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Background: COVID-19 progression and recovery involve complex gene
expression changes and immune dysregulation, but their dynamic alterations
remain poorly understood. Current clinical indicators lack precision in
distinguishing severe cases, highlighting the need for molecular biomarkers
and diagnostic tools.

Methods: Three transcriptomic datasets were analyzed: 1) COVID-19 progression
from Healthy, Moderate, Severe, to ICU patients; 2) recovery stages (1, 3, and
6 months) compared to Healthy controls; and 3) COVID-19 ICU versus non-ICU
patients. Differential expression analysis, immune cell infiltration estimation,
machine learning (LASSO regression and random forest), and functional
enrichment were used to identify key genes and molecular mechanisms.

Results: Gene expression analysis revealed dynamic changes during COVID-19
progression. Adaptive immune cells (e.g., B cells and T cells) decreased, while
innate immune cells (e.g., monocytes and neutrophils) increased, particularly in
ICU patients. Recovery analysis showed significantly reduced adaptive immune
cells at 1 month, with partial recovery by 3 and 6 months. Machine learning
identified CCR5, CYSLTR1, and KLRG1 as diagnostic biomarkers for distinguishing
ICU from non-ICU patients, with AUC values of 0.916, 0.885, and 0.899,
respectively.

Conclusion: This study identified CCR5, CYSLTR1, and KLRG1 as efficient
diagnostic biomarkers for severe COVID-19 using machine learning and
revealed immune regulatory features across COVID-19 progression and
recovery.
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1 Introduction

The global COVID-19 pandemic, caused by the SARS-CoV-2 virus,
has led to significant morbidity and mortality worldwide. Despite
extensive research, the mechanisms underlying disease progression
and recovery remain incompletely understood. Clinical manifestations
of COVID-19 vary widely, ranging from asymptomatic cases to severe
pneumonia, acute respiratory distress syndrome (ARDS), and death.
Severe cases are often associated with dysregulated immune responses,
including hyperinflammation and impaired adaptive immunity, which
are particularly pronounced in patients requiring intensive care unit
(ICU) admission (Chen et al., 2020;Wang et al., 2022; Blanco-Melo et al.,
2020). While clinical scores such as the Sequential Organ Failure
Assessment (SOFA) and biomarkers like C-reactive protein (CRP)
are routinely used, their diagnostic efficacy in distinguishing severe
cases remains limited (Herold et al., 2020; Zhou et al., 2020). There
is an urgent need for precise molecular markers to improve patient
stratification and inform treatment strategies.

Transcriptomic analysis offers a powerful approach to
investigate the dynamic gene expression changes associated with
disease progression and recovery. Previous studies have
demonstrated that transcriptomic signatures can provide insights
into the immune landscape, highlighting shifts in immune cell
populations and identifying pathways involved in disease
pathogenesis (Ou et al., 2024; Cappelletti et al., 2023). Immune
profiling, particularly through the analysis of immune cell
infiltration, can further delineate the roles of adaptive and innate
immune responses in COVID-19. However, few studies have
comprehensively examined the gene expression and immune
regulation across the full spectrum of COVID-19 stages, from
mild cases to ICU admission and through the recovery phase.

Recent advancements in machine learning techniques, such as
LASSO regression and random forest algorithms, have enabled the
identification of robust diagnostic and prognostic biomarkers from
complex transcriptomic datasets (Chen and Ishwaran, 2012; Wang
et al., 2024; Fan et al., 2022; Xie et al., 2024). These approaches are
particularly effective in handling high-dimensional data, allowing
for the identification of key genes associated with severe disease. By
integrating transcriptomics with machine learning, we can uncover
molecular signatures that are not only diagnostic but also
mechanistically linked to disease severity.

In this study, we performed an integrated analysis of three
transcriptomic datasets to capture the molecular and immune
changes associated with COVID-19 progression and recovery. The
first dataset focuses on disease progression across Healthy, Moderate,
Severe, and ICU patients; the second examines recovery stages at 1-,
3-, and 6-month post-infection compared to Healthy controls; and
the third compares gene expression profiles between ICU and
non-ICU patients. Using differential expression analysis, immune
infiltration profiling, and machine learning, we identified CCR5,
CYSLTR1, and KLRG1 as high-performing diagnostic biomarkers
for distinguishing ICU patients. Functional enrichment and immune
correlation analyses further revealed the roles of these genes in
immune regulation and inflammation, providing novel insights
into COVID-19 pathogenesis and recovery mechanisms.

This comprehensive approach highlights the potential of
integrating transcriptomic analysis and machine learning to
address the critical unmet need for precise diagnostic biomarkers

in severe COVID-19. By identifying key molecular signatures, this
study contributes to the development of targeted diagnostic and
therapeutic strategies, advancing precision medicine for COVID-19
and other infectious diseases.

2 Materials and methods

2.1 Data sources and processing

We downloaded the gene expression profile from the GEO
database (https://www.ncbi.nlm.nih.gov/geo/). The clinical
information of the samples included in this study is provided in
Table 1, with additional details available in Supplementary Table S1.
The gene expression matrix was standardized using R software
(version 4.2.2), which included probe annotation, duplicate
removal, and log-transformation normalization. Figure 1 Show
the process framework of this study.

2.2 t-SNE, PCA, and UMAP analysis

t-SNE (t-distributed Stochastic Neighbor Embedding), PCA
(Principal Component Analysis), and UMAP (Uniform Manifold
Approximation and Projection) were employed to perform
dimensionality reduction and visualization of gene expression data
across different stages of COVID-19 progressive and recovery stages.
Before analysis, the data were standardized and processed using R
software. PCA was used to capture overall variance through principal
components, t-SNE emphasized the visualization of local data
structures, and UMAP balanced both local and global structures to
reveal clustering patterns and group relationships.

2.3 Identification of differentially expressed
genes (DEGs)

DEGs were identified using the “limma” R package (Ritchie
et al., 2015). Pairwise comparisons were conducted across the groups
to determine significant DEGs. Adjusted p-values were calculated
using the Benjamini–Hochberg method to control for false discovery
rates, and genes with an adjusted p-value <0.05 and |log2 fold-
change| > 1 were considered significant.

2.4 Pattern clustering heatmap

Mfuzz is a clustering algorithm designed for time-series gene
expression data (Kumar and M, 2007). Based on the principle of
fuzzy clustering, it can handle noise and complexity in gene
expression data while identifying groups of genes with similar
expression patterns. At its core is the fuzzy C-means clustering
algorithm, which allows a gene to belong to multiple cluster centers.
The membership of each gene to a cluster center is defined using
fuzzy set theory (Kumar andM, 2007). Mfuzz optimizes an objective
function to determine the cluster centers and the membership
degrees of genes, ensuring that the clustering results better reflect
the actual data distribution. Through clustering, it is possible to
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identify genes with similar expression patterns, providing a
foundation for further biological analysis.

