix (Artaza and
Norris, 2009).

3.5 Vitamin D and hematologic malignancy

Hematological malignancies are myeloid and lymphatic tumors
caused by disruption of normal hematopoietic function. They are
classified into several common subtypes, generally consisting of
leukemia, multiple myeloma, non-Hodgkin lymphoma, and
Hodgkin lymphoma (Zhang N. et al., 2023). 1,25 (OH)2D3 has
anti-proliferative, pro-apoptosis, and pro-differentiation effects in
hematologic malignancies, such as leukemia and lymphomas
(Kozielewicz et al., 2016). In addition, 1,25 (OH)2D3 also reduces
the production of pro-inflammatory cytokines such as IFN-γ, TNF-
α and IL-17, which are known to be associated with the development
of inflammation (Peruzzu et al., 2022). In leukemia and lymphoma
cells, 1,25 (OH)2D3 reduces the activation of oncogenic JAK/STAT
pathway (Olson et al., 2017). Particularly in myeloid leukemia cells,
1,25 (OH)2D3 treatment promotes the differentiation of the
predominantly neutrophilic myeloid cell lineage, while leading to
a reduction in the proliferation and an enhancement in the
monocyte-macrophage differentiation pathway, which may be
related to the upregulation of the transcription factor CEBPD
(Marchwicka and Marcinkowska, 2018).

4 The association between key genes of
vitamin D metabolism and cancer

The relationship between vitamin D deficiency and cancer risk
has received widespread attention. Genetic polymorphisms and
abnormal expression of vitamin D metabolizing enzymes are
strongly associated with cancer risk and prognosis (Table 1), and
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these findings provide new perspectives on cancer prevention and
treatment, and may contribute to the development of new
therapeutic strategies (Bergadà et al., 2014).

4.1 CYP2R1, CYP27A1, and CYP3A4

CYP2R1, CYP27A1 and CYP3A4 are 3 major 25-hydroxylases
responsible for the initial hydroxylation to convert vitamin D to 25
(OH)D, and their genetic polymorphisms have been found
associated with different risks for developing certain types of cancer.

Kong et al. analyzed the correlation between
CYP2R1 rs10741657 and the prognosis of 542 Asian non-small
cell lung cancer patients by multivariate Cox regression model, and
they found that the A/G and A/A carriers displayed a lower risk of
death than G/G carriers (A/G vs. G/G, HR = 0.79, 95% CI: 0.61–1.03;
A/A vs. G/G, HR = 0.69; 95% CI: 0.46–0.97; p = 0.033) (Kong et al.,
2020). Parallelly, Jing Wen et al. conducted a meta-analysis covering
23,780 cancer cases and 27,307 controls on 3 SNPs of CYP2R1
(rs10741657 G/A, rs12794714 G/A, and rs2060793 G/A) and did not
identify significant correlation with overall cancer risk, but further
stratified analyze revealed that CYP2R1 rs12794714-G/A SNP was
associated with a significantly lower risk of colorectal cancer (A vs.
G: OR = 0:866, 95% CI: 0.753–0.997, p = 0.046) (Wen et al., 2021).

Li-Ping Zhou et al. investigated the association between
CYP3A4*1B (rs2740574A > G) polymorphism in a meta-analysis
involving 3,810 cancer patients and 3,173 healthy controls, and they
discovered that G allele and G/G genotype were associated with
increased risk of cancers (allele model: OR = 1.24, 95 %CI: 1.09–1.42,
p = 0.001; recessive model: OR = 1.77, 95 %CI: 1.30–2.41, p < 0.001;
homozygous model: OR = 1.72, 95 %CI: 1.19–2.47, p = 0.004).
Meanwhile, cancer type subgroup analyses showed that the G allele
and G carrier (A/G + G/G) had significantly increased risk of
prostate cancer, but not with breast cancer, leukemia, or other
cancers, while ethnicity subgroup analysis showed that G/G
genotype might increase the risk of cancer among African
populations, but not Caucasian or Asian population. This study
indicated G allele and G/G genotype polymorphism in the
CYP3A4 gene might be associated with an increased risk of
cancers, particularly prostate cancer in African population
(Zeigler-Johnson et al., 2004; Zhou et al., 2013).

