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Background: Estrogen receptor-positive (ER+) breast cancer, a prevalent
subtype of breast malignancy, demonstrates complex etiological associations
with multiple risk factors. Micronutrients, as essential nutritional components for
human physiology, may potentially influence the pathogenesis and progression
of breast carcinoma. This investigation employs Mendelian randomization (MR)
methodology to assess causal relationships between 15 micronutrients and ER+
breast cancer.

Methods: In this study, instrumental variables (IVs) for 15 micronutrients were
extracted from the genome-wide association studies (GWAS) database, including
copper, calcium, carotene, folate, iron, magnesium, potassium, selenium, vitamin
A, vitamin B12, vitamin B6, vitamin C, vitamin D, vitamin E, and zinc. Concurrently,
summary data related to ER+ breast cancer were obtained from the FinnGen
database. Following the selection of appropriate IVs, we conducted a two-sample
MR analysis. This analytical framework incorporated comprehensive sensitivity
analyses to evaluate potential heterogeneity and horizontal pleiotropy, with the
inverse variance weighted (IVW) method established as the principal
analytical approach.

Results: The findings of our study revealed a significant causal relationship
between vitamin B6 and ER+ breast cancer. Notably, genetically predicted
elevated vitamin B6 levels were significantly associated with an increased risk
of ER+ breast cancer [Odds Ratio (OR): 1.275; 95%Confidence Interval (CI):
(1.017–1.600); P = 0.035]. In contrast, no statistically significant associations
were observed between the other 14 micronutrients and ER+ breast cancer risk
(P > 0.05 for all).

Conclusion: Our results indicated that higher concentrations of vitamin B6 may
be positively associated with ER+ breast cancer risk, and further research is
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needed to elucidate the underlying biological mechanisms of this association. This
study provides new insights into understanding the role of micronutrients in breast
cancer.
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1 Introduction

According to the latest study published by the American Cancer
Society, between 2012 and 2021, the incidence rate of breast cancer
increased annually by 1%, particularly among women under
50 years of age. In 2024, it is anticipated that around
367220 new cases of breast cancer will be confirmed, with
42,250 women expected to die from breast cancer (McPherson
et al., 2000). Approximately 70% of breast cancer cases are
classified as hormone receptor-positive (HR+) malignancies,
wherein tumor growth, survival, and progression are
mechanistically driven by estrogen receptor (ER) expression and
activation (Ríos-Hoyo et al., 2024). ER+ breast cancer is defined as
ER-positive nuclear staining exceeding 1% in immunohistochemical
(IHC) analysis (Hammond et al., 2010). Persistently elevated
endogenous estrogen levels or prolonged exposure to exogenous
estrogen may increase the risk of breast cancer (Wang et al., 2021).

Micronutrients primarily include vitamins and minerals, which are
essential nutrients required to maintain human health. In recent
decades, a growing body of research has underscored the potential
role of micronutrient intake and supplementation in cancer prevention
and risk reduction. A meta-analysis of prospective cohort study
demonstrates an inverse association between elevated serum 25-
hydroxyvitamin D concentration and reduced tumor incidence and
mortality rates (Han et al., 2019). According to the findings of a
randomized controlled trial (RCT), individuals with low serum
vitamin B12 concentrations are at an elevated risk of developing
non-cardia gastric adenocarcinoma (Miranti et al., 2017). Reduced
serum selenium levels have been frequently observed in individuals
diagnosed with prostate cancer (Oczkowski et al., 2021). Nevertheless,
when it comes to micronutrient supplementation, more is not always
better. Preclinical evidence from triple-negative breast cancer (TNBC)
murine models reveals that supraphysiological vitamin B3 intake
exacerbates tumor cell invasiveness and disrupts blood-brain barrier
function, culminating in a marked elevation of cerebral metastatic risk
(Maric et al., 2023). Vitamin B9 (also known as folate) plays an
indispensable role in maintaining fundamental biological functions.
However, a recent study has proposed an opposing perspective:

Reducing folate intake in aged mice can effectively improve
metabolic flexibility and help extend healthy lifespan (Blank et al., 2024).

