
Identification and
characterization of signature
genes related to fetoplacental
vascular endothelial cell
programming in gestational
diabetes mellitus using
bioinformatics analysis

Chunhong Liu1,2,3†, Caicheng Wei1,2,3†, Yulan Lu4, Fu Chai1,2,3,
Chunfang Wang1,2,3, Yonglong Zeng1,2,3* and Huatuo Huang1,2,3*
1Center for Medical Laboratory Science, Affiliated Hospital of Youjiang Medical University for
Nationalities, Baise, China, 2Key Laboratory of Research on Clinical Molecular Diagnosis for High
Incidence Diseases in Western Guangxi of Guangxi Higher Education Institutions, Baise, China, 3Key
Laboratory of Research and Development on Clinical Molecular Diagnosis for High-Incidence Diseases
of Baise, Baise, China, 4Department of Medical Reproduction Center, Affiliated Hospital of Youjiang
Medical University for Nationalities, Baise, China

Gestational diabetes mellitus (GDM) is a common pregnancy-related disorder
with potential impacts on the fetoplacental unit. To uncover the underlying
molecular mechanisms, we conducted a comprehensive bioinformatics
analysis using a dataset from Gene Expression Omnibus, which included
37 primary human fetoplacental vascular endothelial cells (FPVEs) from
healthy and GDM-complicated pregnancies. We identified 613 differentially
expressed genes (DEGs) through the limma package, with 260 up-regulated
and 353 down-regulated. Weighted gene co-expression network analysis was
then performed, clustering genes into 11 modules. The MEdarkgreen module,
containing 1,391 co-expression genes, showed the highest correlation with FPVE
programming. After intersecting with DEGs, 192 co-expression hub genes were
obtained. Gene Ontology enrichment analysis of these hub genes revealed
enrichment in biological processes such as ribonucleoprotein complex
biogenesis and ncRNA processing. Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway analysis showed significant enrichment in pathways
related to ribosome function, neurodegenerative diseases, and oxidative
phosphorylation. Protein-protein interaction network analysis led to the
identification of five signature genes (RPS13, MRPS5, MRPL22, MRPL21, and
NDUFS3). These genes exhibited significantly lower expression in FPVEs from
GDM pregnancies and demonstrated excellent diagnostic performance, with
high area under the curve values in receiver operating characteristic analysis.
Further KEGG signaling pathway analysis elucidated the multiple signaling
pathways in which these signature genes are involved under GDM conditions.
We also constructed LncRNA-miRNA-target genes interaction networks for the
signature genes. The networks showed that the expression of these genes is
regulated by multiple miRNAs and LncRNAs, highlighting the complex post-
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transcriptional regulatory mechanisms at play. Overall, our study provides novel
insights into the molecular basis of FPVE programming in GDM and potential
biomarkers for its diagnosis and understanding.
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Introduction

Gestational diabetes mellitus (GDM) is a form of diabetes that
first appears during pregnancy. It typically develops in the second
half of pregnancy, most commonly at 24–28 weeks (Szmuilowicz
et al., 2019). The global prevalence of GDM varies significantly,
ranging from 1% to over 30% (Szmuilowicz et al., 2019). The Middle
East and North Africa (median 15.2%) and Southeast Asia (15.0%)
have the highest rates, while Europe (6.1%) and North America and
the Caribbean (7.0%) report relatively lower figures. In China, the
prevalence of GDM shows a significant upward trend with marked
regional disparities (data fromWHO, from 2005 to 2018). Using the
2011 criteria of the International Association of Diabetes and
Pregnancy Study Groups, the pooled prevalence of GDM in
mainland China is 14.8%, with higher rates in economically
developed eastern and southern regions (e.g., Qingdao in
Shandong Province 21.8%, Guangdong Province 22.94%) and
lower rates in western and northwestern areas (e.g., Xinjiang
5.12%) (Gao et al., 2019). Its core mechanism involves the
interplay between insulin resistance and pancreatic β-cell
dysfunction: Hormones secreted by the placenta during
pregnancy (such as human placental lactogen and estrogen)
induce insulin resistance in peripheral tissues (skeletal muscle
and adipose tissue), while placenta-derived inflammatory
cytokines (e.g., TNF-α) disrupt insulin signaling (Szmuilowicz
et al., 2019). In women with pre-existing genetic susceptibility
(e.g., TCF7L2, MTNR1B gene variants) or metabolic
abnormalities (obesity, prediabetes), pancreatic β-cells fail to
compensate for increased insulin resistance through enhanced
secretion, leading to elevated fasting and postprandial blood
glucose levels (Zhang et al., 2013; Kwak et al., 2012; Plows et al.,
2018). Additionally, placental glucose transport dynamics, fetal
hyperinsulinemia feedback, and environmental factors (high-fat
diet, physical inactivity, environmental pollutants) further
exacerbate the condition, culminating in clinical symptoms
during mid-to-late pregnancy (Szmuilowicz et al., 2019). GDM is
not only a concern during pregnancy but also has long-term
implications for both the mother and the offspring (Farahvar
et al., 2019). Maternal risks associated with GDM include an
increased likelihood of developing type 2 diabetes later in life, as
well as a higher risk of pre-eclampsia and other pregnancy-related
complications (Moon and Jang, 2022). For the fetus, GDM can lead
to macrosomia, which may result in difficulties during delivery,
neonatal hypoglycemia, and an elevated risk of obesity and diabetes
in childhood and adulthood (Farahvar et al., 2019; Moon and Jang,
2022). Currently, complications in offspring from mothers with
GDM have garnered significant global attention, as the prenatal and
postnatal periods represent critical windows that profoundly
influence an individual’s long-term development and health

outcomes. Nevertheless, despite substantial research efforts, the
mechanistic pathways through which maternal GDM contributes
to these offspring complications remain incompletely elucidated.

