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Background and Aims: Gout is a prevalent inflammatory arthropathy caused by
monosodium urate crystal deposition, yet its molecular pathogenesis remains
incompletely understood. This study aimed to identify key genes and elucidate
regulatory mechanisms underlying gout development through bioinformatics
analysis combined with experimental validation.

Methods: Transcriptome dataset GSE160170 and single-cell dataset
GSE211783 were analyzed using differential expression analysis and weighted
gene co-expression network analysis (WGCNA). Functional enrichment, protein-
protein interaction (PPI), ceRNA, and transcription factor networks were
constructed. Immune cell infiltration was analyzed using CIBERSORTx.
Molecular docking predicted therapeutic compounds. Experimental validation
included qRT-PCR, Western blot, gene knockdown/overexpression, and
functional assays.

Results: Among 329 gout-related genes identified, CXCL8, PTGS2, and
IL10 emerged as key regulators involved in cell-cell adhesion, leukocyte
activation, and NF-κB signaling. Immune infiltration revealed significant
upregulation of M2 macrophages, activated mast cells, activated NK cells, and
γδ T cells in gout samples. CeRNA network identified KCNQ1OT1 and hsa-mir-
98-5p as regulatory elements, while CEBPB, STAT3, RELA, and NFKB1 were key
transcription factors. Molecular docking suggested pergolide as a therapeutic
candidate. Single-cell analysis confirmed high expression of key genes in T/NK
cells and myeloid cells. Western blot validation showed upregulated protein
expression of key genes in the gout model. PTGS2 knockdown enhanced cell
viability and reduced apoptosis, while overexpression promoted inflammatory
cytokine production and NF-κB pathway activation.
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Conclusion: This study systematically elucidated the pivotal roles of CXCL8,
PTGS2, and IL10 in gout pathogenesis, providing valuable molecular targets for
therapeutic development.
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1 Introduction

Gout is a prevalent and complex form of inflammatory arthritis
that results from the deposition of monosodium urate (MSU) crystals
in joints and surrounding tissues (Gu et al., 2023). The formation of
MSU crystals occurs when serum uric acid levels exceed the
physiological saturation threshold, leading to the precipitation of
urate crystals (Gu et al., 2023). The deposition of these crystals
triggers a cascade of inflammatory responses, including the
activation of resident macrophages, recruitment of neutrophils, and
production of pro-inflammatory cytokines such as interleukin-1β (IL-
1β), tumor necrosis factor-α (TNF-α), and interleukin-6 (IL-6) (Gu
et al., 2023; Galozzi et al., 2021). Clinically, this acute inflammation
presents as gout flares, marked by severe pain, swelling, and joint
erythema. Recurrent acute flares can progress to chronic tophaceous
gout, characterized by tophi formation in joints, tendons, and soft
tissues, leading to persistent inflammation, joint damage, and
deformity, greatly affecting patients’ quality of life (Tao et al.,
2023). Furthermore, hyperuricemia and MSU crystal deposition in
the kidneys can cause uric acid nephrolithiasis and chronic kidney
disease (Kim et al., 2016). The global burden of gout has been
increasing in recent decades, with an estimated prevalence of 1%–
4% in developed countries (Singh and Gaffo, 2020). This rising
prevalence has been attributed to various factors, including aging
populations, increased prevalence of comorbidities such as obesity
and metabolic syndrome, and changes in dietary habits (Singh and
Gaffo, 2020; Pai et al., 2024). Gout is more common in men than
women and tends to occur more frequently in older age groups
(Dehlin et al., 2020). Despite significant progress in elucidating the
pathophysiology of gout, the precise molecular mechanisms
underlying the disease remain incompletely understood.

In recent years, high-throughput sequencing technologies and
bioinformatics analyses have provided powerful tools for unraveling
the complex molecular networks underlying human diseases (Uesaka
et al., 2022). Transcriptome profiling, which measures genome-wide
gene expression levels, has been widely used to identify differentially
expressed genes (DEGs) and dysregulated pathways in various
diseases, including gout. Weighted gene co-expression network
analysis (WGCNA) is a systems biology approach that constructs
gene co-expression networks to identify key gene modules and hub
genes associated with clinical traits. Integration of differential
expression analysis and WGCNA can robustly identify disease-
related genes and pathways. Moreover, the role of competing
endogenous RNAs (ceRNAs) and transcription factors (TFs) in the
regulation of key genes in gout remains largely unknown. The ceRNA
hypothesis proposes that long non-coding RNAs (lncRNAs) can act as
microRNA (miRNA) sponges to regulate the expression of mRNAs,
forming a complex regulatory network (Wang et al., 2021). TFs are also
important regulators of gene expression that can activate or repress
transcription by binding to specific DNA sequences (Wagh et al.,

2023). Investigating the ceRNA and TF regulatory networks in gout
may provide novel insights into the molecular mechanisms of this
disease. In addition, recent advances in single-cell RNA sequencing
(scRNA-seq) technology have enabled the characterization of the
transcriptome at the individual cell level, providing unprecedented
resolution for understanding the cellular heterogeneity and dynamics
in complex tissues (Conte et al., 2024). scRNA-seq has been applied to
study various rheumatic diseases, such as rheumatoid arthritis (Su
et al., 2024) and systemic lupus erythematosus (Hu et al., 2024),
revealing novel cell subpopulations and their roles in disease
pathogenesis. However, the application of scRNA-seq in gout
research is still limited.

Therefore, in this study, we aimed to systematically investigate
the key genes, pathways, and regulatory mechanisms underlying the
pathogenesis of gout by integrating bulk RNA-seq and scRNA-seq
data using bioinformatics methods. We identified differentially
expressed genes between gout patients and healthy controls and
constructed a weighted gene co-expression network to identify gout
related genes. Functional enrichment analysis revealed the biological
processes and pathways enriched in the key genes. We further
constructed a protein-protein interaction network to identify key
genes associated with gout and validated their diagnostic
performance. A nomogram risk prediction model was built based
on the key genes. Moreover, we analyzed the immune cell infiltration
landscape in gout and its correlation with key genes. A ceRNA
network was constructed to explore the regulatory interactions
among lncRNAs, miRNAs, and key genes. Transcription factors
regulating the key genes were also predicted. CMap analysis and
molecular docking were performed to identify potential small
molecule drugs targeting the key genes. Finally, we utilized
single-cell transcriptome data to validate the expression patterns
of key genes in different cell types.

2 Materials and methods

2.1 Data acquisition and preprocessing

Gout-related datasets (GSE160170 and GSE211783) were
downloaded from the Gene Expression Omnibus (GEO) database
(https://www.ncbi.nlm.nih.gov/geoprofiles/). Among them, the
GSE160170 dataset is based on GPL21827 (Agilent-
079487 Arraystar Human LncRNA microarray V4), including
transcriptome data of peripheral blood samples from 6 gout
patients and 6 normal individuals. GSE211783 is a single-cell
transcriptome dataset based on the GPL24676 platform (Illumina
NovaSeq 6000), including peripheral blood samples from 3 gout
patients and 3 normal individuals.