Research on micronutrients and breast cancer risk is limited.
Evidence primarily comes from observational studies using food
frequency questionnaires (FFQs), which are less reliable and
inherently prone to confounding and reverse causality. Besides,
robust clinical trials assessing micronutrient effects are scarce
(Zademohammadi et al., 2024; Key et al., 2011). Mendelian
randomization (MR) is a genetic epidemiological approach that
employs single-nucleotide polymorphisms (SNPs) as instrumental
variables (IVs) to infer causal relationships between exposures and
outcomes, utilizing publicly available summary statistics from large-
scale genome-wide association studies (GWAS). As alleles are randomly
allocated to gametes during meiosis, this effectively reduces the
influence of confounding factors and reverse causality, thereby
yielding more reliable research findings. Conducting an effective MR
analysis requires meeting three key assumptions: 1) the genetic variants
utilized in the study are strongly correlated with exposure; 2) genetic
variants must not be influenced by factors that are associated with the
selected exposure and outcome; and 3) genetic variants should affect the
outcome only through the exposure (Emdin et al., 2017; Smith and
Ebrahim, 2003). A conceptual diagramof theMR research framework is
shown in Figure 1. Here, we conducted a two-sampleMR analysis using
seven methods to investigate the causal relationship between
micronutrients and ER+ breast cancer, with micronutrients as the
exposure factor and ER+ breast cancer as the outcome variable.

2 Materials and methods

2.1 GWAS data source for micronutrients

Genome-wide association study (GWAS) datasets for
micronutrients were obtained from the MRC Integrative
Epidemiology Unit (IEU) OpenGWAS project (https://gwas.mrcieu.
ac.uk/; accessed December 2024) and the UK Biobank. Fifteen
micronutrients were included: Copper (ieu-a-1073), Calcium (ukb-b-
8951), Carotene (ukb-b-16202), Folate (ukb-b-11349), Iron (ukb-b-
20447), Magnesium (ukb-b-7372), Potassium (ukb-b-17881), Selenium
(ieu-a-1077), Vitamin A (ukb-b-9596), Vitamin B12 (ukb-b-19524),
Vitamin B6 (ukb-b-7864), Vitamin C (ukb-b-19390), Vitamin D (ukb-
b-18593), Vitamin E (ukb-b-6888), and Zinc (ieu-a-1079).

2.2 GWAS data source for ER+ breast cancer

We extracted publicly available data of ER+ breast cancer from
FinnGen project (www.finngen.fi/en/), which included 14540 cases
and 221,705 controls of European ancestry. There were no crossover
samples between exposure and outcome GWAS datasets.

Abbreviations: MR, mendelian randomization; ER+, estrogen receptor-
positive; BC, breast cancer; IV, instrumental variable; GWAS, genome-wide
association study; OR, odds ratio; CI, confidence interval; SNP, single
nucleotide polymorphism; HR+, hormone receptor-positive; IHC,
immunohistochemical; RCT, randomized controlled trial; TNBC, triple-
negative breast cancer; FFQ, food frequency questionnairy; IEU, Integrative
Epidemiology Unit; IVW, Inverse-variance weighted; WM, Weighted Median;
RAPS, Robust adjusted profile score; LD, linkage disequilibrium; PR,
progesterone receptor; HER2-, human epidermal growth factor receptor
2 negative; MLH1, mutL homologue 1; PLP, pyridoxal 5-phosphate; IDO1,
Indoleamine 2,3-dioxygenase 1.
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2.3 Selection of SNPs

SNPs associated with the 15 micronutrients were selected as IVs
from GWASs. Genetic variants were confirmed to be independent at
genome-wide significance (P < 5 × 10−8) with linkage disequilibrium
(LD) r2 < 0.01. Weak instrument bias was assessed using F-statistics,
with values ≥10 considered sufficient for MR analysis.

2.4 MR analysis

To evaluate the potential relationship between micronutrients and
ER+ breast cancer, we applied seven different MR approaches: Inverse-
variance weighted (IVW), Weighted Median (WM), Simple Mode,
Weighted Mode, MR-RAPS (Robust adjusted profile score), MR-
Steiger test and MR-Egger methods. The IVW method derives a
comprehensive causal effect estimate by weighted averaging the causal
effect estimates of each SNP. This approach takes into account the
contribution of each SNP to the overall causal effect, ensuring minimal
variance in the estimate and enhancing its accuracy. Therefore, The IVW
method is regarded as the primary and most precise analytical approach
in this study, with the other six methods as supporting methods. The
odds ratio (OR) and 95% confidence interval (95% CI) were determined.