2.5 Estimation of immune cell infiltration

CIBERSORT is a commonly used computational tool for
analyzing immune infiltration from gene expression data

(Newman et al., 2015). It employs a deconvolution method to
estimate the relative abundances of 22 distinct immune cell types
within a heterogeneous cell population. Using the predefined
LM22 reference gene expression signature matrix, the algorithm
applies support vector regression to provide accurate and reliable
assessments of immune cell composition (Newman et al., 2015).

Immune cell infiltration was estimated using the CIBERSORT
algorithm, which provides relative proportions of 22 immune cell

TABLE 1 Information and grouping of the samples.

Number of samples (included) Platforms Status

GSE152418 17 GPL24676 Illumina NovaSeq 6,000 Healthy

4 Moderate

8 Severe

4 ICU

GSE227116 10 GPL16791 Illumina HiSeq 2500 Healthy

22 1 month hospital discharge

25 3 months hospital discharge

18 6 months hospital discharge

GSE157103 50 GPL24676 Illumina NovaSeq 6,000 COVID-19&ICU

50 COVID-19

FIGURE 1
The flow-chart of this study.
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types based on gene expression data. Statistical comparisons were
conducted across groups to identify significant changes in immune
cell distributions during disease progression and recovery stages.

2.6 Functional and pathway
enrichment analysis

Functional annotation and pathway analysis were conducted
using the DAVID database (Dennis et al., 2003) (https://david.
ncifcrf.gov/home.jsp). Gene Ontology (GO) analysis was
categorized into three aspects: molecular function (MF),
biological process (BP), and cellular component (CC). Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathway analysis
was also performed. A significance threshold of P < 0.05 was applied
for both GO and KEGG enrichment analyses.

2.7 LASSO regression

LASSO (Least Absolute Shrinkage and Selection Operator)
regression was applied to reduce the dimensionality of the
dataset and identify critical diagnostic genes by penalizing less
relevant features. The analysis was performed using the “glmnet”
R package with the following steps:

Data Preparation:

• Gene expression data was standardized to ensure
comparability across genes.

• Sample labels were binarized to represent ICU and non-ICU
groups for classification.

Model Parameters:

• A 10-fold cross-validation approach was used to determine the
optimal regularization parameter (lambda) that minimizes the
classification error.

Feature Selection:

• LASSO imposes an L1 penalty on the regression coefficients,
shrinking the coefficients of less relevant genes to zero.

• Genes with non-zero coefficients after penalization were
considered significant features for classification.

2.8 Random forest

The random forest algorithm was employed to identify key
diagnostic genes associated with COVID-19 severity. Random forest
is a supervised machine learning method based on decision trees that
evaluates feature importance by measuring how much each feature
improves the predictive accuracy of the model. The analysis was
performed using the “randomForest”R package with the following steps:

Data Preparation:

• Input features consisted of the expression levels of all genes
identified in the dataset.

• Sample labels corresponded to COVID-19 severity (ICU and
non-ICU groups).

Model Parameters:

• The number of decision trees (ntree) was set to 500 to ensure
model stability.

• The number of features considered at each split (mtry) was
optimized using cross-validation.

Feature Importance:

• Feature importance was calculated based on the Mean
Decrease Gini index, which measures the contribution of
each gene to the model’s overall classification performance.

• Genes with the highest importance scores were considered
potential biomarkers.

2.9 ROC curve analysis

Receiver Operating Characteristic (ROC) curves were used to
evaluate the diagnostic performance of selected genes (e.g., CCR5,
CYSLTR1, KLRG1) for distinguishing ICU and non-ICU COVID-
19 patients. Logistic regression models were applied to compute
predicted probabilities, which were then used to generate ROC
curves. The area under the curve (AUC) was calculated to assess
diagnostic accuracy. The performance of the selected genes was
compared with traditional clinical indicators (e.g., CRP and SOFA
scores) to validate their superior diagnostic capability.

2.10 Immune correlation analysis

Immune correlation analysis was conducted to investigate the
relationships between key genes and immune cell subsets estimated
using the CIBERSORT algorithm. Based on gene expression data
and immune cell infiltration scores, Pearson correlation coefficients
were calculated to evaluate the strength of associations between
genes and immune cell types. This analysis identified potential roles
of the genes in regulating specific immune cell functions.
Correlation heatmaps and scatter plots were used to visually
present the significant associations between key genes (e.g.,
CCR5, CYSLTR1, and KLRG1) and immune cell subsets.

2.11 Data visualization and statistical analysis

The data visualization in this study was performed using
SangerBox 3.0 (http://vip.sangerbox.com/home.html),
Weishengxin (http://www.bioinformatics.com.cn/), and R
software. All statistical analyses were performed in R software
(version 4.2.2). Statistical significance was determined using
Student’s t-test or Wilcoxon rank-sum test for pairwise
comparisons, and one-way ANOVA for multiple groups.
Correlations between gene expression and immune cell
proportions were evaluated using Pearson correlation coefficients,
as appropriate.
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3 Results

3.1 Gene expression patterns across healthy,
moderate, severe, and ICU groups

Through dimensionality reduction analyses (PCA, UMAP, and
t-SNE), significant differences in gene expression profiles among
COVID-19 patient groups (Healthy, Moderate, Severe, ICU) were
revealed. The Healthy group samples formed a tightly clustered
group in the reduced dimensional space, distinctly separated from
other groups, demonstrating consistent and unique gene expression
characteristics. Moderate group samples diverged from the Healthy
group, forming an independent cluster while showing proximity to
the Severe group, reflecting transitional features in their gene
expression profiles. Severe group samples further separated from
the Moderate group but exhibited partial overlap with the ICU
group, indicating similarities in certain gene expression
characteristics. ICU group samples were the most dispersed,
showing high heterogeneity, yet remained distinctly separated
from other groups, highlighting their unique gene expression
profiles (Figures 2A–C). Using the limma R package for
differential gene expression analysis, it was found that the Severe
group compared to the Moderate group had 106 significantly
upregulated genes and 25 significantly downregulated genes.
Similarly, the ICU group compared to the Severe group showed
79 significantly upregulated genes and 16 significantly
downregulated genes. The central shared gene, LGALS2,
exhibited a progressively increasing expression trend, with its
expression levels consistently rising from Moderate to Severe and
further from Severe to ICU (Figure 2D). This upward trajectory

suggests that LGALS2 may play a critical role in the dynamic
regulation of disease progression. Its increasing expression
correlates with worsening disease severity, indicating its
involvement in key pathological processes and highlighting it as a
potential target for further investigation. Hierarchical clustering
reveals the differences in gene expression between the Healthy
group and the other groups (Moderate, Severe, ICU). The
distinct colors represent the gene expression characteristics of
each group. The clustering results primarily highlight the clear
separation of gene expression profiles between the Healthy group
and the disease groups (Figure 2E).