Other than cancer susceptibility, CYP3A4 also plays a key role in
chemotherapy resistance, and a drug metabolism study on
108 cancer patients demonstrated that CYP3A4*22 carriers
(rs35599367 C > T) exhibited reduced erythromycin
N-demethylation activity by 40%, highlighting the importance of
considering CYP3A4 polymorphisms in cancer treatment to
maximize efficacy and to avoid unpredictable adverse events
(Elens et al., 2013).

Besides genetic polymorphisms, alterations in gene expression
level also have influences on the activity of vitamin D 25-
hydroxylases, consequently changing an individual’s cancer
susceptibility and responses to therapies. For example, high
CYP27A1 expression is associated with a reduced incidence of
distant recurrence-free survival events in breast cancer (Inasu
et al., 2021). Similarly, expression of CYP27A1 is reduced in
clinical specimens in bladder cancer, prostate cancer and renal
cell carcinoma, and restoration of its expression is able to inhibit

the proliferation of these cancer cell lines, indicating its potential
role as a tumor suppressor (Riecanský and Plachá, 1983; Alfaqih
et al., 2017; Baek et al., 2017; Liang et al., 2019; Zhang X. et al., 2022).
Interestingly, CYP27A1 and CYP2R1 expressions are higher in
endometrial carcinoma compared to normal endometrium, but
they are still inversely with the proliferation marker Ki67, and
vitamin D treatment reduces cell viability and colony number
in vitro, suggesting that CYP27A1 and CYP2R1 are beneficial
factors for endometrial carcinoma patients in consistence with
previous observations (Bergadà et al., 2014). However, recent
studies on tumor infiltrating myeloid cells led to opposite
understanding regarding the role of CYP27A1 in carcinogenesis.
Specifically, Sisi He et al. reported that high CYP27A1 expression
was associated with shortened progression-free survival for ovarian
cancer patients, and the expression of CYP27A1 was critical for the
infiltration of monocytic myeloid derived suppressor cells to support
tumor growth in an ovarian cancer mouse model (He et al., 2019). In
consistence with the observation in ovarian cancer, Liqian Ma et al.
reported that CYP27A1 was highly expressed in myeloid cells, and
breast cancer metastasis was reduced after myeloid specific
knockout of CYP27A1 in mice, suggesting that CYP27A1 axis in
myeloid cells played an oncogenic role in breast cancer (Ma
et al., 2020).

The researches on CYP3A4 expression in cancer are mainly
focused on drug resistance. For example, a study on multidrug
resistance-associated proteins demonstrated that
CYP3A4 overexpression would lead to the acquisition of
doxorubicin resistance in human prostate cancer LNCaP,
osteosarcoma MG-63, and chondrosarcoma SW-1353 cells (Tian
and Hu, 2015; Ohya et al., 2023). Similarly, expression of
CYP3A4 and P-glycoprotein (MDR1) correlates with poor
clinical response in peripheral T-cell lymphoma (PTCL), and
high CYP3A4 expression correlates with lower complete
remission rates, suggesting its role in predicting therapeutic
responses to standard PTCL chemotherapy (Rodríguez-Antona
et al., 2007).

4.2 CYP27B1

The cytochrome enzyme CYP27B1 converts the major
circulating metabolite of vitamin D, 25 (OH)D, to the active
form of 1,25 (OH)D, a process that is essential for its function as
VDR ligand. The relationship between polymorphisms in
CYP27B1 and cancer susceptibility has been extensively studied,
although the results have been inconsistent. Certain single
nucleotide polymorphisms (SNPs) in CYP27B1 may decrease
enzyme activity [e.g., R107H (rs28934604), A129T (rs58915677),
S356N (rs13377933) and V374A (rs2229103)], whereas certain
variants [e.g., V166L (rs58915677)] may increase enzyme activity
(Jacobs et al., 2013). In colorectal cancer (CRC), CYP27B1 is
expressed at sites in intestinal cells that are capable of converting
vitamin D pro-vitamin to an active form that affects colon cancer
risk. For example, rs10877012 polymorphism in the promoter
region of CYP27B1 gene affects balance between vitamin
D3 metabolites in circulation, and G/T and T/T populations
showed a weaker correlation between serum 25(OH)D3 and
1,25(OH)2D3 concentrations compared to G/G population
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(Marques Vidigal et al., 2017). Maria Latacz et al. investigated the
association between the rs10877012 (T/G) polymorphism in the
CYP27B1 gene and CRC susceptibility and identified a significant
association between the presence of T allele and CRC incidence
(OR = 2.94; 95%CI: 1.77–4.86; p < 0.0001), suggesting the impaired
vitamin D metabolism might be a risk factor for CRC (Latacz
et al., 2020).