2.5 Sensitivity analysis

We conducted several sensitivity studies to evaluate the impact
of pleiotropism on Mendelian random causality. Horizontal

pleiotropy was detected by MR Egger test, while outliers in
pleiotropy deviation were detected by MR-PRESSO (directional
pleiotropy was absent if P > 0.05). Heterogeneity was evaluated
through Cochran’s Q test, and when P > 0.05, SNP was considered to
have no heterogeneity. Further, a “leave-one-out” analysis was
performed to access the robustness of the data and whether any
association was driven by any typical SNP.

2.6 Statistical analysis

All statistical analyses were performed using R software (v4.3.0)
with the “TwoSampleMR” and “MRPRESSO” packages. A
significance threshold of P < 0.05 was applied, and associations
meeting this criterion were deemed statistically significant.
Statistical power was also calculated via the formula
approximation method in R software (v4.3.0). The Bonferroni
correction was used to control false-positive results arising from
multiple tests, and associations with P < 0.005 (0.05 divided by 10)
were considered statistically significant.

3 Result

We carried out this two-sample MR study to investigate the
causal association between micronutrients and ER+ breast cancer.
Figure 2 and Supplementary Table S1 illustrate six methods of MR
analysis, and the results indicate that only vitamin B6, as genetically
predicted, is associated with the incidence rate of ER+ breast cancer.

FIGURE 1
The study design diagram for MR analysis of the causal relationship between micronutrients and ER+ breast cancer risk.
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The IVW results for vitamin B6 and ER+ breast cancer are [OR:
1.275; 95% CI: (1.017, 1.600); P = 0.035] (Table 1), and results of the
other five methods suggest a consistent direction (Figures 3, 4D).
Using the formula approximation method in R software, the
statistical power for detecting the effect of vitamin B6 on ER+
breast cancer is calculated as 0.998, demonstrating sufficient power
to detect an effect size of OR = 1.275. Meanwhile, the results of the
MR-Steiger directional test indicate that there is no reverse causal
relationship between vitamin B6 and ER+ breast cancer (P < 0.05)
(Table 2). It can be considered that there may exist a potential causal
relationship between vitamin B6 and ER+ breast cancer, and vitamin
B6 may increase the risk of ER+ breast cancer. Genetics predicted
that the rest 14 micronutrients had no impact on the development of
ER+ breast cancer. However, after applying the Bonferroni adjusted
significance level, the causal effect of vitamin B6 on ER+ breast
cancer was no longer statistically significant (P = 0.530).

For the sensitivity analysis, both Cochran’s Q test and MR-
PRESSO analysis for vitamin B6 and ER+ breast cancer association
showed non-significant P-values (>0.05), suggesting no evidence of
heterogeneity and horizontal pleiotropy (Table 3; Supplementary
Table S2). Forest plot and funnel plot results of IVW and MR-Egger

test showed that the distribution of SNP causal effect values was
basically symmetrical, and no bias was found, therefore the results
were relatively robust (Figures 4A,C). In the leave-one-out analysis,
after eliminating SNPs one by one, the remaining SNPs were all
located on the right side of the null line, yet the results remained
unchanged, indicating the absence of SNPs significantly affecting the
overall causality (Figure 4B).

4 Discussion

To evaluate the causative relationship between vitamin B6 and
ER+ breast cancer, we carried out the two-sample MR analysis in
this study. The results of our study implied that higher vitamin
B6 intake may raise the risk of ER+ breast cancer.

Vitamin B6 is part of the B-vitamin family, which encompasses
three forms: pyridoxine, pyridoxal, and pyridoxamine. Vitamin B6 is
found in various sources, such as meat, fish, dairy products, and root
vegetables (Barkoukis, 2016). In physiology, vitamin B6 has been
proved to be involved in numerous biological processes: glycol-
metabolism, lipid metabolism, amino acid synthesis, heme

FIGURE 2
Circular diagram of MR analysis results for 15 micronutrients and ER+ breast cancer.
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biosynthesis, and redox homeostasis, etc. Meanwhile, it occupies a
central position in many disease mechanisms (Wang et al., 2024).