These datasets were preprocessed. For the transcriptome dataset
GSE160170, the R software “affy” package was used for standardized
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processing, and log2 (matrix +1) was used for standardization. For
the single-cell transcriptome dataset GSE211783, the 10x Genomics
Cell Ranger software was used for alignment, quantification and cell
identification, and then the Seurat package was used to read in the
gene-cell expression matrix, and high-quality cells were screened for
subsequent analysis based on the number of genes detected in each
cell (nFeature_RNA) between 500 and 7000. Specifically, the gene
expression of each cell was normalized by the “LogNormalize”
method, and highly variable genes were selected as feature genes
for subsequent analysis. Secondly, the expression variance of each
gene was calculated by the “FindVariableFeatures” function, and the
top 2000 genes with the highest variance were selected as feature
genes for downstream clustering analysis. Then, the expression
matrix of feature genes was scaled and centralized using the
“ScaleData” function, and PCA (Principal Component Analysis)
was used for dimensionality reduction.

2.2 Preselection of diagnostic biomarker

2.2.1 Differential expression analysis
The R software package “limma” was used for transcriptome

data, with the threshold of “fold change of 2 and P < 0.05,” to
perform differential gene expression analysis on gout group samples
and normal control group samples in the training set GSE160170,
and screen out differentially expressed genes (DEGs).

2.2.2 Weighted gene co-expression network
analysis (WGCNA)

The R software package “WGCNA” was used to perform
weighted gene co-expression network analysis (WGCNA) on the
transcriptome data. First, the pickSoftThreshold function was used
to analyze the scale-free fitness index and average connectivity to
determine the soft threshold power β. The optimal soft threshold
was selected to construct the adjacency matrix, which was then
converted into a topological overlap matrix (TOM) to measure the
co-expression similarity between genes. Then, hierarchical
clustering and dynamic tree cutting algorithm were used to
divide TOM, and multiple gene modules were identified. Then,
the correlation between the first principal component of each
module - module eigengenes (MEs) and the clinical grouping
(NC group or Cout group) was analyzed to identify gene
modules significantly related to disease occurrence and
development (P < 0.05). Finally, the gene significance (GS) of
each module was calculated. With the threshold of “GS > 0.5 and
P < 0.05,”, hub genes were screened from the co-expression modules
significantly related to the occurrence and development of gastric
cancer. By comparing the differentially expressed genes and the hub
genes under WGCNA, common genes were screened, and these
genes were considered to be closely related to the occurrence and
development of gout.

2.3 Functional enrichment analysis

GO and KEGG enrichment analysis was performed on the
common genes using the clusterProfiler package. GO was used to
annotate the biological processes, molecular functions and cellular

components of genes. KEGG was used to annotate gene pathways.
Enrichment was considered statistically significant when P < 0.05.
Based on the Gene Ontology (GO) (http://geneontology.org/) and
Kyoto Encyclopedia of Genes and Genomes (KEGG) (http://www.
kegg.jp/) databases, functional enrichment analysis was performed.
Among them, GO functional enrichment analysis was performed
from three dimensions: biological process (BP), cellular component
(CC) and molecular function (MF). To further explore abnormally
expressed signaling pathways in pathological conditions and verify
the accuracy of functional enrichment analysis, based on the
transcriptome data GSE160170, we used the R software “gsea”
package to analyze Gene Set Enrichment Analysis (GSEA) to
further compare the expression differences of signaling pathways
in the enrichment analysis between the Cout and NC groups,
so as to verify the accuracy of functional enrichment analysis.
The normalized enrichment score (NES) and P value were
used to evaluate the expression changes of related pathways,
with P < 0.05 indicating significant expression differences in
signaling pathways.

2.4 PPI network analysis

The candidate common genes were input into the String
platform (https://string-db.org/), and independent genes were
removed. Cytoscape was used to screen key genes and establish a
protein-protein interaction (PPI) network. The above genes were
used for Cytoscape software, and the MCC algorithm (identification
of central objects and subnetworks from complex interaction sets)
was used to calculate the TOP10 genes in the PPI network. The
TOP10 genes were screened using the DMCN algorithm, and the
intersection of the two algorithms was taken to screen common
genes, which were considered to be key genes closely related to the
occurrence and development of gout.

2.5 Expression and ROC analysis of
key genes

The Wilcoxon rank-sum test was used to analyze the expression
differences of key genes in gout group samples and normal control
samples; then the R software “pROC” package was used for receiver
operating characteristic (ROC) curve analysis to evaluate the
diagnostic accuracy of each key gene for the disease. The area
under the curve (AUC) of each gene was calculated, with values
close to 1 indicating better diagnostic performance. In the
methodological validation, we employed a combined approach of
Bootstrap and Leave-One-Out Cross-Validation (LOOCV).
Specifically, the original samples were resampled with
replacement using the Bootstrap method to generate multiple
training sets, and LOOCV was applied within each training set
for model evaluation. By repeating the Bootstrap-LOOCV process
multiple times and integrating the evaluation results, we were able to
more robustly estimate the model’s performance and its
distribution, thereby improving the reliability and generalizability
of the results. This approach effectively reduces the randomness
caused by sample partitioning and provides a solid data foundation
for subsequent analyses.
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2.6 Construction of nomogram risk
prediction model

Based on the results of multivariate logistic regression analysis,
we used the “rms” package of R software (version 4.1.0) to construct
a nomogram prediction model using the screened significantly
related key genes as predictors, and used the Bootstrap method
(repeated sampling 1000 times) for internal validation to ensure
model stability. Calibration curves were used to evaluate the
performance of the model by comparing the predicted
probability with the observed probability. The unreliability test
was used to assess the consistency between the predicted
probability and the observed probability. In addition, decision
curve analysis (DCA) was also performed to evaluate the clinical
utility of the nomogram by quantifying the net benefit at different
threshold probabilities.

2.7 Immune infiltration analysis

CIBERSORTx is a machine learning algorithm based on gene
expression characteristics that can infer the relative abundance of
22 human immune cell subsets in complex tissues. Here, we used the
CIBERSORTx (https://cibersortx.stanford.edu/) database to analyze
the type and relative proportion of immune cells in each gout sample
and normal control sample. The Wilcoxon rank-sum test was used
to compare the differences in immune cell infiltration between gout
samples and normal controls. The Pearson test was used to detect
the correlation between immune cells as well as between key genes
and immune cells.

2.8 Construction of ceRNA network and
prediction of transcription factors (TF)

To elucidate competitive endogenous RNA (ceRNA) regulatory
interactions, a lncRNA-miRNA-mRNA network was constructed
using the miRNet database (https://www.mirnet.ca/). Key genes
were inputted into miRNet to predict upstream miRNAs, which
were then used to identify upstream lncRNAs with competitive
binding relationships. The comprehensive ceRNA network was
visualized using Cytoscape (https://cytoscape.org/). Additionally,
the TRRUST database (https://www.grnpedia.org/trrust/) was
used to predict transcription factors regulating key gene
expression, and a TF-mRNA regulatory network was constructed
and visualized with Cytoscape software.

2.9 Drug prediction and molecular docking

The Connectivity Map (CMap) database (https://clue.io) was
used to predict potential small molecules that may reverse gout-
related gene expression patterns. Upregulated and downregulated
genes were uploaded to the CMap platform for gene set enrichment
analysis, with small molecules showing negative enrichment scores
indicating potential therapeutic effects. For molecular docking
validation, three-dimensional structure files of candidate drugs
were obtained from the PubChem database (https://pubchem.

ncbi.nlm.nih.gov/), and crystal structures of key gene-encoded
proteins were downloaded from the RCSB PDB database (https://
www.rcsb.org/). AutoDock Vina software (version 1.2.2) was used to
calculate binding free energy and analyze binding modes between
small molecules and target proteins. The ligand-receptor complexes
with optimal binding interactions were selected for visualization to
elucidate the interaction mechanisms.

