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With an estimated 263million cases recordedworldwide in 2023,malaria remains
a major global health challenge, particularly in tropical regions with limited
healthcare access. Beyond its health impact, malaria disrupts education,
economic development, and social equality. While traditional research has
focused on biological factors underlying human-mosquito interactions,
growing evidence highlights the complex interplay of environmental,
behavioral, and socioeconomic factors, alongside mobility and both human
and parasite genetics, in shaping transmission dynamics, recurrence patterns,
and control effectiveness. This work shows how integrating Artificial Intelligence
(AI), Machine Learning (ML), and Causal Inference can advance malaria research
by identifying context-specific risk factors, uncovering causal mechanisms, and
informing more effective, targeted interventions. Drawing on the Mâncio Lima
cohort, a longitudinal, multimodal study of malaria risk in Brazil’s main urban
hotspot, and related studies in the Amazon, we highlight how rigorous, data-
driven approaches can address the substantial variability in malaria risk across
individuals and communities. AI-driven methods facilitate the integration of
diverse high-dimensional datasets to uncover intricate patterns and improve
individual risk stratification. Federated learning enables collaborative analysis
across regions while preserving data privacy. Meanwhile, causal discovery and
effect identification tools further strengthen these approaches by distinguishing
genuine causal relationships from spurious associations. Together, these
approaches offer a principled, scalable, and privacy-preserving framework that
enables researchers to move beyond predictive modeling toward actionable
causal insights. This shift supports precision public health strategies tailored to
vulnerable populations, fostering more equitable and sustainable malaria control
and contributing to the reduction of the global malaria burden.
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Introduction

Malaria remains a major health challenge, particularly in
tropical and subtropical regions facing poverty, limited healthcare
access, and harsh environments, such as the Amazon rainforest. In
2023, an estimated 263 million malaria cases occurred across
83 countries and territories – 37 million more than in 2015
(World Health Organization, 2024). Conflicts, humanitarian
crises, climate change, drug and insecticide resistance, and
resource constraints are among the threats to malaria control efforts.

P. falciparum predominates in sub-Saharan Africa, causing the
most severe form of humanmalaria (Poespoprodjo et al., 2023). P. vivax
is themost geographically widespread parasite, responsible for over 80%
of infections in the Amazon and causing recurrent infections. Malaria’s
impact extends beyond health, disrupting education, hindering
economic growth, straining healthcare systems, and perpetuating
poverty. Effective control is crucial for public health, equity and
global prosperity, requiring a shift from the traditional human-
mosquito transmission model to a broader understanding of
biological, environmental, and socioeconomic factors.

We take as an example the Mâncio Lima cohort study, which
focuses on urban malaria in the Brazilian Amazon (Johansen et al.,
2021). Approximately 20% of households in Mâncio Lima, Brazil’s
primary urban hotspot near the Peruvian border, were randomly
selected from census data, resulting in 2,774 participants tested for
malaria parasites during seven cross-sectional surveys (2018–2021)
using conventional microscopy and highly sensitive, species-specific
molecular techniques (Rodrigues et al., 2024). The study gathered
data on demographics, health, housing conditions, occupation,
lifestyle, and mobility, alongside blood samples for human
genetics research, including genome-wide association studies.

Complementary longitudinal studies across Latin America have
investigated the genomic diversity of P. vivax and P. falciparum (de
Oliveira et al., 2020; Cabrera-Sosa et al., 2024; Kattenberg et al.,
2024). Conducted in both urban and rural areas around Mâncio
Lima (2018–2021) and the Peruvian Amazon (2007–2020), these
studies support integrative genomic surveillance to track
transmission intensity, imported cases, and drug resistance
markers. By linking human and parasite data across diverse
settings, these efforts support research on malaria dynamics and
the evolution of key traits, such as virulence, resistance, and local
adaptation, while accounting for ecological and socio-
demographic variation.

The Mâncio Lima cohort has yielded several insights (Corder
et al., 2019; Corder et al., 2020b; de Oliveira et al., 2020; Corder et al.,
2023; Rodrigues et al., 2024). Of 11,730 samples screened using
molecular methods, 4.0% were positive for P. vivax and 0.9% for P.
falciparum, whereas standard microscopy detected much lower rates
(0.4% for P. vivax and 0.2% for P. falciparum) (Rodrigues et al.,
2024). Despite the low prevalence, P. vivax infections were recurrent
(Corder et al., 2020a; Corder et al., 2023), with model simulations
indicating that 20% of individuals at highest risk of infection
accounted for 86% of the infection burden (Corder et al., 2020b).
This highlights that malaria burden is often heterogeneously
distributed within communities, following the 20/80 rule, where
approximately 20% of individuals carry 80% of infections (Corder
et al., 2023). Adult men face the highest risk (Corder et al., 2019),
and most laboratory-confirmed infections were asymptomatic

(Rodrigues et al., 2024). Human mobility between urban and
rural areas appears to sustain malaria transmission (Johansen
et al., 2020). Additionally, genetic analyses of P. vivax revealed
diverse, spatially and temporally structured lineages, highlighting
heterogeneous transmission dynamics across different settings (de
Oliveira et al., 2020; Kattenberg et al., 2024). In contrast, P.
falciparum exhibited lower genetic diversity and stronger
temporal clustering, indicating localized and time-limited
transmission (Cabrera-Sosa et al., 2024).