It has been shown in several studies that vitamin B6 is not only a
tumor suppressor, but also a tumor promoter (Zuo et al., 2015). On
the one hand, vitamin B6 exhibits antioxidant properties, modulates
immune function, facilitates DNA repair, and regulates
inflammatory responses, which collectively contribute to
inhibiting cancer development (Stach et al., 2021). Oral
consumption of a moderate dose of vitamin B6 has been shown
to have a preventive effect on gastrointestinal cancer (Mocellin et al.,
2017). A prospective cohort study reported that higher pre-
diagnostic dietary vitamin B6 and choline intake levels improve
the survival rate of ovarian cancer (Xu et al., 2022). On the other
hand, Inappropriate vitamin B6 supplementation may inactivate key
DNA repair enzymes, induce dysregulation of gene expression, and
disrupt metabolic homeostasis, paradoxically promoting cancer
progression (Calderon-Ospina et al., 2020). Chen CC’s work
indicated that leukemic cells are addicted to the vitamin

B6 pathway, and an epidemiological study showed that vitamin
B6 is more likely to increase cancer risk instead of being a tumor
protector in some solid tumors (Brasky et al., 2017; Chen et al.,
2020). In a recently published retrospective study, researchers
detected a high possibility of intrapulmonary metastasis in non-
small cell lung cancer patients with high serum vitamin B6 levels
after multivariable adjustment (Liu et al., 2023). As regard to breast
cancer, the causal link between its development and vitamin
B6 remains to be debatable. In the early 2000s, one population-
based case-control study reported that breast cancer patients
displayed higher serum vitamin B6 levels, while another study
revealed that high vitamin B6 intake or serum levels is irrelevant
to breast cancer risk (Franco et al., 2022). Literature also reported
varying associations between vitamin B6 and the risk of different
subtypes of breast cancer. No association between the ER,
progesterone receptor (PR) and combined ER-PR status of breast
cancers and vitamin B6 were reported in three cohort studies (Cho
et al., 2007; Maruti et al., 2009; Shrubsole et al., 2011). However, one

TABLE 1 MR analysis of the causal relationship between 15 micronutrients and ER+ breast cancer.

Exposure Outcome Sample size nSNP IVW OR (95%CI) IVW P-value

Copper ER (+) BC 1,073 6 0.969 (0.905–1.038) 0.374

Calcium ER (+) BC 8,951 19 0.998 (0.800–1.245) 0.987

Carotene ER (+) BC 16,202 15 0.916 (0.725–1.158) 0.463

Folate ER (+) BC 11,349 12 1.240 (0.946–1.624) 0.119

Iron ER (+) BC 20,447 11 1.043 (0.783–1.390) 0.773

Magnesium ER (+) BC 7,372 17 0.940 (0.652–1.356) 0.741

Potassium ER (+) BC 17,881 13 1.206 (0.880–1.651) 0.244

Selenium ER (+) BC 1,077 6 0.995 (0.917–1.080) 0.907

Vitamin A ER (+) BC 9,596 11 0.038 (6.053–23.626) 0.319

Vitamin B12 ER (+) BC 19,524 8 0.931 (0.584–1.483) 0.763

Vitamin B6 ER (+) BC 7,864 17 1.275 (1.017–1.600) 0.035

Vitamin C ER (+) BC 19,390 10 0.869 (0.642–1.176) 0.363

Vitamin D ER (+) BC 18,593 13 1.136 (0.818–1.577) 0.448

Vitamin E ER (+) BC 6,888 12 0.850 (0.645–1.120) 0.248

Zinc ER (+) BC 1,079 8 1.036 (0.946–1.135) 0.446

Abbreviations: SNP, single-nucleotide polymorphisms; IVW, inverse-variance weighted method; BC, breast cancer; OR, odds ratio; CI, confidence interval; ER, estrogen receptor.