Figure 2F illustrates the gene expression changes in COVID-19
patients across different recovery stages, from a healthy state to
disease progression leading to intensive care unit (ICU) admission.
Through GO functional annotations, it reveals the key biological
processes at each stage. The expression changes in gene modules
(C1 to C8) display a marked temporal pattern, clearly reflecting the
dynamic regulation of biological functions during disease
progression. As the disease worsens, gene activation becomes
evident in module C4 during the moderate stage, representing
the initiation of the innate immune system. The functional
annotations of this module highlight processes such as
phagocytosis, myeloid leukocyte activation, and lysosomal
function, indicating the activation of immune cells to eliminate
pathogens triggered by infection. With further disease progression
to the severe stage, module C5 shows a significant increase in
expression. Its functional annotations focus on oxidative
phosphorylation, mitochondrial ATP production, and the
electron transport chain, highlighting the central role of
metabolic reprogramming at this stage. The increased metabolic

FIGURE 2
Gene expression patterns across different groups (Healthy, Moderate, Severe, ICU). (A) PCA plot showing gene expression distribution and
separation among groups. (B)UMAP plot illustrating gene expression similarity and divergence across groups. (C) t-SNE plot highlighting gene expression
clustering and group distinctions. (D) Volcano plots depicting differentially expressed genes and a progressively upregulated gene (LGALS2). (E)Heatmap
of gene expression differences across groups with hierarchical clustering. (F) Module heatmap with GO annotations representing group-specific
gene expression and associated biological functions.
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demand reflects the need for enhanced mitochondrial function to
meet high energy consumption. Concurrently, module C3 displays
elevated expression, indicating the enhancement of processes like
ncRNA processing, ribosome biogenesis, and RNA metabolism.
These changes suggest widespread transcription and protein
synthesis activity, likely supporting the functions of immune cells
and infected cells during this stage. In ICU patients, module
C7 shows a striking upregulation, predominantly involving
processes such as alpha-beta T cell differentiation, lymphocyte
differentiation, and signal transduction. This reflects the robust
activation of the adaptive immune system. At this stage, T cell
remodeling likely plays a critical role in responding to viral infection
and mitigating uncontrolled inflammation. Another notable change
is observed in module C2, whose functional annotations include
RNA localization and RNA splicing, suggesting enhanced post-
transcriptional regulation, potentially to maintain cellular
homeostasis. Module C8 also shows increased activity related to
DNA repair and double-strand break repair, indicating significant
DNA damage and stress response in severe cases.

3.2 Gene expression patterns across 1-
month, 3-month, 6-month post-discharge,
and healthy groups

The dimensionality reduction plots (PCA, UMAP, t-SNE) reveal
significant differences in gene expression patterns among the 1-
month, 3-month, and 6-month post-discharge groups compared to
the healthy group. The 1-month group is distinctly separated from
the healthy group, indicating that early post-discharge patients still

exhibit substantial differences in gene expression compared to
healthy individuals. The overlap between the 3-month and 6-
month groups suggests a gradual recovery of gene expression
patterns, though they have not fully returned to the healthy state.
The healthy group displays a relatively independent distribution,
further emphasizing the significant differences in gene expression
between healthy individuals and all post-discharge groups (Figures
3A–C). Volcano plots (Figures 3D,E) compare gene expression
differences between the 3-month and 1-month post-discharge
groups and between the 6-month and 3-month post-discharge
groups. The results show no significantly upregulated genes in
either comparison, with only a small number of significantly
downregulated genes (18 genes for 3-month vs. 1-month and
1 gene for 6-month vs. 3-month). Overall, the gene expression
differences between these groups are minimal, with no notable
significance, indicating that gene expression tends to stabilize
over these time points.

Although differential gene expression during the recovery
period is not highly significant, the gene expression patterns still
reveal certain intergroup differences: In the 1-month post-discharge
samples, C1 and C2 modules were significantly upregulated, with
functional annotations mainly related to virus defense response, type
I interferon response, and phagocytosis. These functions indicate
that the immune system of early post-discharge patients remains
active, potentially in response to residual viral or inflammatory
signals. Additionally, the upregulation of the C4 module reflects
enhanced oxidative phosphorylation and metabolic activity,
suggesting that cellular metabolic functions might be significantly
impacted during the early stage of recovery (Figure 3F). At the 3-
month stage, the C6 module showed higher expression levels, with

FIGURE 3
Gene expression patterns across different recovery stages (1-month, 3-month, 6-month post-discharge, Healthy). (A) PCA plot showing gene
expression distribution and separation. (B) UMAP plot illustrating gene expression similarity and divergence. (C) t-SNE plot highlighting gene expression
clustering and group distinctions. (D) Volcano plot showing differentially expressed genes between 3-month and 1-month groups. (E) Volcano plot
showing differentially expressed genes between 6-month and 3-month groups. (F) Module heatmap with GO annotations representing group-
specific gene expression and associated biological functions.
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functional annotations focusing on coagulation and platelet
activation, indicating that the blood system might be gradually
returning to normal, though slight coagulation abnormalities
might still persist. Moreover, the C3 module, associated with cell
adhesion and fertilization-related pathways, suggests further
recovery of intercellular signaling and structural regulation.
Compared to the 1-month group, the expression of immune-
related modules (e.g., C1 and C2) decreased, showing that
immune activity was gradually stabilizing but had not yet fully
returned to a healthy state (Figure 3F). In the 6-month post-
discharge samples, the C5 module (related to ribosome
biogenesis and RNA metabolism) and the C8 module (associated
with T cell differentiation and immune signal transduction) were
significantly upregulated, indicating the importance of
transcriptional and adaptive immune system activity at this stage.
Meanwhile, the upregulation of the C7 module, involving genes
related to Golgi transport and protein degradation, reflects that
organelle remodeling and metabolic regulation remain active during
the 6-month stage. Although gene expression at this stage is closer to
the healthy group, certain immune and metabolic pathways still
exhibit differences, suggesting that the recovery process is not yet
complete (Figure 3F). Additionally, in healthy samples, gene
modules (e.g., C3 and C6) exhibit stable expression, with
functional annotations focusing on intercellular communication
and coagulation regulation, indicating that gene expression in the
healthy state primarily supports basal metabolism and homeostasis,
without significant immune or stress signals (Figure 3F).