The fetoplacental unit is a complex and dynamic system that
plays a crucial role in maintaining a healthy pregnancy. FPVEs are at
the forefront of the maternal-fetal interface, responsible for
regulating the exchange of nutrients, oxygen, and waste products
(Covarrubias et al., 2023). These cells also play a vital role in the
development of the placenta and the overall growth and
development of the fetus. In the context of GDM, the normal
function of FPVEs may be disrupted, leading to adverse
pregnancy outcomes (Cvitic et al., 2018). Previous studies have
revealed the association between FPVE dysfunction in GDM and
pregnancy complications frommultiple dimensions. In the oxidative
stress pathway, the downregulation of the Nrf2 antioxidant system
and miR-142-5p-mediated Nrf2 dysregulation can lead to FPVE
damage, thereby inducing fetal vascular dysfunction (Yin et al.,
2022; Milan et al., 2024). Insulin signaling defects exacerbate
endothelial metabolic disorders by affecting adenosine transport
and the IR-A pathway (Guzmán-Gutiérrez et al., 2014; Sobrevia
et al., 2016). Placenta-derived exosomes carrying miRNAs (e.g.,
miR-140-3p, miR-130b-3p) interfere with angiogenesis by targeting
molecules such as Chemerin and ICAM-1, while abnormal
transmission of exosomes in the maternal-fetal circulation is
associated with preeclampsia-like symptoms (Zhang et al., 2022;
Gao et al., 2022; Salomon et al., 2016). At the epigenetic level,
AngiomiR expression memory effects, fetal sex-specific miRNA
profile differences, and dysregulation of lncRNA are involved in
FPVE functional remodeling (Strutz et al., 2021; Strutz et al., 2018;
Wang et al., 2019). Regardless of these advancements, the molecular
mechanisms underlying the impact of GDM on FPVEs and the
consequences of FPVE dysfunction on fetal complications remain
poorly understood.

High-throughput gene expression profiling technologies, such as
microarray analysis, have provided a powerful means to study the
molecular changes associated with various diseases, including GDM
(Uesaka et al., 2022). By analyzing gene expression data from FPVEs
in normal and GDM-affected pregnancies, it is possible to identify
DEGs that may be involved in the pathophysiology of GDM.
Weighted gene co-expression network analysis (WGCNA) can
help in uncovering gene modules that are co-expressed and
associated with specific clinical traits, such as GDM-related
changes in FPVE function (Zhao and Li, 2019; Langfelder and
Horvath, 2008).

Once candidate genes are identified, functional annotation
through Gene Ontology (GO) and KEGG pathway enrichment
analyses can provide insights into the biological functions and
pathways in which these genes participate (Yu et al., 2012).
Further protein-protein interaction (PPI) network analysis based
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on the candidate genes is not only essential for understanding how
the proteins encoded by these genes interact with each other, but
also helps to identify critical genes of the network (Szklarczyk et al.,
2019). Additionally, exploring the regulatory networks of these
genes, such as the LncRNA-miRNA-target gene interactions, can
reveal the complex post-transcriptional regulatory mechanisms at
play in FPVEs under GDM conditions.

Therefore, we aimed to comprehensively analyze a publicly
available gene expression dataset from FPVEs in normal and
GDM-complicated pregnancies. By applying a series of
bioinformatics analyses, we sought to identify signature genes
related to FPVE programming in GDM, as well as to elucidate
their functions, signaling pathways, and regulatory networks. This
research may contribute to a better understanding of the molecular
mechanisms of GDM and potentially identify novel biomarkers for
its diagnosis and therapeutic targets for its management.

Materials and methods

Data source

The dataset [GSE103552 (Platform: GPL6244; Affymetrix
Human Gene 1.0 ST Array)] used in this study was obtained

from Gene Expression Omnibus (GEO) (https://www.ncbi.nlm.nih.
gov/geo/). In this dataset, a total of 37 primary human FPVEs from
arteries and veins were isolated after a healthy pregnancy (8 arteries,
8 veins) and after a pregnancy complicated by GDM (11 arteries,
10 veins). Our study focused on the global impact of GDM on the
functional properties of fetoplacental vascular endothelial cells rather
than comparing heterogeneity between arterial and venous
endothelial cells. Therefore, we combined data from both cell types
to comprehensively characterize the overall effects of GDM on the
fetoplacental vascular endothelial system while avoiding reduced
statistical power due to fragmented sample sizes. The study flow
chart is shown in Figure 1.