2.10 Single-cell transcriptome analysis

After obtaining the dimensionality-reduced single-cell data, this
study used the “FindNeighbors” and “FindClusters” functions to
perform clustering analysis on the cells, and divided the cells into
different subgroups through the shared nearest neighbor (SNN)
graph and Louvain algorithm. To annotate each subgroup, this study
used the “SingleR” package to compare with known cell type marker
genes to identify the cell type of each cell subgroup. In addition, the
“RunUMAP” function was used for nonlinear dimensionality
reduction and visualization of cells, generating a Uniform
Manifold Approximation and Projection (UMAP) plot to
intuitively display the distribution and relationship of each cell
subgroup. After identifying each cell subgroup, this study further
analyzed the distribution differences of each cell type between the
Gout group and the NC group, and identified the characteristic cells
closely related to the occurrence and development of gout. In
addition, this study analyzed the expression patterns of key genes
in the Gout and NC groups by plotting UMAP plots, and analyzed
the expression of key genes in each cell subgroup by plotting violin
plots. Finally, the Wilcoxon rank-sum test was used to compare the
expression differences of key genes between the Gout and
NC groups.

2.11 Experimental verification for function of
key genes

2.11.1 Cell culture and model construction
Human joint synovial cells were purchased from the cell bank of

the Chinese Academy of Sciences. The cells were cultured in DMEM
medium containing FBS (20%, Gibco, Pleasantville, NY) and
penicillin/streptomycin (1%, Solarbio, Beijing, China), at 37°C
and 5% CO2 in an incubator. Additionally, MSU crystals
(200 μg/mL) were used to treat the cells for 4–48 h to construct
a gout model.

2.11.2 qRT-PCR
Total RNA was extracted using TRIzol reagent (Invitrogen,

United States) and reverse transcribed using PrimeScript RT
reagent kit (Takara, Japan) following manufacturer’s protocol.
qRT-PCR was performed using TB Green Premix Ex Taq with
cycling conditions: 95°C for 30 s, followed by 40 cycles of 95°C for 5 s
and 60°C for 30 s. Primer sequences were: GAPDH forward 5′-TGC
ACCACCAACTGCTTAGC-3′, reverse 5′-ACTGTGGTCATG
AGTCCTTCCA-3’; PTGS2 forward 5′-GCAAATTGCTGGCAG
GGTTG-3′, reverse 5′-GCTCTGGTCAATGGAAGCCT-3′.
Relative gene expression was calculated using 2−ΔΔCt method with
GAPDH as internal control.
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2.11.3 Western blot
Total protein was extracted from synovial cells using RIPA lysis

buffer containing protease and phosphatase inhibitors. Protein
concentrations were determined by BCA assay (Beyotime,
Shanghai, China). Equal amounts of protein (30 μg) were
separated by 10% SDS-PAGE and transferred to PVDF
membranes (Millipore, Bedford, MA, United States). Membranes
were blocked with 5% non-fat milk in TBST for 1 h at room
temperature, then incubated overnight at 4°C with primary
antibodies against PTGS2, IL10, p-NF-κB p65, NF-κB p65, and
GAPDH (all from Proteintech, Shanghai, China). After washing,
membranes were incubated with HRP-conjugated secondary
antibodies for 1 h. Protein bands were visualized using ECL
reagent and detected with the Tanon 5200 chemiluminescent
imaging system (Tanon Science & Technology, Shanghai, China).
Band intensities were quantified using ImageJ software with
GAPDH as the loading control.

2.11.4 Cell transfection
PTGS2 shRNA and overexpression vectors were synthesized by

Sangon Biotech. Human synovial cells were transfected using
Lipofectamine 3000 (Invitrogen, United States) at 70%–80%
confluence according to manufacturer’s instructions. Cells were
collected 48 h post-transfection. Groups included untransfected
control, transfection control, sh-PTGS2, and OE-PTGS2.

2.11.5 Enzyme-Linked immunosorbent
assay (ELISA)

Cell culture supernatants were collected and inflammatory
factors (IL-1β, TNF-α, IL-6) were detected using human ELISA
kits (R&D Systems, United States). Absorbance at 450 nm was
measured and concentrations calculated according to
standard curves.

2.11.6 Cell viability detection
Cell viability was assessed using CCK-8 kit (Dojindo, Japan).

Cells were seeded in 96-well plates, treated for 24 h, then incubated
with CCK-8 solution for 2 h at 37°C. Absorbance at 450 nm was
measured to calculate viability percentages.

2.11.7 Flow cytometry detection of cell apoptosis
Cell apoptosis was detected using Annexin V-FITC/PI double

staining method. Cells from each group were collected, washed with
PBS, and resuspended in Annexin V binding buffer. Annexin
V-FITC and PI staining solutions were added, and after
incubation at room temperature in the dark for 15 min,
detection was performed on a flow cytometer (BD FACSCanto II,
United States). Data were analyzed using FlowJo software to
calculate the percentages of early and late apoptotic cells.

2.12 Statistical analysis

All experiments were repeated 3 times independently. Data were
analyzed using SPSS 25.0 software and expressed as mean ± standard
deviation (x�±s). Two-group comparisons used t-test, and multiple-
group comparisons used one-way ANOVA with Tukey’s post hoc
test. P < 0.05 was considered statistically significant.

3 Results

3.1 Screening of differentially expressed
genes in transcriptome data

First, mRNA screening was performed on the GSE160170 dataset,
and mRNA expression profile data related to gout disease were finally
obtained. Subsequent data cleaning and normalization were
performed on the expression profile data using the “limma”
package for differential analysis. A total of 906 differentially
expressed genes were screened, among which 342 genes were
significantly upregulated in gout disease group samples (P < 0.05),
and 564 genes were significantly downregulated in gout disease group
samples (P < 0.05). The volcano plot of differential expression analysis
is shown in Figure 1A, and the heat map of differentially expressed
genes is shown in Figure 1B.

3.2 WGCNA

The pickSoftThreshold function was used to test different soft
thresholds β, and an adjacency matrix was constructed based on
the selected optimal soft threshold (β = 8). Then, based on
hierarchical clustering and dynamic tree cutting algorithm, the
minimummodule gene number was set to 30, the deep split was set
to 3, and the maximummodule distance was set to 0.25, generating
a total of 5 gene modules (Figure 2A). Then, the connectivity of
MEs was analyzed, and the results showed that the distance
between modules was greater than 0.25, indicating good
independence between each module (Figure 2B). Then, the
correlation between the feature genes of MEs and the disease
grouping and trend was calculated. The results showed that a
total of 2 gene modules were significantly correlated with the
disease grouping regulation trend, namely, the Brown and
grey60 modules, and 885 hub genes were identified from these
gene modules (Figures 2C–E). By comparing the differentially
expressed genes and the hub genes under WGCNA, the two
were intersected, and a total of 329 common genes were
identified (Figure 2F) which were considered to be genes closely
related to the occurrence and development of gout.