3.3 Immune infiltration analysis across
COVID-19 severity stages and
recovery phases

Firstly, we performed immune infiltration analysis on samples
from COVID-19 patient groups, and the results revealed differences
in the expression levels and significance among different immune
cell subsets across the Healthy, Moderate, Severe, and ICU groups.
B cells memory and Plasma cells showed significantly higher
expression in the Healthy group compared to other groups, with
the remaining three groups (Moderate, Severe, ICU) exhibiting a
progressive decrease as disease severity increased. T cells CD4 naive
displayed a gradual decline from the Healthy group to the ICU
group, while T cells CD4 memory activated decreased from the
Healthy to Severe stages but showed a slight recovery in the ICU
group, though still lower than in the Healthy group. Monocytes
showed significant differences between groups, with levels
progressively increasing from the Moderate group to the Severe
and ICU groups, all of which were higher than in the Healthy
group. These findings suggest that the progression of COVID-19
suppresses adaptive immunity, as evidenced by the reduced levels of
B and T cells, while the marked increase in monocytes reflects
enhanced innate immune and inflammatory responses during
disease progression (Figure 4A).

Compared to COVID-19 patients at different severity stages, the
differences in immune cell infiltration across various recovery stages
are generally small, with significant changes observed only in a few
subsets. Specifically, the expression level of B cells naive in the 1-
month recovery group was significantly lower than that in the

Healthy group, indicating a potential insufficiency in adaptive
immune function during the early recovery phase. In the 3-
month recovery group, the expression level of T cells
CD4 memory activated was also significantly lower than that in
the Healthy group, suggesting that the functional recovery of
activated memory CD4+ T cells might still be incomplete during
the mid-recovery phase. Additionally, there were certain intergroup
differences across recovery stages (Figure 4B).

3.4 Differential expression and enrichment
analysis between COVID-19 ICU and non-
ICU groups

To further investigate the differences between COVID-19
patients with varying severity levels, we utilized the
GSE157103 dataset to analyze gene expression differences
between the COVID-19 ICU group and the non-ICU COVID-19
group. Differential expression analysis using the limma R package
revealed that, compared to the non-ICU group, the COVID-19 ICU
group exhibited 67 upregulated genes and 163 downregulated genes
(Figures 5A,B).

Subsequently, GO and KEGG enrichment analyses were
performed on the 230 differentially expressed genes. KEGG
enrichment analysis revealed that the differentially expressed
genes between the COVID-19 ICU group and the non-ICU
group were primarily enriched in immune-related pathways,
including hematopoietic cell lineage, Th1 and Th2 cell
differentiation, Th17 cell differentiation, and antigen processing
and presentation. These pathways indicate significant alterations
in immune cell differentiation, T cell function regulation, and
antigen presentation mechanisms in severe COVID-19 patients.
Additionally, the differentially expressed genes were enriched in
pathways related to autoimmunity and inflammation, such as type
1 diabetes mellitus, autoimmune thyroid disease, and asthma,
suggesting that severe COVID-19 may be accompanied by
autoimmune-like responses. Furthermore, the enrichment of
pathways such as allograft rejection and graft-versus-host disease
further reflects the characteristics of immune dysregulation during
the severe stages of COVID-19 (Figure 5C). Overall, these findings
uncover the complex mechanisms of immune dysfunction in severe
COVID-19 patients and provide important insights for further
research and therapeutic interventions.

The GO enrichment analysis revealed that differentially
expressed genes were primarily associated with Biological
Processes (BP), Cellular Components (CC), and Molecular
Functions (MF). In Biological Processes, significant enrichment
was observed in pathways such as T cell activation, leukocyte
cell-cell adhesion, and regulation of T cell activation, highlighting
the critical role of T cell function and immune cell interactions in the
progression of COVID-19. For Cellular Components, the genes were
significantly enriched in MHC class II protein complex, cytoplasmic
vesicle lumen, and external side of plasmamembrane, suggesting the
importance of antigen presentation and intracellular transport in
immune regulation. In Molecular Functions, enriched terms
included immune receptor activity, cytokine receptor activity, and
MHC class II receptor activity, reflecting notable changes in immune
signaling and cytokine regulation (Figure 5D). These findings
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indicate that the differentially expressed genes associated with
COVID-19 play essential roles in immune response and
regulation, providing valuable insights into the disease mechanisms.

3.5 Immune infiltration analysis between
COVID-19 ICU and non-ICU groups

In the immune infiltration analysis of the COVID-19 ICU and
non-ICU groups, significant differences were observed in the
distribution of several immune cell subsets, highlighting immune
system imbalance in severe patients. The stacked bar plot illustrates
the proportions of 22 immune cell types in samples from the ICU
and non-ICU groups, revealing certain differences in immune cell
proportions between the two groups (Figure 6A). The heatmap
further highlights significant differences in immune infiltration
patterns between the ICU and non-ICU groups (Figure 6B).
Boxplot analysis showed significant differences in several immune
cell subsets between the two groups. Monocytes, neutrophils,
M2 macrophages, and activated mast cells were significantly
higher in the ICU group than in the non-ICU group, reflecting
abnormal activation of innate immune cells in severe patients, which
may be closely related to excessive inflammatory responses.
Conversely, plasma cells, CD8+ T cells, CD4+ memory T cells
(resting), and resting NK cells were significantly lower in the
ICU group compared to the non-ICU group, suggesting
suppression of adaptive immune function. Notably, the reduced
activity of T cells and NK cells might impair the ability to clear the
virus (Figure 6C). These findings suggest that excessive activation of
innate immunity and suppression of adaptive immunity may be key
features of immune imbalance in ICU patients with COVID-19,

providing critical insights for understanding the pathological
mechanisms of severe COVID-19.

3.6 Feature gene selection for COVID-19
ICU patients using LASSO regression and
random forest algorithm

To identify key genes significantly associated with COVID-19 ICU
patients, we employed LASSO regression and random forest algorithms.
LASSO regression, utilizing L1 regularization, effectively eliminated
redundant variables and identified a small number of highly predictive
feature genes (Figures 7A,B). The random forest algorithm further
validated and selected relevant genes by evaluating their importance
(Figure 7C). Ultimately, the intersection of the two methods identified
three key genes: CCR5, CYSLTR1, and KLRG1 (Figure 7D).