FIGURE 3
Forest plot of MR analysis results for vitamin B6 and ER+ breast cancer.
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prospective study with a mean follow-up of 16.3 years presented that
high vitamin B6 was associated with reduced risk of ER+ breast
cancer and human epidermal growth factor receptor 2 negative
(HER2-) breast cancer (Cancarini et al., 2015). Conclusion from a
prospective study in 2019 demonstrated that in summary, folate,
vitamin B12, vitamin B6, homocysteine, and cysteine levels are
independently associated with breast cancer risk, regardless of in
situ/invasive, hormone receptor status, or tumor molecular subtype
(Houghton et al., 2019). A recently published MR study found that
vitamin B6 was associated with a higher risk of triple-negative breast
cancer (OR = 1.361, 95%CI = 1.04–1.78, P = 0.0248) but not with the
other breast cancer subtypes (Kim et al., 2023). Owing to
methodological constraints of traditional research designs, neither
potential reverse causation nor heterogeneity can be entirely
excluded. In our comprehensive MR analysis, the result
supported an unexpected positive association between the
elevated levels of vitamin B6 and the risk of ER+ breast cancer.
Vitamin B6 showed marginal significance in the unadjusted analysis
(P = 0.035), and it failed to retain significance following Bonferroni

correction (adjusted P = 0.530). Given the multiple comparisons
across 15 tests, this finding may represent a false-positive signal.
Nevertheless, in light of its potential biological plausibility (Brasky
et al., 2017; Chen et al., 2020; Liu et al., 2023), the association
warrants further investigation and validation in larger cohorts. Since
the mechanisms by which vitamin B6 promotes ER+ breast cancer
risk remain incompletely understood, and the relevant literature is
limited, we primarily propose potential hypothetical mechanisms by
integrating vitamin B6’s biological properties with relevant
pathways in ER+ breast cancer cells. The possible mechanisms
may be as follows. Firstly, vitamin B6 modulates cellular
proliferation in cancer cells by facilitating amino acid metabolism
and nucleotide synthesis. It additionally mediates apoptosis through
the regulation of oxidative stress, redox homeostasis, and epigenetic
modifications. An excess of vitamin B6 could promote tumor
growth by modulating the redox-mediated metabolic pathways,
as solid tumors critically depend on high dynamic amino acid
turnover to sustain their survival and growth (Parra et al., 2018;
Frost et al., 2025). Secondly, one-carbon metabolism is an essential

FIGURE 4
Four plots of all vitamin B6-related SNPs on the risk of ER+ breast cancer demonstrate that there is no horizontal pleiotropy. (A) Forest plot; (B)
Leave-one-out plot; (C) Funnel plots; (D) Scatter plot.

Frontiers in Genetics frontiersin.org06

Fu et al. 10.3389/fgene.2025.1599724

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2025.1599724


pathway in organisms, which is linked to DNA synthesis,
methylation, repair and amino acid metabolism (Petrova et al.,
2023). Vitamin B6, one of the one-carbon metabolism-related
vitamin, is capable of playing a role in the progression of tumors
through influencing the stability of DNA and activating antioxidant
enzymes (Selhub et al., 2013; Song et al., 2022). De Vogel et al.
conducted the Netherlands Cohort Study on diet and cancer (n =
120,852) and found that high vitamin B6 intake has a positive
correlation with the development of tumors showing mutL
homologue 1 (MLH1) hypermethylation (de Vogel et al., 2008).
Compared with healthy individuals, a significantly higher frequency
of MLH1 hypermethylation is observed in breast cancer patients
(Nikitin et al., 2020). In the meantime, dysregulation of the MutL
mismatch repair complex (MLH1/3, PMS1/2), including
MLH1 promoter hypermethylation, is linked to endocrine
therapy and chemotherapy resistance in ER+ breast cancer
(Haricharan et al., 2017; Dasgupta et al., 2019), suggesting that
MLH1 hypermethylation may correlate with poor prognosis of ER+
breast cancer. Building upon existing epidemiological and
experimental evidence, we hypothesize that excessive vitamin
B6 may increase ER+ breast cancer risk by promoting
MLH1 hypermethylation. Thirdly, vitamin B6 may promote ER+
breast cancer risk by modulating inflammatory signaling pathways.
Previous data have suggested that vitamin B6 modulate
inflammatory pathways via cofactor roles in homocysteine and