3.3 Functional enrichment analysis

GO an KEGG functional enrichment analysis was performed
on the 35 marker genes screened from the above Module 1. First,
GO and KEGG enrichment analysis was performed using the
ClueGO plugin in Cytoscape (Figures 3A–D). Analysis of the
GO enrichment process revealed that in BP, these genes were
mainly enriched in positive regulation of cell-cell adhesion,
positive regulation of leukocyte activation, positive regulation of
cell activation, positive regulation of cell adhesion, positive
regulation of leukocyte cell-cell adhesion, etc.; in CC, these
genes were mainly enriched in external side of plasma
membrane, clathrin-coated vesicle membrane, coated vesicle
membrane, clathrin-coated vesicle, nuclear speck, etc.; in MF,
these genes were mainly enriched in cytokine activity, receptor
ligand activity, signaling receptor activator activity, CXCR
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chemokine receptor binding, chemokine activity, etc. (Figure 3B).
KEGG enrichment analysis showed that these genes were involved
in Ribosome, Glucagon signaling pathway, Carbon metabolism,
African trypanosomiasis, Various types of N-glycan biosynthesis,
Glycine, serine and threonine metabolism, Pyruvate metabolism,
N-Glycan biosynthesis and other signaling pathways (Figure 3C).

3.4 PPI network interaction analysis

Subsequently, the interaction relationship between the
329 encoded proteins was analyzed through the String database,
and a PPI network was constructed (Figure 4A). Eleven independent
genes were deleted from the network, and the remaining 318 genes
were used for subsequent analysis. The average node degree (Dgree)
of the network was 14.86, and the local clustering coefficient
(Clustering Coefficient) of the network was 0.40, indicating a
good interaction relationship between these candidate genes.
Subsequently, the TOP15 marker genes selected by the MCC,
Degree, EPC, Closeness, Stress and Radiality algorithms built into
cytoscope were intersected, and 3 key genes (CXCL8, PTGS2 and
IL10) were finally identified (Figure 4B). In addition, MCODE found
that the PPI network of 318 common genes was mainly divided into
five gene clusters, and the MCODE score of each gene cluster
represented its importance in the PPI network, among which
Module 1 contained 35 genes (Score = 31.294) (Figure 4C),
Module 2 contained 25 genes (Score = 9.25) (Figure 4D), Module
3 contained 14 genes (Score = 5.692) (Figure 4E), Module
4 contained 6 genes (Score = 5.6) (Figure 4F), and Module
5 contained 9 genes (Score = 5.25) (Figure 4G). The three key

genes were all in theModule 1 gene cluster with the highest MCODE
score. These PPI network analysis results showed that the key genes
CXCL8, PTGS2 and IL10 played a key regulatory role in the PPI
network, suggesting that they may play an important role in the
occurrence and development of gout.

3.5 Expression analysis and ROC analysis of
key genes

Based on the transcriptome dataset, the expression patterns and
diagnostic performance of key genes (CXCL8, PTGS2, and IL10)
were further analyzed. Wilcoxon rank-sum test results
demonstrated that compared with the normal control group, all
three diagnostic markers in the gout group exhibited significant
upregulation (P < 0.05) (Figure 5A), suggesting their potential role
in promoting gout pathogenesis. ROC analysis revealed that the
AUC values for distinguishing gout samples from normal controls
reached 1.0 for all genes (Figure 5B), indicating excellent diagnostic
capability. Bootstrap validation was performed using 1000 iterations
for the three-gene model (CXCL8, PTGS2, and IL10). The analysis
yielded a median AUC of 1.0 (IQR: 1–1) (Figures 5C–E),
demonstrating consistent perfect discriminative ability across all
resampling iterations. The coefficient of variation for all gene
coefficient estimates remained below 0.05, indicating stable
weighting of the diagnostic markers. The 95% confidence interval
calculated using the percentile method was (Gu et al., 2023Gu et al.,
2023) (Figure 5F). LOOCV analysis confirmed the robust
discriminatory capacity of the three-gene panel, achieving an
AUC of 1.00 (95% CI: 1.00–1.00) with complete separation

FIGURE 1
Differential expression analysis. (A) Volcano plot showing differentially expressed genes (DEGs) between the Gout group and the NC group. (B)
Heatmap displaying the top 20 most significantly upregulated and downregulated genes in the Gout group compared to the NC group.
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between gout and control groups. All gout samples were correctly
classified with prediction probabilities exceeding 0.99, while all
control samples demonstrated probabilities below 0.01 (Figure 5G).
Coefficient stability analysis across LOOCV iterations showed
minimal variation (interquartile range <0.05 for all genes),
confirming consistent feature importance rankings. These findings
corroborated the bootstrap validation results (AUC = 1.00),
establishing model reliability within the current sample constraints,
although external validation with larger cohorts remains necessary for
clinical translation (Figure 5H).

3.6 Construction of nomogram risk
prediction model

A nomogram risk prediction model was constructed based on
these 3 key genes to assess the risk of gout. The results showed that
low expression of key genes CXCL8, PTGS2 and IL10 were risk
factors for gout (Figure 6A). Then, to evaluate the accuracy and
clinical application value of the nomogram risk prediction model,
we plotted the calibration curve and decision curve. The calibration
curve showed good consistency between the predicted probability

FIGURE 2
Weighted gene co-expression network analysis (WGCNA). (A)Cluster dendrogram of genes based on topological overlap. (B)Heatmap showing the
correlation between module eigengenes. (C) Heatmap illustrating the correlation between modules and clinical traits (disease status). (D) Scatter plot of
gene significance (GS) vs. module membership (MM) in the brownmodule. (E) Scatter plot of GS vs. MM in the grey60module. (F) Venn diagram showing
the overlap between hub genes identified by WGCNA and DEGs.
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and the actual occurrence probability, indicating that the model had
high prediction accuracy (Figure 6B). In addition, DCA was used to
evaluate the clinical benefit of the nomogram. The results showed
that within a relatively wide range of threshold probabilities, the net
benefit of using the nomogram for prediction was better than the
two extreme cases of all patients or all non-patients, confirming the
potential application value of the nomogram risk prediction model
in clinical decision-making (Figure 6C).

3.7 Immune infiltration

Enrichment analysis showed that immunity is crucial to the
development of this disease, so we used the CIBERSORT method to
study the infiltration of immune cells in NC and Gout group
samples. A total of 16 types of immune cells were identified in
NC and Gout group samples. The bar chart and heat map showed
the types and numbers of immune cell infiltration in each sample
(Figures 7A,B). Then, we assessed the correlation between these
immune cell populations. The results showed that dendritic cells

activated had the strongest positive correlation with activated
CD4 memory T cells (r = 0.83), and resting CD4 memory T cells
had the strongest negative correlation with activated NK cells
(r = −0.82) (Figure 7C). Then, we compared the infiltration
differences of each immune cell subset between the Gout and NC
groups. The results showed that four immune cell subsets,
M2 macrophages, activated mast cells, activated NK cells, and
T cells gamma delta, were significantly upregulated in Gout
samples (P < 0.05); resting NK cells, resting CD4 memory
T cells, and naive CD4 T cells were significantly downregulated
in Gout samples (P < 0.05) (Figure 7D). In addition, we further
studied the correlation between the expression of the 3 key genes and
the infiltration of each immune cell subset. The results showed that
these 3 key genes had significant correlations with the infiltration of
immune cell subsets such as M2 macrophages, activated mast cells,
resting NK cells, resting CD4 memory T cells, and T cells gamma
delta. Among them, CXCL8 and PTGS2 had significant positive
correlations with M2 macrophages and activated mast cells,
IL10 had significant positive correlations with M2 macrophages
and T cells gamma delta, and CXCL8, PTGS2 and IL10 had