Despite these heterogeneities, malaria prevalence in Mancio
Lima declined significantly from 2018 to 2021, likely due to
extensive control and treatment efforts, including widespread
indoor residual spraying, distribution of insecticide-treated bed
nets, active case testing, and free treatment programs. Sustaining
and advancing this progress requires improved identification of
high-risk groups for optimizing resource distribution and
implementing tailored interventions. A key challenge is
understanding why some individuals repeatedly contract P. vivax
while others remain uninfected. Clinically, such recurrences can lead
to severe complications, including anemia, particularly among
vulnerable groups, such as children and pregnant women
(Pincelli et al., 2021). Economically, this heterogeneity
complicates policy design. The 20/80 rule suggests that targeting
high-risk individuals could maximize impact (Corder et al., 2023).
Additionally, malaria has emerged as a zoonotic threat. P. simium, a
parasite of non-human primates, has caused infections in humans in
southeastern Brazil, where P. vivax is rare (de Oliveira et al., 2021a;
b). Distinguishing between human and zoonotic parasites is critical
for evaluating interventions and preparing for future outbreaks.

To elucidate the multifaceted dynamics underlying malaria risk,
we propose a synergistic integration of AI, ML, and causal inference.
This combination enables not only the identification of high-risk
groups but also the discovery of causal mechanisms driving
individual variability in malaria susceptibility. By leveraging
cutting-edge methods, we can move beyond predictive modeling
toward causal understanding, thereby informing the development of
optimized, targeted interventions. Our approach relies on the
integration of high-dimensional, multimodal datasets such as
those from the Mancio Lima cohort and other regional
studies – including data on malaria episodes, clinical, behavioral,
socioeconomic, environmental, and genetic factors. This rich data
landscape enables the identification of structured patterns and
interpretable representations that explain malaria risk and
transmission dynamics. Causal inference methods that account
for latent confounding and selection bias are essential to
distinguish causal drivers from spurious associations, enabling
robust estimation of intervention effects under real-world
conditions. Ultimately, this framework will support precision
public health by ensuring that prevention, control, and treatment
strategies are both timely and tailored to those most at risk,
maximizing impact and equity (Khoury et al., 2015).

Bridging AI and causality for targeted
malaria interventions

AI and ML have driven significant advancements in medicine
and public health (MacEachern and Forkert, 2021) due to their
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ability to model complex relationships and uncover subtle patterns
in high-dimensional, heterogeneous datasets. These methods have
been successfully applied across various medical domains
(Theodosiou and Read, 2023), including infectious disease
research, such as AMR prediction (Ren et al., 2022), zoonotic
disease detection (Ren et al., 2024), and biomarker discovery in
malaria (Jung et al., 2023).

In malaria research, AI and ML provide powerful tools to
disentangle complex, often hidden dependency structures and
enable precise individual risk stratification. The pipeline
(Figure 1) begins with data collection and preprocessing, crucial
for multimodal, heterogeneous, and sensitive data such as genomic
and socio-behavioral information. Ensuring data privacy and quality
through anonymization, harmonization, imputation, and
normalization – while following FAIR principles (Findable,
Accessible, Interoperable, Reusable) (Kush et al., 2020) – is
essential for robust model development. In multi-center studies,
federated learning supports privacy-preserving collaboration by
enabling joint analysis without exchanging raw data (McMahan
et al., 2017; Tajabadi et al., 2023; Tajabadi et al., 2024).

Multi-view representation learning approaches, such as
multimodal variational autoencoders, enable data integration by
generating low-dimensional latent embeddings that retain modality-
specific features while capturing cross-modal dependencies (Guo
et al., 2019). Clustering these embeddings can reveal subgroups of
individuals with shared but not directly observed risk profiles,
shaped by common exposures or susceptibilities (Jaeger et al.,
2023). This step can be enriched through co-clustering, which
jointly identifies groups of individuals and co-varying variables,
highlighting context-specific drivers of malaria vulnerability
(Govaert and Nadif, 2013). Moreover, federated representation
learning and clustering (Zhang et al., 2023; Pedrycz, 2021)
support robust and generalizable predictions across distributed,
heterogeneous datasets. To enhance interpretability and inform
downstream modeling, cluster-aware feature selection (Wang and
Allen, 2021) identifies both globally predictive variables and those
particularly informative within specific subgroups. These selected
features and representations are then used to predict individual
malaria risk, forming a cohesive and interpretable AI-driven
framework for risk assessment.