Besides polymorphisms, expression level of CYP27B1 has
potential implications in the prognosis for a variety of cancers.
Loss of CYP27B1 expression and molecular defects may lead to
reduced VDR signaling and correlate with disease progression and
recurrence in many types of solid tumors such as breast cancer and
non-melanoma skin cancer (Nemazannikova et al., 2019;
Voutsadakis, 2020). Moreover, a study on ovarian cancer showed
that loss of CYP27B1 expression was mediated by EZH2, a histone
methyltransferase catalyzing the trimethylation of histone H3 lysine
27 (H3K27me3) (Huo et al., 2020).

4.3 CYP24A1

CYP24A1, known as 25-hydroxyvitamin D-24-hydroxylase, is a
mitochondrial enzyme that regulates the activity level of VDR
signaling by performing hydroxylation at 24′position to produce
inactive vitamin D metabolites. Recent studies have shown that
CYP24A1 plays an important role in the development and
progression of many cancers, and abnormalities in its expression
level are closely related to the biological behavior of tumor (Sakaki
et al., 2014; Sheng et al., 2019; Zeng et al., 2022).

CYP24A1 expression is generally higher in cancer tissues compared
to normal tissues, which also correlates with aggressive diseases and poor
prognosis. For example, in breast cancer, high expression of CYP24A1 is
associated with tumor progression, and amplification of CYP24A1 locus
at 20q is an adverse prognostic factor for recurrence free survival in ER+

breast cancer (Davis et al., 2007; Zhalehjoo et al., 2017). Similar
correlation between CYP24A1 expression and poor prognosis has also
been observed in colorectal cancer, lung cancer and ovarian cancer
(Shiratsuchi et al., 2017; Lin et al., 2024). However, Yuna Nakamori et al.
recently discovered that low expression levels of CYP24A1 promoted
oncogenic progression in oral squamous cell carcinoma (OSCC) and
were significantly associated with poor prognosis in patients with this
malignancy, indicating that CYP24A1 might play a tumor-suppressive
role in OSCC (Nakamori et al., 2024).

Other than expression level, CYP24A1 gene variants are also
correlated with cancer susceptibility. For example, Ying Wei
reported that CYP24A1-rs4809957 SNP was associated with an
increased risk of breast cancer (allele A: OR = 1.27, 95% CI:
1.03–1.55, p = 0.024; A/A vs. G/G: OR = 1.80, 95% CI:
1.15–2.82, p = 0.010; recessive model: OR = 1.70, 95% CI:
1.12–2.58, p = 0.012) (Wei et al., 2019). J J Oh et al. evaluated
the association between 21 SNPS in CYP24A1 and prostate cancer
risk in Korean male population, and identified 5 CYP24A1 variants
(rs2248461, OR = 0.63; rs2248359, OR = 0.65; rs6022999, OR = 0.65;
rs2585428, OR = 0.46; rs4809959, OR = 0.52) were significantly
negatively associated with prostate cancer risk after multiple
comparisons by a method of false discovery rate (Oh et al., 2014).

In pre-clinical cancer therapy research, CYP24A1 inhibitors are
able to reduce the breakdown of 1,25 (OH)2D and enhance its anti-

tumor effect, and show potential therapeutic value. For example,
CYP24A1-specific inhibitor VID400, anti-CYP24A1 analogues ED-
71 (Eldecalcitol) and MART-10 have exhibited potent biological
effects in both in vitro and in vivo studies, including inhibition of
cancer cell growth and induction of apoptosis (Sakaki et al., 2014).

4.4 VDBP

Vitamin D binding protein (VDBP), also known as group-
specific complement or Gc protein, is an important component
of the endocrine system responsible for stabilizing and transporting
vitamin D to target tissues, thereby having an indispensable function
in regulating calcium homeostasis and bone mineralization.