FIGURE 3
Functional enrichment analysis. (A) Network displaying the relationships among enriched GO terms and KEGG pathways. Each node represents a
GO term or KEGG pathway, and edges represent the interactions between them. The node size is proportional to the number of genes in each term or
pathway. (B) Bar plot showing the top 5 significantly enriched GO terms in the BP, CC, and MF categories. (C) Bar plot displaying the top 10 significantly
enriched KEGG pathways. (D) Interaction relationship between KEGG signaling pathways and related genes.
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significant negative correlations with resting CD4 memory T cells,
resting NK cells and naive CD4 T cells (P < 0.05) (Figures 7E–G),
suggesting that key genes may play an important role in the
occurrence and development of gout by regulating these
immune cells.

3.8 Drug prediction and molecular docking

The 329 common genes (including 126 upregulated genes and
203 downregulated genes) were uploaded to the CMap platform to
screen potential drugs that could improve gout. The results showed
that we obtained 5 most potential small molecule drugs (with the
largest negative connectivity score and the most significant), namely,
enoxacin, selumetinib, d-mannitol, pergolide and roxithromycin.
Molecular docking experiments were used to analyze the interaction
strength and mode of action between small molecule drugs and key
targets. The results showed that all small molecule drugs had good
interaction relationships with key targets, and their binding energies
were all less than −4 kcal/mol (Table 1). Among these small
molecule drugs, pergolide had the best binding with the key
targets CXCL8, PTGS2 and IL10, with a binding energy
of −7.263 kcal/mol between pergolide and CXCL8, −8.41 kcal/
mol between pergolide and PTGS2, and -7.62 kcal/mol between
pergolide and IL10. Figure 8 shows the binding patterns between
pergolide and the key targets CXCL8, PTGS2 and IL10, with the
ligand and receptor connected by multiple hydrogen bonds and
hydrophobic bonds, showing good binding. These results suggest

that pergolide may act as a targeted drug for key targets to
improve gout.

3.9 CeRNA network construction and TF
prediction

To explore the molecular regulatory mechanism of key genes, the
miRNe database was used to predict miRNAs and lncRNAs related to
key genes, and a lncRNA-miRNA-mRNA regulatory network
(ceRNA network) was drawn. The ceRNA network included a
total of 86 nodes (3 key mRNAs, 18 miRNAs and 65 lncRNAs)
and 652 edges (interaction relationships). The topological parameters
of the ceRNA network were calculated. KCNQ1OT1 was the lncRNA
with the largest Degree value in the ceRNA network topology; hsa-
mir-98-5p was themiRNAwith the largest Degree value in the ceRNA
network; IL10, CXCL8 and PTGS2 were mRNAs with the same
Degree value in the ceRNA network, and there were mutual
regulatory effects between these lncRNAs, miRNAs and mRNAs
(Figure 9A), suggesting that these ceRNA networks may be key
ceRNA network mechanisms in gout.

Next, we performed transcription factor enrichment analysis on
the 3 key genes. The results showed that a total of 76 potential
transcription factor binding sites were significantly enriched in the
promoter region of key genes in the JASPAR database, among which
CEBPB, STAT3, RELA and NFKB1 were common transcription
factors of the 3 key genes, suggesting that they may play an
important role in the regulation of gout key genes (Figure 9B).

FIGURE 4
Protein-protein interaction (PPI) network analysis. (A) PPI network of common genes. (B) Venn diagram showing the overlap of marker genes
identified by different algorithms (MCC, Degree, EPC, Closeness, Stress, and Radiality). (C–G) Subnetworks of gene clusters identified by the MCODE
algorithm. Each subnetwork represents a densely connectedmodule in the PPI network, with theMCODE score indicating the importance of themodule.
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FIGURE 5
Expression analysis and ROC analysis of key genes. (A) Expression analysis of key genes CXCL8, PTGS2 and IL10. (B) Receiver operating characteristic
(ROC) curves evaluating the diagnostic performance of key genes in distinguishing gout patients from healthy controls. (C) Bootstrap validation of key
genes CXCL8. (D) Bootstrap validation of key genes PTGS2. (E) Bootstrap validation of key genes IL10. (F) Bootstrap validation of all key genes. (G)
Distribution of prediction scores by actual diagnosis. Each dot represents an individual sample. Horizontal lines show group means. (H) ROC curve
from LOOCV analysis.
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3.10 Single-cell data processing and cell
clustering

The GSE211783 single-cell dataset containing three normal and
three gout samples was obtained from the GEO database. The
“Seurat” package was used to perform quality control, filtering
out cells that did not meet the criteria (nFeature_RNA >200 and
nFeature_RNA <7000 and percent.mt < 20), and the resulting core
cells were normalized for subsequent analysis (Figures 10A,B). Next,
variance analysis was performed to identify highly variable genes,
and PCA was conducted on the merged samples (Figures 10C–E).

The first 18 PCs were selected for downstream analysis (Figure 10F).
Using the UMAP algorithm, the core cells were clustered into
19 independent cell subsets (Figure 11A). Cell clusters were
manually annotated based on marker genes identified through
literature review, and the expression of key marker genes for
each cell type was visualized using bubble plots (Figure 11B).
Based on manual annotation, the cells were mainly divided into
B cells, myeloid cells, and T/NK cell subgroups. Furthermore, the
T/NK cells were subdivided into CD4+ T cells, CD8+ T cells, and NK
cells (Figures 11C,D). We then calculated the proportion of each cell
type in the Gout and NC samples. The results showed significant

FIGURE 6
Nomogram risk prediction model. (A) Nomogram for predicting the risk of gout based on the expression levels of key genes (CXCL8, PTGS2, and
IL10). (B) Calibration curve assessing the consistency between the predicted probabilities and the observed outcomes. (C) Decision curve analysis (DCA)
evaluating the clinical utility of the nomogram.

FIGURE 7
Immune cell infiltration analysis. (A) Stacked bar plot showing the proportions of different immune cell subsets in each sample. (B) Heatmap
displaying the infiltration levels of immune cell subsets across samples. (C)Correlation heatmap illustrating the relationships among different immune cell
subsets. (D) Differential analysis of immune cell infiltration ratio between Gout and NC samples. (E) Lollipop plot of correlation between key genes
CXCL8 (E), PTGS2 (F) and PTGS2 (G) and immune cells.
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differences in the numbers of CD4+ T cells, CD8+ T cells, NK cells,
and myeloid cells between the Gout and NC groups. Specifically, the
proportion of myeloid cells in the Gout group was significantly
higher than that in the NC group, while the proportions of CD4+

T cells, CD8+ T cells, and NK cells were significantly lower,
suggesting that the imbalance in these cell populations may be a
risk factor for gout (Figures 11E,F). In addition, we analyzed the
expression patterns of key genes in the Gout and NC groups and
their distribution among the annotated cell types. The results
showed that the key genes CXCL8, PTGS2, and IL10 were
significantly upregulated in the Gout group compared with the
NC group, consistent with the differential expression trends
observed in the training dataset (Figures 12A,C). Among them,
CXCL8 and PTGS2 were highly expressed and mainly distributed in
CD4+ T cells, CD8+ T cells, NK cells, and myeloid cells, whereas
IL10 had lower expression levels and was primarily distributed in
myeloid cells (Figure 12B).