tryptophan/kynurenine metabolism (Ueland et al., 2017).
Abnormalities in the tryptophan/kynurenine metabolism are
potentially linked to the occurrence, progression, and treatment
response of breast cancer. Indoleamine 2,3-dioxygenase 1 (IDO1) is
a key rate-limiting enzyme in the kynurenine pathway (Ding et al.,
2024). Vitamin B6 facilitates the enzymatic activity of IDO1 through
the provision of pyridoxal 5-phosphate (PLP)as a cofactor
(Majewski et al., 2016; Li et al., 2019; Huang et al., 2022). In ER+
breast cancer, increased IDO1 expression may deplete tryptophan,
suppress T cells, and aid immune evasion. Besides, ER signaling
might activate IDO1, creating an “ER-IDO1 immune suppression
axis” that strengthens tumor resistance to immunotherapy (Soliman
et al., 2013; Fumagalli et al., 2016; Anurag et al., 2020). These three
mechanistic hypotheses we propose collectively suggest that
excessive vitamin B6 intakemay promote ER+ breast carcinogenesis.

Our study exhibits several methodological strengths. First, the MR
analysis adheres to the principle of genetic randomization, substantially
reducing confounding bias. Second, the utilization of large sample size
summary data provides strong evidence compared to conventional
observational studies. Additionally, we implementedmultiple sensitivity
analyses to ensure the robustness of the causal inference.

Nevertheless, this study has several notable limitations: (1) Both
exposure and outcome data were derived exclusively from European
populations. The generalizability of findings to other ethnic groups
may be constrained due to unaccounted population stratification
effects; (2) Stratified analyses of potentially relevant clinical variables
(e.g., menopausal status, body mass index) were precluded by
insufficient clinical data; (3) While our two-sample MR analysis
suggests a potential causal link between vitamin B6 and ER+ breast
cancer with borderline statistical significance, large-scale clinical
studies with mechanistic investigations are required to validate these
findings and clarify the underlying biological pathways.

TABLE 2 MR-Steiger test in this two-sample Mendelian randomization analysis.

Exposure Outcome SNP_r2.exposure SNP_r2.outcome Correct_causal _direction Steiger_pval

Copper ER (+) BC 0.080 9.23E-05 TRUE 6.15E-46

Selenium ER (+) BC 0.064 4.71E-05 TRUE 2.44E-37

Vitamin B6 ER (+) BC 0.100 8.03E-05 TRUE 7.68E-59

Vitamin A ER (+) BC 0.004 6.61E-05 TRUE 3.85E-37

Vitamin D ER (+) BC 0.005 5.19E-05 TRUE 5.28E-49

Zinc ER (+) BC 0.005 7.08E-05 TRUE 2.97E-43

Potassium ER (+) BC 0.005 9.48E-05 TRUE 1.13E-40

Vitamin B12 ER (+) BC 0.004 5.06E-05 TRUE 1.99E-32

Calcium ER (+) BC 0.003 7.61E-05 TRUE 1.42E-23

Vitamin E ER (+) BC 0.004 4.35E-05 TRUE 6.51E-40

Magnesium ER (+) BC 0.004 7.91E-05 TRUE 4.11E-38

Vitamin C ER (+) BC 0.006 1.61E-04 TRUE 2.47E-48

Iron ER (+) BC 0.006 6.74E-05 TRUE 2.58E-59

Carotene ER (+) BC 0.007 7.69E-05 TRUE 2.85E-66

Folate ER (+) BC 6.04E-04 6.64E-05 TRUE 8.48E-11

Abbreviations: SNP, single-nucleotide polymorphisms; BC, breast cancer; ER, estrogen receptor.

TABLE 3 MR-PRESSO test result for directional pleiotropy.

Outcome Exposure RSSobs MR-PRESSO P value

ER+ breast cancer Vitamin B6 10.966 0.877

Abbreviations: MR, Mendelian randomization; ER, estrogen receptor.
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5 Conclusion

We employed this two-sample MR analysis to genetically
investigate the causal relationship between vitamin B6 and ER+
breast cancer. Our findings suggest a potentially significant
causal association, indicating that elevated vitamin B6 levels
may increase the risk of ER+ breast cancer. This study
highlights that while vitamin B6 supplementation may confer
health benefits in certain contexts, excessive or prolonged use
could pose potential health risks. Specifically, individuals at high
risk of breast cancer should avoid indiscriminate vitamin
B6 supplementation.
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