Wanwisa Maneechay et al. reported that the minor allele
frequencies of rs7041 (G) and rs4588 (A) were 0.32 and 0.24,
respectively, and rs7041 (TG/GG) was associated with lung
cancer risk (OR = 1.78, 95% CI: 1.05–3.03) in Thailand. Further
subgroup analysis revealed that minor-allele genotypes of rs7041
(TG/GG) was associated with colorectal cancer among males older
than 60 years, while the minor-allele genotypes of rs4588 (CA/AA)
was associated with colorectal cancer among males younger than
60 years. SNP combinations (rs7041-rs4588) analysis showed that
the TT-CA combination had a significant protective association with
lung cancer (OR = 0.44, 95% CI: 0.22–0.85) (Maneechay et al., 2015).
Moreover, the proportion of subjects with low serum vitamin D
(<20 ng/mL) was significantly higher in those harboring CA or AA
genotypes of rs4588 (41.7%) compared to the CC genotype (15.5%,
p < 0.01) (Maneechay et al., 2015).

Expression of VDBP is also associated with a variety of diseases,
including a variety of cancers such as breast, prostate, pancreatic,
lung, colorectal, basal cell carcinoma, and cutaneous melanoma
(Francis et al., 2021; Filigheddu et al., 2024). Specifically, elevated
VDBP expression is associated with a good prognosis in HCC, and it
may act as an important prognostic biomarker in HCC (Qin et al.,
2024). Similarly, higher levels of VDBP are associated with improved
overall and overall survival in colorectal cancer (Muindi et al., 2013).

4.5 VDR

Nuclear steroid receptor VDR is not only essential in
maintaining calcium-phosphorus homeostasis, but also plays a
key role as a tumor suppressor effects in many types of solid
tumors (Voutsadakis, 2020).

Reduced expression of VDR has been observed in many types of
cancer, including breast cancer and colorectal cancer. Specifically,
methylation of exon 1a in VDR gene is significantly higher (65% of
CpGs methylated) compared with normal breast tissue (15%)
(Marik et al., 2010). Similarly, Malini Srinivasan et al. have
shown that the high expression of VDR in the nucleus of lung
cancer is associated with a good prognosis (Srinivasan et al., 2011).
Moreover, CpG methylation level in VDR gene is negatively
correlated with CRC risk, indicating that VDR might play
tumor-suppressive role in CRC (Wang et al., 2023). Another
research by Yongguo Zhang et al. have showed that
overexpression of VDR inhibits invasion and promotes apoptosis
of CRC cells, whereas loss of VDR results in a decreased level of
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Claudin-5 and an increased number of malignant foci in CRCmouse
model (Zhang Y. et al., 2022).

In addition, specific polymorphisms in VDR gene have been
associated with prostate cancer risk in studies of prostate cancer. In
the genotype analysis, men who are homozygote for the rare allele
for VDR SNP rs2107301 had a 2.5-fold higher risk of prostate cancer
compared with those who are homozygote for the common allele
(95% CI: 1.52–4.00; p = 0.002). Furthermore, men who are
homozygote for the rare allele for the VDR SNP rs2238135 have
a 2-fold higher risk of prostate cancer compared with those who are
homozygote for the common allele (95% CI: 1.17–3.26; p = 0.007
(Holick et al., 2007).

VDR-coregulator inhibitor PS121912 could amplify 1,25 (OH)2D3-
induced growth inhibition and apoptosis in multiple cancer cell lines at
sub-micromolar concentrations. Mechanistically, the combination of
PS121912 and 1,25 (OH)2D3 reduces the presence of SRC2 and
enriches the occupancy of corepressor NCoR at the promoter site of
VDR target genes. Transcription factors E2F1 and E2F 4 are also
downregulated by the combination of PS121912 and 1,25 (OH)2D3,
thus in turn reducing the transcription levels of cyclin A and D and
arresting cancer cells in the S or G2/M phase (Sidhu et al., 2014).

On the other hand, VDR is closely related to obesity. In terms of
adipogenesis, 1,25 (OH)2D3 exerts different effects in mice and humans
through VDR, which can not only inhibit adipogenesis in mice, but also
increase the activities of adipogenesis-related enzymes and PPARγ in
humans. In terms of gene polymorphism, VDR gene is highly
polymorphic, including Bsm I, Apa I, Taq I, Fok I, Tru 9I, Eco RV
and other single nucleotide polymorphisms (Gupta et al., 2024). The
variations of these genes have been confirmed to be associated with the
susceptibility to obesity in different ethnic populations such as Europe,
America and Asia. It increases the risk of obesity and is associated with
other diseases. Obesity affects vitaminDmetabolism and reduces serum
1,25 (OH)2D3 level, which involves the sequestration and volume
dilution of cholecalciferol by fat, changes in vitamin D metabolic
enzymes in adipocytes, and the influence of genetic factors such as
VDR mutation. Low levels of 25 (OH)2D3 may play an important role
in the development of obesity-related cancers.