Subsequently, the diagnostic performance of these three genes was
evaluated using ROC curves (Figures 7E–G). CCR5 achieved an AUC
value of 0.916, CYSLTR1 anAUC value of 0.885, and KLRG1 an AUC
value of 0.899, all demonstrating excellent predictive performance.
These findings indicate that CCR5, CYSLTR1, and KLRG1 are
important feature genes for COVID-19 ICU patients, providing
critical insights for further research and clinical diagnosis.

3.7 Diagnostic value and immune regulatory
roles of CCR5, CYSLTR1, and KLRG1 in
COVID-19 ICU patients

Clinical information from 100 patients with COVID-19
stratified by ICU admission status is shown in Table 2. Among

FIGURE 4
Immune cell infiltration differences across COVID-19 severity stages and recovery phases. (A) Boxplots showing immune cell infiltration levels
across Healthy, Moderate, Severe, and ICU groups. (B) Boxplots illustrating immune cell infiltration levels across 1-month, 3-month, 6-month recovery
groups, and Healthy. Significant differences are marked with asterisks (* for P < 0.05 and ** for P < 0.01), while a dash (−) indicates P > 0.05.
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the 100 COVID-19 patients included in this study, ICU patients (n =
50) exhibited significant differences in several clinical characteristics
compared to non-ICU patients (n = 50). Inflammatory markers such
as CRP, procalcitonin, and D-dimer were significantly elevated in
ICU patients, indicating a stronger inflammatory response.
Additionally, ICU patients had higher SOFA and APACHE II
scores, reflecting greater disease severity. While the gender
distribution was similar between the two groups, ICU patients
were older on average and had slightly higher comorbidity
indices. Laboratory parameters such as fibrinogen and lactate
levels showed minimal differences, but ICU patients exhibited
more pronounced inflammatory and pathological features overall.
ROC curve analysis (Figure 8A) demonstrated that CCR5 (AUC =
0.916), CYSLTR1 (AUC = 0.885), and KLRG1 (AUC = 0.899)
exhibit superior diagnostic performance in distinguishing
COVID-19 ICU patients from non-ICU patients compared to
conventional clinical indicators such as C-reactive protein (CRP,
AUC = 0.612), SOFA score (AUC = 0.607), APACHE II score

(AUC = 0.557), and D-dimer levels (AUC = 0.848). Additionally,
other indicators such as age (AUC = 0.559), fibrinogen levels
(AUC = 0.546), and Charlson Comorbidity Index (AUC = 0.540)
showed weaker diagnostic power. These results suggest that CCR5,
CYSLTR1, and KLRG1 have significant advantages in diagnosing
severe COVID-19 cases, offering critical molecular biomarkers for
accurate patient identification.

Expression analysis revealed significant differential expression
of CCR5, CYSLTR1, and KLRG1 between COVID-19 ICU and non-
ICU groups (Figure 8B). These three genes were significantly
upregulated in the non-ICU group and downregulated in the
ICU group. Boxplot further validated this finding, showing
significantly lower expression levels of the three genes in the ICU
group compared to the non-ICU group (Figure 8C). These results
suggest that the expression levels of these genes may negatively
correlate with disease severity, further supporting their potential as
molecular biomarkers for severe COVID-19. Correlation analysis
highlighted the associations between these genes and immune cell

FIGURE 5
Differential expression and enrichment analysis between COVID-19 ICU and non-ICU groups. (A) Volcano plot showing significantly upregulated
(red) and downregulated (blue) genes in the ICU group, with key genes (CCR5, KLRG1, CYSLTR1) labeled. (B) Heatmap of 230 DEGs highlighting distinct
expression patterns between ICU and non-ICU groups. (C) KEGG enrichment analysis linking DEGs to pathway. (D)GO enrichment analysis categorizing
DEGs into BP, CC, and MF.
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infiltration, shedding light on their possible mechanisms of action
(Figure 8D). Specifically, CCR5 was positively correlated with
several T cell subtypes, including CD8+ T cells and CD4+

memory T cells (both resting and activated), highlighting its
essential role in adaptive immunity. Additionally, CCR5 was
negatively correlated with neutrophils and monocytes, suggesting
its potential involvement in suppressing excessive innate immune
activation to maintain immune balance (Figure 8E).
CYSLTR1 showed significant positive correlations with
monocytes and resting NK cells, indicating its role in regulating

inflammatory responses and immune cell differentiation
(Figure 8F). KLRG1 was highly positively correlated with NK
cells (both resting and activated), reflecting its critical role in
immune surveillance and cytotoxic responses mediated by NK
cells. Additionally, KLRG1 showed positive correlations with
monocytes and resting dendritic cells, suggesting its involvement
in the regulation of innate immune cell functions (Figure 8G). In
summary, CCR5, CYSLTR1, and KLRG1 not only demonstrate
significant diagnostic value for identifying severe COVID-19
patients but also play critical roles in modulating immune cell

FIGURE 6
Immune infiltration analysis between COVID-19 ICU and non-ICU groups. (A) Stacked bar plot showing the proportions of 22 immune cell types
across samples in the COVID-19 ICU and non-ICU groups. (B) Heatmap of immune cell infiltration scores, highlighting differences in immune cell
distribution between the two groups. (C) Boxplots comparing significantly different immune cell types between the COVID-19 ICU and non-ICU groups,
including plasma cells, T cells CD8, T cells CD4 memory resting, NK cells resting, monocytes, macrophages M2, mast cells activated, and
neutrophils. Significant differences are marked with asterisks (* for P < 0.05 and ** for P < 0.01), while a dash (−) indicates P > 0.05.
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activation, differentiation, and function. These findings provide new
insights into the immune regulatory mechanisms in severe COVID-
19 and offer promising molecular targets for diagnostic and
therapeutic strategies.

3.8 GSEA enrichment analysis of three key
diagnostic genes

To comprehensively understand the functional implications of
the three key diagnostic genes (CCR5, CYSLTR1, and KLRG1),
GSEA was performed based on KEGG and GO datasets.

CCR5 was predominantly enriched in immune-related
pathways. KEGG analysis (Figure 9A) identified antigen
processing and presentation, T cell receptor signaling, and
primary immunodeficiency as significantly enriched pathways,
underscoring CCR5’s pivotal role in adaptive immune regulation.
GO enrichment (Figure 9B) highlighted its involvement in ribosome
biogenesis, RNA metabolic processes, and cellular metabolic
pathways, suggesting its contribution to maintaining cellular
activity and immune function.