3.11 Key gene expression validation
and function

To validate the bioinformatics findings, we conducted
experimental analyses using human synovial cells treated with
MSU crystals. Western blot analysis confirmed that protein
expression levels of all three key genes (CXCL8, PTGS2, and IL10)
were significantly upregulated in theMSU-treated group compared to
controls (P < 0.05), validating our transcriptomic results (Figures
13A–C). Functional characterization of PTGS2 through gain- and
loss-of-function studies demonstrated successful transfection
efficiency, with PTGS2 mRNA and protein expression significantly
decreased in the sh-PTGS2 group (P < 0.05) and increased in the OE-
PTGS2 group (P < 0.05) compared to controls (Figures 13D,E). Cell
viability assays and flow cytometric analysis revealed that
PTGS2 knockdown enhanced cell survival and reduced apoptosis
rates (P < 0.05), while overexpression promoted cell death (Figures
13F,G). Furthermore, ELISA analysis demonstrated that
PTGS2 overexpression significantly promoted the secretion of pro-
inflammatory cytokines IL-1β, TNF-α, and IL-6 (P < 0.05), whereas
PTGS2 knockdown reduced their production (P < 0.05), while
Western blot analysis showed that PTGS2 overexpression increased
phosphorylation of NF-κB p65 (P < 0.05) and PTGS2 knockdown
decreased NF-κB activation, indicating the critical role of PTGS2 in
regulating this inflammatory signaling pathway (Figures 13H,I).
These experimental results collectively demonstrate that

PTGS2 functions as a key regulator in gout-associated
inflammation by modulating cell survival, promoting pro-
inflammatory cytokine production, and activating the NF-κB
signaling pathway, providing mechanistic insights into its role in
gout pathogenesis and supporting its potential as a therapeutic target.

4 Discussion

Gout is a common metabolic disease with a complex
pathogenesis that has not yet been fully elucidated. This study
adopted a multi-omics joint analysis strategy to systematically
mine key genes and their regulatory mechanisms related to the
development of gout from the perspective of transcriptomics and
single-cell transcriptomics, providing new insights for in-depth
understanding of the molecular mechanisms of gout.

Based on the transcriptome dataset, through the integration of
differential expression analysis and WGCNA, this study screened
out 329 genes closely related to gout. GO and KEGG functional
enrichment analyses showed that these genes were mainly enriched
in biological processes and signaling pathways related to cell
adhesion, immune response, and inflammatory response, such as
positive regulation of cell−cell adhesion, positive regulation of
leukocyte activation, CCXCR chemokine receptor binding, and
NF−kappa B signaling pathway. Intercellular adhesion molecule-1
(ICAM-1), as an immunoglobulin-like cell adhesion molecule, can
directly participate in processes such as cell-cell adhesion and
leukocyte migration (van de Stolpe and van der Saag, 1996).
Studies have found that monosodium urate crystals (MSU) can
induce the expression of ICAM-1 in renal mesangial cells, increasing
the cell adhesion between renal mesangial cells and human
monocytic cells (THP-1), leading to the aggravation of gouty
inflammation (Luo et al., 2020). Positive regulation of leukocyte
activation refers to the enhancement of the activation state of
leukocytes through molecules and signaling pathways. Studies
have found that the level of SHP decreases in gout mice,
negatively regulating the activation of NLRP3 inflammasome,
which may affect the migration of leukocytes and inflammatory
response during leukocyte activation (Yang et al., 2015). Inhibition
of PI3Kγ reduces the activation of caspase-1 and the recruitment of
leukocytes at inflammatory sites in acute gouty arthritis (Tavares
et al., 2019). Interleukins can promote cell growth, differentiation,
and functional activation, playing a certain role in the positive
regulation of leukocyte activation (Mizel, 1989). Interleukins can
also regulate the inflammatory response and activation of immune
cells in gout. For example, IL-8 is associated with the recruitment
and activation of neutrophils (Terkeltaub et al., 1998). IL-1β is a key
regulatory factor in gout inflammation, and the main process is:
MSU activates the NLRP3 inflammasome, stimulating caspase-1 to
promote the activation and secretion of IL-1β, inducing an
inflammatory response (Klück et al., 2021). CCXCR chemokine
receptor binding is the binding process of CXC chemokine receptors
and chemokines of this specific type. The CXC chemokine is a
complex system, and it has been confirmed that the levels of factors
such as CXCL8, CXCL2, and CXCL8 are significantly elevated in
gout patients (Wang et al., 2024), among which CXCL5 activates
CXCR2 expressed on nociceptive sensory neurons to trigger
TRPA1 activation, leading to inflammatory responses and pain in

TABLE 1 Binding free energies between pergolide and key targets
(-kcal/mol).

Ligand
Receptor

CXCL8 PTGS2 IL10

pergolide −6. 393 −7.433 −6.735

pergolide −6.324 −7.846 −6.391

pergolide −4.686 −6.319 −4.635

pergolide −7.263 −8.41 −7.62

pergolide −6.387 −7.995 −7.503
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gouty arthritis (Yin et al., 2024); CXCL2 is associated with inducing
neutrophil migration (Ryckman et al., 2003). The NF-κB signaling
pathway plays a core role in the inflammatory response of gout.
MSU crystals activate the NLRP3 inflammasome and the
transcription of pro-IL-1β through the TLR/MyD88-NF-κB
signaling pathway, and then promote the maturation and release
of IL-1β through the activation of caspase-1 (Liu et al., 2024). In
addition, MSU can act together with interferon-γ (IFN-γ) to
enhance the production of NO in macrophages by activating the
NF-KB and ERK1/2 MAPK pathways, thereby promoting the
production of inflammatory cytokines (Jaramillo et al., 2004).

Further PPI network analysis jointly identified three key genes,
CXCL8, PTGS2, and IL10, which have a high degree of connectivity in
the PPI network, suggesting that theymay play a core regulatory role in
the pathogenesis of gout. ROC analysis showed that these genes can
well distinguish gout patients from healthy controls, and are expected
to become markers for the diagnosis and prognosis of gout. The risk
prediction model constructed based on key genes has good predictive
efficacy and clinical application potential. CXCL8, also known as
interleukin-8 (IL-8), belongs to the CXC chemokine family, and is
produced by phagocytes and mesenchymal cells exposed to
inflammatory stimuli (such as interleukin-1 or tumor necrosis