FIGURE 1
AI and Causal Inference Pipeline for Targeted Intervention Design in Malaria Research. The pipeline begins with Data Collection and Preprocessing,
including anonymization, harmonization, and normalization of multimodal, multi-center data. In Data Integration, federated multi-view representation
learning generates low-dimensional embeddings that capture both within- and cross-modal patterns while maintaining data privacy. Predictive Feature
Selection uncovers latent risk profiles and selects interpretable features that predict malaria risk both globally and within specific subgroups. Finally,
Causal Inference and Intervention Design applies causal discovery to reveal mechanisms underlying the selected features – e.g., treatment regimens,
prior infection history, genetic predispositions, bed net usage, healthcare access, urban vs. rural residence, and proximity to mosquito breeding sites.
Causal effect estimation tools then quantify the (conditional) impact of specific interventions (e.g., increasing healthcare access, personalizing
treatments, or implementing targeted screening) from observational data, supporting precision public health strategies for effective malaria prevention,
treatment, and control.
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While essential, high predictive accuracy alone is not sufficient
to uncover the underlying data-generating mechanisms or support
meaningful, actionable interventions. This is particularly true in
biomedical and epidemiological research, where data are largely
observational and vulnerable to multiple sources of bias. In malaria
research, for example, unmeasured factors such as socio-economic
status, mobility patterns, or environmental exposures can confound
associations between risk factors and outcomes. Selection bias is also
widespread due to underreporting, especially in remote regions or
among asymptomatic individuals. If not properly addressed, these
biases can reinforce existing health disparities and lead to
interventions that are ineffective or even harmful.

Causal inference provides a principled framework to uncover cause-
and-effect relationships and mitigate the impact of bias in observational
studies (Pearl, 2009). It enables the estimation of the effect of interventions
with a level of rigor comparable to randomized controlled trials. Several
approaches exist, including the Potential Outcomes Framework (Rubin,
1974), Causal Machine Learning (van der Laan and Rubin, 2006;
Feuerriegel et al., 2024), and Instrumental Variables (Angrist et al.,
1996), also known in genetics as Mendelian Randomization (Haycock
et al., 2016; Ribeiro et al., 2016). However, these frameworks rely on
strong, sometimes unverifiable assumptions – such as the absence of
latent confounding or availability of valid instruments – which are often
violated in real-world settings.

In response, data-driven causal discovery methods within Pearl’s
framework have emerged as robust alternatives. Algorithms such as Fast
Causal Inference (FCI) (Zhang, 2008) and its variants can recover causal
structures directly from observational data, even in the presence of
unmeasured confounding and selection bias. Notably, AnchorFCI
(Ribeiro et al., 2024) enhances robustness and discovery power by
strategically selecting and integrating reliable anchor variables – such as
genetic variants – that are known not to be influenced by the variables of
interest (e.g., clinical or sociodemographic factors). Thesemethods infer
a Partial Ancestral Graph (PAG) representing causal relationships
shared across all models supported by the data, thus revealing the
true data-generating processes. This enables the identification of key
factors – e.g., use of insecticide-treated bed nets, housing conditions, or
access to healthcare – that causally influence malaria risk and can be
targeted by interventions. By applying causal effect identification
algorithms to the resulting PAG, we can then quantify the isolated
or combined impact of specific interventions, based solely on
observational data (Perković et al., 2018; Jaber et al., 2022). This
fully data-driven causal pipeline supports the development of more
robust, transparent, and socially responsible interventions, providing a
clearer pathway for addressing malaria risk in diverse settings.

A key strength of constraint-based causal discovery approaches
such as FCI and its variants lies in their flexibility to account for
mixed-type variables and complex dependency structures by
adapting conditional independence tests. This is particularly
important for analyzing malaria datasets, which typically
comprise a mix of continuous, ordinal, categorical, and count
variables, along with non-independent observations arising from
genetic relatedness, repeated measures, household clustering, and
spatial correlations. Conditional independence tests that account for
such complexities can be constructed using generalized mixed
models, which incorporate structured covariance and random
effects to model known or inferred dependencies (Ribeiro and
Soler, 2020). These tests can also be extended to federated

learning settings, enabling collaborative, privacy-preserving causal
discovery. Furthermore, causal discovery at the level of variable
clusters – either predefined or learned through representation
learning and clustering – can yield more interpretable insights
into the interactions among biological, behavioral, and
environmental risk factors for malaria (Anand et al., 2023).

Discussion

Progress toward malaria elimination in regions such as the
Amazon requires a deep understanding of the intricate factors
driving infection risk and recurrence. The Mâncio Lima cohort and
regional studies offer a unique opportunity to uncover malaria
dynamics by combining comprehensive data on human hosts,
parasites, and their environments. However, the inherent complexity
and heterogeneity of these datasets demand analytical frameworks that
extend beyond traditional epidemiological or statistical approaches.

By integrating AI, ML, and causal inference, we move toward a
more holistic strategy that not only accurately identifies high-risk
individuals but also elucidates the causal mechanisms underlying
malaria transmission and infection. This shift from descriptive and
predictive modeling to causal reasoning enables the development of
optimized, targeted interventions and lays the foundation for
precision public health strategies that are not only more effective
but also more equitable. Federated learning further supports this
approach by enabling collaborative analysis across diverse regions
without compromising data privacy. Together, these methodologies
empower local health systems to respond more precisely and
efficiently and contribute meaningfully to global control efforts.
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