CYSLTR1 demonstrated enrichment in both metabolic and
regulatory pathways. KEGG analysis (Figure 9C) indicated
significant associations with aminoacyl-tRNA biosynthesis, RNA
degradation, and ubiquitin-mediated proteolysis, revealing its role in
protein synthesis and degradation. Similarly, GO enrichment
(Figure 9D) identified key processes such as transcription

regulation, nuclear transport, and broader metabolic activities,
pointing to its involvement in immune modulation and cellular
recovery mechanisms.

KLRG1 was prominently associated with immune signaling and
cellular machinery. KEGG analysis (Figure 9E) revealed its
involvement in primary immunodeficiency, antigen processing
and presentation, and T cell signaling pathways, emphasizing its
role in coordinating immune responses. GO analysis (Figure 9F)
demonstrated significant enrichment in ribosomal large subunit
biogenesis, translational regulation, and metabolic processes,
highlighting its contribution to immune cell functionality and
systemic metabolic adaptations.

These findings collectively emphasize that CCR5, CYSLTR1,
and KLRG1 are intricately involved in regulating immune responses,
cellular metabolism, and protein turnover, providing a mechanistic
basis for their diagnostic relevance in severe COVID-19.

4 Discussion

The onset and development of COVID-19 involve intricate gene
expression changes and immune dysregulation, yet the dynamic
nature of these processes remains elusive. Prior studies by
Arunachalam et al. (2020), Overmyer et al. (2021), and Hocini
et al. (2023) have offered valuable insights but also left notable gaps.
Arunachalam et al. explored immune responses in COVID-19
patients and healthy controls, finding reduced HLA - DR and

FIGURE 7
Identification of key feature genes for COVID-19 ICU patients using LASSO regression and random forest algorithms. (A)Cross-validation plot for the
LASSO regressionmodel to identify optimal lambda values. (B) LASSO coefficient profiles of candidate genes as a function of the regularization parameter
(log lambda). (C) Feature importance rankings from the random forest algorithm, displayed by Mean Decrease Accuracy and Mean Decrease Gini. (D)
Venn diagram showing the overlap of selected genes from LASSO regression and random forest algorithms. (E–G) ROC curves showing the
diagnostic performance of the three key genes.
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TABLE 2 Clinical information from 100 patients with COVID-19 of varying disease severity.

COVID-19 (N = 50) COVID-19&ICU (N = 50) Total (N = 100)

CCR5

Mean ± SD 3.11 ± 0.67 1.71 ± 0.72 2.41 ± 0.99

Median [min-max] 3.20 [1.65,4.24] 1.63 [0.24,3.59] 2.40 [0.24,4.24]

CYSLTR1

Mean ± SD 4.10 ± 0.60 2.97 ± 0.75 3.53 ± 0.88

Median [min-max] 4.21 [2.68,5.26] 3.16 [1.46,4.72] 3.63 [1.46,5.26]

KLRG1

Mean ± SD 2.55 ± 0.79 1.20 ± 0.63 1.88 ± 0.98

Median [min-max] 2.64 [0.67,3.86] 1.15 [0.30,2.92] 1.83 [0.30,3.86]

CRP Level (mg/L)

Mean ± SD 119.82 ± 95.49 158.72 ± 107.97 140.54 ± 103.62

Median [min-max] 114.00 [1.00,430.50] 147.30 [2.80,408.80] 128.20 [1.00,430.50]

SOFA Score

Mean ± SD 6.50 ± 3.62 8.30 ± 4.05 8.11 ± 4.01

Median [min-max] 7.00 [2.00,12.00] 7.50 [2.00,19.00] 7.00 [2.00,19.00]

APACHE II Score

Mean ± SD 19.71 ± 5.91 21.58 ± 8.49 21.35 ± 8.19

Median [min-max] 19.00 [11.00,27.00] 21.50 [6.00,43.00] 21.00 [6.00,43.00]

Lactate Level (mmol/L)

Mean ± SD 1.19 ± 0.53 1.27 ± 0.49 1.24 ± 0.51

Median [min-max] 1.09 [0.65,3.28] 1.20 [0.50,2.85] 1.17 [0.50,3.28]

Procalcitonin Level (ng/mL)

Mean ± SD 1.71 ± 5.82 4.43 ± 12.89 3.24 ± 10.45

Median [min-max] 0.36 [0.05,36.00] 1.02 [0.05,86.39] 0.57 [0.05,86.39]

Age (years)

Mean ± SD 58.96 ± 18.40 62.64 ± 13.60 60.84 ± 16.15

Median [min-max] 56.50 [24.00,87.00] 63.00 [21.00,83.00] 62.00 [21.00,87.00]

D-dimer Level (mg/L FEU)

Mean ± SD 1.98 ± 3.21 18.88 ± 27.52 11.72 ± 22.53

Median [min-max] 0.99 [0.22,15.48] 6.03 [0.59,104.42] 1.79 [0.22,104.42]

Sex

female 21 (21.00%) 17 (17.00%) 38 (38.00%)

male 29 (29.00%) 33 (33.00%) 62 (62.00%)

Fibrinogen Level (g/L)

Mean ± SD 563.56 ± 191.72 528.96 ± 201.64 543.85 ± 196.94

Median [min-max] 513.00 [215.00,949.00] 490.00 [140.00,949.00] 513.00 [140.00,949.00]

(Continued on following page)
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proinflammatory cytokine expression in myeloid cells, along with
impaired mTOR and IFN-α-related functions in plasmacytoid
dendritic cells (Arunachalam et al., 2020). However, their study
did not comprehensively cover gene expression and immune
regulation across all COVID-19 stages, including mild to severe
cases and recovery. Overmyer et al. conducted a large-scale multi-

omic analysis, identifying 219 biomolecules associated with COVID-
19 severity, mainly focusing on complement activation, lipid
transport, and neutrophil activation (Overmyer et al., 2021). But
they lacked a detailed look at gene expression and immune cell
changes during disease progression and recovery. Hocini et al.
investigated immunological dysfunction in convalescent severe

TABLE 2 (Continued) Clinical information from 100 patients with COVID-19 of varying disease severity.