FIGURE 8
Molecular docking analysis of small molecule drugs and key targets. (A–C) Visualization of the binding interactions between pergolide and key
targets: CXCL8 (A), PTGS2 (B), and IL10 (C).
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factor), which can attract neutrophils and other immune cells to
inflammatory sites and activate neutrophils (Baggiolini and Clark-
Lewis, 1992). CXCL8 is a broad-spectrum inflammatory marker that
is elevated in rheumatoid arthritis (RA) (Proost et al., 2006), reflecting
the degree of neutrophil-mediated inflammation. In gout,
monosodium urate crystals can induce the production of IL-8,
which binds to the CXCR-2 receptor, leading to the recruitment
and activation of neutrophils, and the production of inflammatory
mediators such as leukotriene B4 (LTB4) and platelet-activating factor
(PAF), exacerbating the inflammatory response of gout (Terkeltaub
et al., 1998). PTGS2, also known as prostaglandin-endoperoxide
synthase 2, is also called COX-2. COX-2 is a key enzyme in the
initial step of PGE2 synthesis, while mPGEs-1 is the final enzyme that
converts PGH2 to PGE2. PGE2 is an important inflammatory
mediator that plays a role in various physiological and pathological
processes (Maione et al., 2020). Studies have shown that the
inflammatory response of gout is driven by neutrophils and
inflammatory monocytes, which self-sustain local inflammatory
responses and maintain inflammatory cycles by activating the
preferential coupling of the inducible enzymes COX-2/mPGES-
1 and the regulation of PPARγ, while IL-17A neutralizing
antibodies can affect this process (Saviano et al., 2022). PTGS2 has
shown high diagnostic value in gout, but its expression pattern in
other inflammatory arthropathies has not been reported, suggesting
that the gene has potential for targeted treatment of gout. It is worth
noting that IL-10, as a key anti-inflammatory cytokine, showed an
upregulated expression trend in this study, which seems to contradict
the previous view that IL-10 mainly exerts anti-inflammatory effects.
In fact, IL-10 has a dual regulatory role in the inflammatory response.
On the one hand, IL-10 can inhibit the production of pro-

inflammatory factors such as IL-12 and IL-18 by monocytes and
dendritic cells, and induce T cell differentiation into Th2 type, thereby
inhibiting Th1 type inflammatory response (Neumann et al., 2019;
Saraiva et al., 2020). On the other hand, IL-10 can also promote the
proliferation, differentiation, and antibody production of B cells by
up-regulating the expression of co-stimulatory molecules such as
CD80 and CD86 on the surface of B cells, aggravating the
humoral immune response (Inaba et al., 2023; Cerqueira et al.,
2019). In addition, IL-10 can also promote the recruitment of
monocytes to the lesion site by up-regulating the expression of
monocyte chemoattractant protein 1 (MCP-1), aggravating local
inflammatory responses (Nikaein et al., 2023). IL10 shows complex
regulatory patterns in different inflammatory arthropathies. Its
overexpression has been fully demonstrated in RA (Hernández-
Bello et al., 2017), but the specific mechanism of action in gout
needs further study. Experimental validation further supported our
bioinformatics results. Protein expression of CXCL8, PTGS2, and
IL10 was significantly upregulated in MSU-treated synovial cells,
consistent with transcriptomic findings. Functional assays showed
that PTGS2 knockdown improved cell viability and reduced
apoptosis, while overexpression promoted pro-inflammatory
cytokine production (IL-1β, TNF-α, IL-6) and activated NF-κB
signaling. These results highlight PTGS2’s key role in mediating
inflammatory responses in gout and suggest it may serve as a
promising therapeutic target.

Immune cell infiltration analysis found that M2 macrophage,
activated mast cells, activated NK cells, and γδT cells were
significantly upregulated in gout tissues, suggesting that they may
be involved in the pathological process of gout. The expression of key
genes was significantly correlated with the degree of infiltration of

FIGURE 9
Construction of the ceRNA network and prediction of transcription factors. (A) The ceRNA regulatory network. Red nodes represent lncRNAs, purple
nodes represent miRNAs, and orange nodes represent mRNAs. Edges indicate the regulatory relationships between the nodes. (B) Network of predicted
transcription factors and key genes. Light orange nodes represent transcription factors, and purple nodes represent key genes. Edges indicate the
regulatory relationships between transcription factors and key genes.

Frontiers in Genetics frontiersin.org14

Yuan et al. 10.3389/fgene.2025.1598835

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2025.1598835


these immune cells, suggesting that there may be important mutual
regulation between the two. M2 macrophage, as one of the
polarization phenotypes of macrophages, plays an important role
in the remission period of gout. M2 macrophage produces anti-
inflammatory cytokines, inhibits the progression of inflammation,
and promotes tissue repair (Di Vito Nolfi et al., 2022).
M2 macrophage can remove MSU crystals in a “non-inflammatory
phagocytosis” manner, and can also secrete cytokines with anti-
inflammatory effects such as IL-4 and TGFβ, participating in the
remission of inflammation, tissue remodeling, and angiogenesis (Sica
and Mantovani, 2012). After mast cell activation, a large number of
mediators can be secreted, including stored products (such as
histamine and trypsin) as well as many cytokines, including IL-1β
(Stack and Johnson, 1994). Activated mast cells are involved in the
early stages of crystal-induced inflammation, releasing inflammatory
mediators such as histamine in response to C3a, C5a, and IL-1. At the
same time, vasodilation, increased permeability, and pain are also

mediated by kinins, complement cleavage peptides and other
vasoactive substances such as prostaglandins (Choi et al., 2005).
One study found tryptase and histamine in the synovial fluid of
acute gout attacks. These mast cell-related mediators are usually
stored in mast cell granules and released when mast cells are
activated, indicating that activated mast cells occur during acute
gout attacks. The study also showed that there were high levels of
mast cell-derived IL-1β in the synovial fluid of gout patients, further
confirming that mast cells are involved in the inflammatory response
in gout patients (Reber et al., 2014). Mast cells also contribute to the
initiation of gouty inflammation. Ablation of mast cells in a mouse
model of MSU crystal-induced peritonitis significantly reduced
neutrophil recruitment (Getting et al., 1997). Natural killer (NK)
cells are innate lymphocytes that participate in defending against
pathogens and cancer cells in the body (Campbell and Hasegawa,
2013). NK cells are divided into two functionally different subsets
according to CD56 expression levels: CD56dim subset with effective

FIGURE 10
Preprocessing and quality control of single-cell RNA sequencing data. (A) Scatter plot of the number of detected genes and the percentage of
mitochondrial genes per cell. (B) Principal component analysis plot of single-cell gene expression profiles of the normal group and Gout group. (C)
Feature selection of highly variable genes. Red dots represent highly variable genes, and black dots represent non-variable genes. (D) TOP30 genes with
cell differentiation. (E) PCA plot of single-cell gene expression data. (F) Elbow plot showing the standard deviations of the first 50 principal
components (PCs).
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cytotoxicity and CD56bright subset with poor cytotoxicity that
secretes a large number of cytokines (Lanier et al., 1986; Jacobs
et al., 2001; Cooper et al., 2001). NK cells in the joints of gout
patients show an increased CD56 bright group, which can produce a
large number of pro-inflammatory and anti-inflammatory cytokines.
At the same time, NK cells can also participate in the spontaneous
regression stage of gout. NK cells can express anti-inflammatory
cytokines, and have also been shown to limit pro-inflammatory
monocyte activity by killing highly active cells (Nedvetzki et al.,
2007; van Dommelen et al., 2006). γδT cells are a subset of T cells
with unique T cell receptors (TCRs), mainly including two major
subsets, namely, Vγ9/Vδ2 and Vδ1, and different subsets have

different immune functions (Morita et al., 1991). One study
showed that γδT cells are one of the main sources of IL-17 in the
serum of patients with acute gouty arthritis (AGA) (Liu et al., 2018),
while IL-17 is an effective pro-inflammatory cytokine, and its elevated
levels are associated with the progression of autoimmune diseases and
cancer (Iwakura et al., 2011), showing that γδT cells may be involved
in the pathogenesis of inflammatory responses in AGA patients. A
recent study showed that γδ2T cells may also migrate to the synovial
fluid of AGA patients by interacting with chemokine receptors
(CXCR3) and secreting pro-inflammatory cytokines (IL-17) to
participate in the mechanism of gout (Di et al., 2024). In addition,
in order to reveal the post-transcriptional regulatory mechanism of