5 Conclusions and perspectives

In conclusion, vitamin D metabolism has substantial influences
on human health. As a highly accessible clinical index and oral
supplementation, it has been widely used for the prevention and
treatment of skeletal disorders for decades. Epidemiologic studies on
the correlation between serum vitamin D concentration and cancer
risks, genome-wide association study on the status of vitamin
D-metabolic genes, as well as laboratory analysis on cancer
models have all indicated a potential involvement of vitamin D
metabolism in the carcinogenesis and cancer treatment. However,
the clinical benefits of vitamin D supplement for cancer treatment
has not been thoroughly investigated with clinical trials. In recent

years, many nutritionists have joined in oncology department as we
start to reveal the importance of nutrient metabolism in cancer
treatment, we would expect more real-world data originated from
carefully designed clinical trials in this field.
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Glossary
1,25(OH)2D 1,25-dihydroxyvitamin D

25(OH)D 25-hydroxyvitamin D

24,25(OH)2D3 24,25-dihydroxyvitamin D3

1,24,25(OH)3D 1,24,25-trihydroxyvitamin D

CNS central nervous system

CRC colorectal cancer

HCC hepatocellular carcinoma

HBV hepatitis B virus

IFN-γ interferon-γ

IL interleukin

JAK/STAT Janus kinase/signal transducer and activator of transcription

MS multiple sclerosis

mVDR membrane vitamin D receptor

nVDR nuclear vitamin D receptor

OSCC oral squamous cell carcinoma

PR progesterone receptor

PTCL peripheral T-cell lymphoma

PTEN phosphatase and tensin homologues

RAS/MEK/ERK rat sarcoma/mitogen-activated protein kinase kinase/extracellular
signal-regulated kinase

RXR retinoid X receptor

SMRT silencing mediator for retinoid and thyroid hormone receptors

SNP single nucleotide polymorphism

TGFβ1 transforming growth factor β1

TNF-α tumor necrosis factor-α

TRPV5/6 transient receptor potential vanilloid 5/6

VDRE vitamin D response element

VDBP vitamin D binding protein

VDR vitamin D receptor

25-OHase 25-hydroxylase

1α-OHase 1α-hydroxylase

24-OHase 24-hydroxylase

CYP cytochrome P450

CYP2R1 cytochrome P450 family 2 subfamily R member 1

CYP27A1 cytochrome P450 family 27 subfamily A member 1

CYP3A4 cytochrome P450 family 3 subfamily A member 4

CYP27B1 cytochrome P450 family 27 subfamily B member 1

CYP24A1 cytochrome P450 family 24 subfamily A member 1

ALPL alkaline phosphatase liver/bone/kidney

AMPK adenosine 5′-monophosphate-activated protein kinase

Ca2+-
ATPase1b

calcium-transporting ATPase 1b

CCR8 C-C chemokine receptor type 8

c-MYC cellular-myelocytomatosis

COX-2 cyclooxygenase-2

Dicer dicer ribonuclease III

DHCR7 7-dehydrocholesterol reductase

FAS fatty acid synthase

FGF fibroblast growth factor

GLUT4 glucose transporter 4

GATA3 GATA binding protein 3

hedgehog hedgehog signaling pathway

HIF-1α hypoxia-inducible factor 1-alpha

IGFBP3 insulin-like growth factor binding protein 3

JNK c-Jun N-terminal kinase

MAPK mitogen-activated protein kinase

MEK mitogen-activated protein kinase

MDR1 multidrug resistance protein 1

NCX1 sodium/calcium exchanger 1

NCoR nuclear receptor corepressor

NO nitric oxide

p160 steroid receptor coactivator-1

PCNA proliferating cell nuclear antigen

PKC protein kinase C

PPARγ peroxisome proliferator-activated receptor gamma

PTEN phosphatase and tensin homolog

SERPINE1 serpin family E member 1

SOC store-operated calcium

TIF2 transcription intermediary factor 2

TRPV5/6 transient receptor potential vanilloid 5/6

Wnt wingless-related integration site
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