COVID-19 (N = 50) COVID-19&ICU (N = 50) Total (N = 100)

Charlson Comorbidity Index

Mean ± SD 3.12 ± 2.46 3.44 ± 2.51 3.28 ± 2.48

Median [min-max] 2.50 [0,8.00] 3.00 [0.0,11.00] 3.00 [0,11.00]

FIGURE 8
Diagnostic performance, expression patterns, and immune correlations of CCR5, CYSLTR1, and KLRG1. (A) ROC curves for CCR5, CYSLTR1, and
KLRG1 compared to conventional clinical indicators (e.g., CRP, SOFA, APACHE II scores). (B)Heatmap showing differential expression of CCR5, CYSLTR1,
and KLRG1 in COVID-19 ICU and non-ICU groups. (C) Boxplots displaying significantly lower expression levels of CCR5, CYSLTR1, and KLRG1 in COVID-
19 ICU patients compared to non-ICU patients. (D) Correlation matrix illustrating relationships between CCR5, CYSLTR1, KLRG1, and immune cell
infiltration scores. (E–G) Correlation plots showing specific relationships between CCR5 (E), CYSLTR1 (F), and KLRG1 (G) with immune cell subtypes.
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COVID-19 patients, revealing persistent abnormalities in immune
cell phenotypes, serum biomarkers, and gene expression related to
platelet and neutrophil activation (Hocini et al., 2023). Still, their
research was mainly centered on the convalescent stage and did not
integrate data from various disease stages.

In contrast, our study fills these gaps by integrating three
transcriptomic datasets. We comprehensively analyze gene
expression and immune regulation across all COVID-19 stages,
from healthy to different severity levels and during recovery. This
enables us to better understand the disease’s molecular mechanisms,
identify potential diagnostic biomarkers, and lay a stronger
foundation for developing effective therapeutic strategies.

Through multidimensional reduction analyses (PCA, UMAP,
and t-SNE), we identified significant gene expression differences
among the healthy, moderate, severe, and ICU patient groups. These
progressively intensified expression changes reflect the dynamic

molecular regulation during disease progression. In particular,
the persistent upregulation of the LGALS2 gene from the
moderate to severe and ICU stages suggests its potential key role
in COVID-19 pathogenesis. Additionally, modular gene analysis
revealed that gene functions during different stages of COVID-19
gradually shift from innate immune activation (e.g., phagocytosis
and myeloid leukocyte activation) to adaptive immune activation
(e.g., T-cell differentiation and signal transduction). This dynamic
shift highlights the critical role of immune responses during disease
progression and uncovers significant metabolic reprogramming in
the later stages of the disease (e.g., enhanced mitochondrial function
and increased ATP demand).

In recovery phase analyses, although the differences among the
1-month, 3-month, and 6-month groups were relatively small,
certain dynamic changes in immune and metabolic pathways
were still observed. The 1-month group exhibited strong antiviral

FIGURE 9
GSEA enrichment analysis for CCR5, CYSLTR1, and KLRG1. (A) KEGG pathway enrichment analysis for CCR5. (B) GO enrichment analysis for CCR5.
(C) KEGG pathway enrichment analysis for CYSLTR1. (D) GO enrichment analysis for CYSLTR1. (E) KEGG pathway enrichment analysis for KLRG1. (F) GO
enrichment analysis for KLRG1.
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defense andmetabolic activity, which gradually normalized by the 3-
month and 6-month stages, yet did not fully return to the baseline
levels of the healthy group. Notably, in the 6-month group, adaptive
immunity (e.g., T-cell differentiation and signal transduction) and
organelle remodeling remained significantly active. This indicates
that even after apparent clinical recovery, the molecular and
immune systems of COVID-19 patients may require a longer
time to fully recover.

This study found that CRP levels in ICU patients were
significantly higher than those in non-ICU patients, indicating
that CRP, as an acute-phase inflammatory marker, can reflect the
inflammatory activation state in COVID-19 patients. CRP is
secreted by the liver in response to cytokines such as IL-6 and is
typically associated with disease severity and prognosis (Olson et al.,
2023; Yao et al., 2019). However, the specificity of CRP is relatively
low, as it cannot distinguish between inflammation caused by viral
infections and other infectious or non-infectious inflammatory
states (Rahali et al., 2024). This limitation reduces its utility as a
standalone diagnostic marker. D-Dimer reflects significant
activation of fibrin degradation and the coagulation system, and
its elevation is closely associated with microvascular thrombosis,
disseminated intravascular coagulation (DIC), and systemic
inflammatory responses (Franchini et al., 2024). A marked
increase in D-dimer levels is a characteristic feature of severe
COVID-19 cases. In this study, D-dimer levels in ICU patients
were significantly higher than those in non-ICU patients, consistent
with previous findings (Wool and Miller, 2021; Song et al., 2021;
Nemec et al., 2022; Rizal et al., 2022; Gul et al., 2023). In this study,
the area under the ROC curve (AUC) for D-dimer showed good
diagnostic performance, offering greater sensitivity compared to
traditional scoring systems. This suggests that D-dimer has clinical
value in assessing disease severity and early identification of high-
risk patients with COVID-19. However, the specificity of D-dimer is
also relatively low, as its elevationmay result from other pathological
conditions such as malignancies or trauma. Therefore, it should be
used in conjunction with other markers (e.g., inflammatory markers
or molecular biomarkers) for comprehensive evaluation. Future
studies should explore the dynamic changes of D-dimer and its
association with the pathophysiology of COVID-19, such as its link
to endothelial damage and immune dysregulation. Additionally,
combining gene expression data with clinical monitoring of
D-dimer may provide more reliable insights for precision
stratification of COVID-19 patients. SOFA (Sepsis-related Organ
Failure Assessment) and APACHE II (Acute Physiology and
Chronic Health Evaluation II) scores are widely used clinical
tools for assessing disease severity and predicting prognosis in
ICU patients. In this study, SOFA and APACHE II scores were
significantly higher in ICU patients compared to non-ICU patients,
indicating their utility in reflecting organ dysfunction in severe
COVID-19 cases (Vincent et al., 1996). Elevated SOFA scores
typically indicate the occurrence of multiple organ failure, while
APACHE II scores, which are based on comprehensive evaluations
of physiological and health conditions, can predict disease
progression to some extent. Mohammad et al. reported that daily
SOFA scores are better predictors of mortality than APACHE II in
critically ill COVID-19 patients, though neither achieved high
precision in predicting outcomes (Beigmohammadi et al., 2022).
In this study, the AUC for SOFA was 0.607, higher than the AUC for

APACHE II (0.557), aligning with previous findings. The primary
limitation of these traditional scores lies in their reliance on clinical
observations and biochemical indices, without reflecting the
molecular mechanisms underlying COVID-19. For example,
these scores do not reveal the specific molecular basis of immune
dysregulation or cytokine storms. Additionally, their accuracy may
be affected by individual differences in patients, such as age and
comorbidities, limiting their applicability in COVID-19 severity
stratification.

To overcome these limitations, this study suggests integrating
molecular biomarkers such as CCR5, CYSLTR1, and KLRG1 with
traditional scoring systems. The integration of molecular and clinical
data could provide a more comprehensive assessment of disease
severity and immune status in COVID-19 patients. Compared to
traditional indices, the molecular biomarkers identified in this study
offer distinct advantages. These genes provide a deeper understanding
of the severity of COVID-19 from a molecular perspective,
complementing traditional clinical assessments.