FIGURE 11
Dimensionality reduction and clustering analysis of single-cell data. (A) UMAP plot showing the clustering results of single cells. Each dot represents
a single cell, and colors indicate different clusters. (B) Dot plot displaying the expression of characteristic genes in each cluster. (C) uMAP dimensionality
reduction cell annotation. (D) uMAP dimensionality reduction clustering result plot of each sample grouping. (E) Stacked bar plot showing the proportions
of different cell types in the Gout group and the NC group. (F) Table summarizing the proportions of different cell types in the Gout group and the
NC group.
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FIGURE 12
Distribution and validation of key genes in single-cell data. (A)UMAP plots showing the expression of key genes (CXCL8, PTGS2, and IL10) in different
cell subpopulations in the Gout group and the NC group. Each dot represents a single cell, and the color intensity represents the normalized expression
level. (B) Violin plots comparing the expression levels of key genes (CXCL8, PTGS2, and IL10) across different cell types. (C) Violin plots comparing the
expression levels of key genes (CXCL8, PTGS2, and IL10) between the Gout group and the NC group.
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CXCL8, PTGS2, and IL10, this study constructed a gout-related
ceRNA regulatory network based on the miRNet database, and
identified a series of lncRNAs (such as KCNQ1OT1) and miRNAs
(such asmiR-98-5p) that may play an important regulatory role in the
pathogenesis of gout. LncRNAs affect gene expression through
multiple mechanisms, including competitive binding with

miRNAs, affecting chromatin structure, and transcription factor
activity. A recent literature showed that KCNQ1OT1 showed
upregulation and downregulation effects on the inflammatory
response in patients with osteoarthritis by interacting with miR-
126-5p and miR-211-5p, respectively (Taheri et al., 2024).
KCNQ1OT1 binds to miR-98-5p by adsorbing it, thereby

FIGURE 13
Experimental validation of key gene expression and functional characterization of PTGS2. (A–C) Western blot analysis showing protein expression
levels of key genes CXCL8, PTGS2, and IL10 in normal control (NC) and gout model groups with quantitative analysis. (D,E) PTGS2 transfection efficiency
validation by qRT-PCR and Western blot analysis in different treatment groups: Control (non-transfection), NC (negative control), sh-PTGS2
(knockdown), and OE-PTGS2 (overexpression). (F) Cell viability measured by CCK-8 assay showing the effects of PTGS2 modulation. (G) Flow
cytometry analysis of cell apoptosis using Annexin V-FITC/PI staining with representative scatter plots and quantitative analysis. (H) ELISA analysis of
inflammatory cytokine concentrations (IL-1β, TNF-α, and IL-6) in cell culture supernatants from different treatment groups. (I) NF-κB signaling pathway
analysis showing Western blot of p-NF-κB p65 and total NF-κB p65 with quantitative analysis of phosphorylation ratio. GAPDH served as internal control.
Data are presented as mean ± standard deviation from triplicate experiments. *P < 0.05, **P < 0.01, ***P < 0.001, ns: not significant.
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competing with miR-98-5p for the binding sites of its target genes,
relieving the inhibitory effect of miR-98-5p on its target genes, thus
demonstrating the expression of gout-related target genes.
Transcription factor enrichment analysis revealed the upstream
transcriptional regulatory network of CXCL8, PTGS2, and IL10.
The results showed that key transcription factors such as CEBPB,
STAT3, RELA, and NFKB1 may be involved in the pathogenesis of
gout by directly regulating the transcriptional levels of these genes.
Among them, CEBPB (CCAAT/enhancer-binding protein beta) is an
important inflammation-related transcription factor that can respond
to various inflammatory stimuli (such as TNF-α and IL-1β) and
activate the expression of downstream inflammatory genes (Ren et al.,
2023). STAT3 is another key transcription factor involved in
inflammation and immune regulation, which can regulate the
balance of pro-inflammatory cytokines and anti-inflammatory
cytokines through multiple signaling pathways (such as the JAK/
STAT pathway) (Hu et al., 2023). RELA and NFKB1 are the core
components of the classic NF-κB signaling pathway, directly involved
in the regulation of various pro-inflammatory genes (such as
CXCL8 and PTGS2), driving gout-related inflammatory responses
(Ngo et al., 2020; Xu et al., 2022).

To identify potential therapeutic compounds for gout, we
performed small molecule drug prediction analysis using the
CMap database. The analysis revealed five promising candidate
drugs: enoxacin, selumetinib, d-mannitol, pergolide, and
roxithromycin. Among these, pergolide exhibited the highest
binding affinity with key gene-encoded proteins, suggesting
potential therapeutic effects against gout through targeting
CXCL8, PTGS2, and IL10. While pergolide is primarily used for
Parkinson’s disease treatment via dopamine D2 receptor
stimulation, no previous studies have investigated its role in gout
(Clarke and Speller, 2000). Our molecular docking results provide
theoretical foundation for pergolide as a potential gout therapeutic.

Single-cell analysis revealed distinct cellular compositions
between gout and control groups. The gout group showed
significantly increased myeloid cell proportions and decreased
T/NK cell proportions, suggesting that myeloid cell infiltration
and T/NK cell exhaustion may drive gout pathogenesis.
CXCL8 and PTGS2 were predominantly expressed in T/NK cells
and myeloid cells, while IL10 was mainly expressed in myeloid cells,
with all key genes showing elevated expression in the gout
group. These results are consistent with previous findings that
myeloid cells, especially monocytes/macrophages and neutrophils,
play key roles in gout via NLRP3 inflammasome activation and IL-
1β secretion (Liu et al., 2022; He et al., 2019). The reduction in T/NK
cells may result from excessive activation and exhaustion driven by
pro-inflammatory mediators like CXCL8 (Park et al., 2024; Carvalho
et al., 2022).

Although this study systematically elucidated the molecular
mechanisms underlying gout through a multi-omics integration
analysis, some limitations remain. The main limitation is the
small sample size, which may cause individual differences to
overly influence the results. Future research should increase the
sample size to improve data representativeness and statistical power.
Additionally, while pergolide was preliminarily identified as a
potential therapeutic drug through bioinformatics and molecular
docking, large-scale clinical studies are needed to confirm its efficacy
and clinical value in gout treatment.

In summary, this study adopted a strategy of integrating multi-
omics data analysis to systematically explain the key roles and
regulatory mechanisms of CXCL8, PTGS2, and IL10 in the
pathogenesis of gout, which not only deepens the understanding
of the pathogenesis of gout, but also provides new ideas and
potential targets for developing molecular diagnostic markers and
new treatment strategies for gout. In the future, larger-sample,
multi-center translational medical research needs to be carried
out to ultimately realize the translation of research results into
clinical applications.
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