CCR5 is a key chemokine receptor highly expressed on T cells,
monocytes, and macrophages. It plays a critical role in immune cell
migration and targeted recruitment to sites of inflammation (Lin
et al., 2024). Immune infiltration analysis revealed that CCR5 was
significantly positively correlated with CD8+ T cells, resting and
activated CD4+ memory T cells, and regulatory T cells (Tregs),
further supporting its crucial role in maintaining T cell activation
and adaptive immune function. In severe COVID-19 patients,
suppression of adaptive immune function is a hallmark of disease
progression. Studies have shown that downregulation of CCR5 may
limit T cell recruitment and function, contributing to immune
imbalance (Ziliotto et al., 2024; Ferrero et al., 2021). Additionally,
CCR5 was negatively correlated with neutrophils and monocytes,
suggesting it may help suppress excessive innate immune activation
to maintain immune balance and prevent immune overactivation
from damaging the host.

CYSLTR1 (Cysteinyl Leukotriene Receptor 1) is a key receptor
in the leukotriene signaling pathway and plays a central role in
allergic inflammatory diseases such as asthma (Zhang et al., 2006;
Rabinovitch et al., 2018). CYSLTR1 is predominantly expressed in
airway smooth muscle cells, mast cells, eosinophils, monocytes, and
macrophages, mediating chronic airway inflammation and tissue
damage through bronchoconstriction, increased vascular
permeability, and inflammatory cell infiltration (Trinh et al.,
2019). A study by Halef Okan Doğan and colleagues revealed
dysregulated leukotriene metabolism in COVID-19 patients, with
CYSLTR1 expression higher in the ICU group compared to the non-
ICU group (Doğan et al., 2024). Immune infiltration analysis
demonstrated that CYSLTR1 was significantly positively
correlated with monocytes and moderately associated with
resting NK cells and mast cells. These findings suggest that
CYSLTR1 may influence the inflammatory cascade in severe
COVID-19 patients by modulating monocyte-macrophage system
activity. In asthma management, leukotriene receptor antagonists
(e.g., montelukast) have been widely used to control inflammation
and bronchoconstriction (Trinh et al., 2019). These drugs inhibit
CYSLTR1 signaling, reducing leukotriene-mediated inflammation
and cell recruitment. Given the abnormal expression of
CYSLTR1 and its potential involvement in COVID-19-related
inflammation, leukotriene receptor antagonists hold promise as
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adjunctive therapies for severe COVID-19 patients. However,
clinical studies specific to COVID-19 are still lacking, and further
research is needed to validate their efficacy in controlling
inflammation and promoting tissue repair.

KLRG1 is an inhibitory receptor expressed on NK cells and a
subset of T cells, including CD8+ T cells, and serves as a marker of
NK cell maturation and terminal differentiation (Hu et al., 2018;
Zhang et al., 2024). Immune infiltration analysis revealed a
significant positive correlation between KLRG1 and both resting
and activated NK cells, indicating its role as a molecular marker of
NK cell functional status in severe COVID-19 patients. NK cells are
critical effectors in the antiviral immune response during COVID-
19. Elevated KLRG1 expression suggests enhanced NK cell
functionality but potentially reduced proliferative capacity, which
could limit the maintenance of long-term immune responses in the
context of persistent viral infection. Moreover, the abnormal
expression of KLRG1 may regulate other immune cells through
its inhibitory signals, further contributing to immune dysfunction.

The detection of these molecular biomarkers through gene chips
or liquid biopsies enables rapid diagnosis, particularly under the
constraints of limited ICU resources, offering opportunities for
optimized resource allocation and early identification of high-risk
patients. This integrated approach, combining molecular
biomarkers with traditional clinical indicators, provides a new
direction for precision medicine applications in COVID-19. By
integrating molecular and clinical data, this method not only
enhances the accuracy of diagnosis and prognostic assessment for
COVID-19 patients but also provides a scientific basis for
developing personalized intervention strategies.

Although this integrated multi-omics analysis provides significant
insights into the progression and recovery of COVID-19, it is
important to recognize certain limitations. Unfortunately, the
patient cohorts used in this study did not include documentation of
vaccination histories and reinfection cases. These factors can have a
notable influence on immune responses and potentially impact the
performance of the identified biomarkers (Condac et al., 2024; Uno
et al., 2024). Additionally, the datasets did not incorporate variant -
specific stratification. This lack of stratification limits our ability to fully
understand how different SARS-CoV-2 variants might modify the
molecular signatures we’ve identified. Another aspect to consider is
that the study utilized publicly available datasets, which come with
their own set of challenges. The sample size was relatively limited, and
there were issues related to data heterogeneity. As the COVID-19
pandemic has evolved and started to subside, the number of new cases
has decreased substantially. This has made it increasingly difficult to
obtain samples, particularly from severe cases and for long - term
follow - up studies. Such limitations pose obstacles to expanding the
scale of the research and validating the generalizability of our findings.
Moreover, the data sourced from multiple public databases may
introduce technical differences and batch effects due to variations
in experimental platforms, which could potentially affect the results to
some extent. To address these limitations and further advance our
understanding of COVID-19, future research could focus on including
comprehensive clinical metadata, such as vaccination status and
information about viral variants. Additionally, integrating large -
scale, multicenter cohorts and adopting a combination of
retrospective and prospective study designs would be beneficial.
These approaches can help validate the stability and clinical utility

of the identified molecular biomarkers, ultimately leading to a more
profound comprehension of the pathophysiology of COVID-19.

In conclusion, this study comprehensively analyzed the gene
expression patterns and regulatory features across different stages of
COVID-19 progressive and recovery stages. By integrating
transcriptomic data and machine learning methods, CCR5,
CYSLTR1, and KLRG1 were successfully identified as efficient
diagnostic biomarkers for distinguishing ICU patients,
demonstrating significantly better diagnostic performance than
traditional clinical indicators. These findings not only reveal key
molecular characteristics of COVID-19 progression and recovery
but also provide a scientific basis for improving clinical
stratification accuracy and optimizing patient management
strategies. The identified biomarkers can facilitate early
identification of severe cases and guide personalized interventions,
advancing the application of precision medicine in COVID-19. Future
studies should validate these biomarkers in larger independent cohorts
and further elucidate their roles in disease progression and immune
recovery, offering new directions for the development of diagnostic and
therapeutic strategies for COVID-19 and similar infectious diseases.
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