Principal component analysis and
identification of differentially
expressed genes

Principal component analysis (PCA) was performed using the
prcomp function in R to explore potential structures and grouping
characteristics among samples. We first read the gene expression
matrix and grouping information, followed by log2 (x + 1)
transformation, centering, and scaling of the expression matrix.
The first two principal components (PC1 and PC2) were extracted,

FIGURE 1
The experimental protocol of the study. DEGs, Differentially expressed genes; WGCNA, Weighted correlation network analysis; VEC, Vascular
endothelial cell; GDM, Gestational diabetes mellitus; GO, gene ontology; KEGG, Kyoto encyclopedia of genes and genomes; ROC, receiver operating
characteristic; GSEA, Gene set enrichment analysis; LncRNA, Long noncoding RNA; miRNA, MicroRNA.
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and their variance explained ratios were calculated. A two-
dimensional scatter plot was generated using the ggplot2 package,
with PC1 and PC2 as axes, where samples were colored and shaped by
group, and 95% confidence ellipses were added to visualize group
distributions. Additionally, the top 10 genes contributing most to
PC1 and PC2 were identified to highlight key variables driving sample
separation. Results were output as a PCA scatter plot. After that,
identification of DEGs was performed using the limma package. In
detail, gene expression data were preprocessed, including duplicate
removal, normalization, and log2 transformation as needed.
Differential expression analysis between healthy controls and GDM
groups was performed using the limma package, with thresholds of |
log2 fold-change| > 0.3 and adjusted p-value < 0.05 to identify
significant genes. Results were visualized with a heatmap of the
top 50 upregulated and downregulated genes and a volcano plot
highlighting significant changes. Key results and normalized data were
exported for further analysis.

Identification of disease-related co-
expression genes by WGCNA

We conducted WGCNA to identify gene modules associated with
clinical traits using normalized expression data. After preprocessing,
including the removal of genes with standard deviation ≤ 0.1 and
outlier samples based on a clustering height cutoff of 20,000, we
constructed a scale-free network with an optimal soft-thresholding
power determined by the scale-free topology model fit (R2 ≥ 0.8). Gene
modules were identified using a dynamic tree-cutting algorithm with a
minimum module size of 60 and were merged based on eigengene
correlation at a dissimilarity threshold of 0.25. Correlation analysis was
performed to assess module-trait relationships, visualized using
heatmaps. Gene significance (GS) and module membership (MM)
were calculated, and hub geneswere identified using thresholds of GS>
0.5 and MM > 0.8. All significant findings, including module-specific
and hub genes, were documented, and key plots were saved for further
analysis. Differentially expressed hub genes were obtained by
intersecting genes from DEGs and WGCNA using the Venn diagram.

GO analysis of the differentially expressed
hub genes

We performed GO enrichment analysis to explore the functional
annotations of intersected genes. First, we processed the input gene list,
filtering out genes without Entrez IDs. GO enrichment analysis was
conducted using the enrichGO function from the clusterProfiler
package with parameters set to a p-value cutoff of 1 and a q-value
cutoff of 1. Only significantly enriched terms meeting the criteria of
p-value < 0.05 and q-value < 1 were retained. Enrichment results were
visualized through various plots, including bar plots and bubble plots,
highlighting the top 10 categories for each ontology (Biological Process,
Cellular Component, and Molecular Function). Additionally, a GO
circle plot was generated to depict the enrichment results using a
customized color scheme based on ontology categories and p-value
significance. All analyses were implemented in R with a reproducible
workflow, and the output, including plots and enriched terms, was
saved for further interpretation.

KEGG analysis of the differentially expressed
hub genes

We conducted the KEGG pathway enrichment analysis to
investigate the biological pathways associated with intersected genes.
The input gene list was processed by mapping gene symbols to Entrez
IDs, and genes without corresponding Entrez IDs were excluded.
KEGG enrichment analysis was performed using the enrichKEGG
function from the clusterProfiler package with parameters set to a
p-value cutoff of 1 and a q-value cutoff of 1. Pathways meeting the
significance thresholds of p-value < 0.05 and q-value < 1 were retained
for downstream analysis. The results were visualized using bar plots and
bubble plots, displaying the top 30 enriched pathways or fewer if the
total number of significant pathways was less than 30. The pathway
descriptions were formatted for clarity, and all enriched pathways and
visualizations were saved for further interpretation. Analyses were
conducted in R with reproducible scripts.

Further screening of the signature genes by
protein-protein interaction network

Hub genes identified from the intersection of DEGs andWGCNA
were analyzed in the database, namely, STRING (https://cn.string-db.
org/). Briefly, after inputting the gene list and organism selection, the
initial protein network was generated. For the setting of the network,
the network type was set as full STRINGnetwork, meaning of network
edges as evidence, active interaction sources as select all, minimum
required interaction score as 0.4, and network display options as hide
disconnected nodes in the network. After that, the protein interaction
network was exported as a high-resolution bitmap. Moreover, the
network was exported as a short tabular text output for further
abstraction of the core of the network. The core of the network
was abstracted in the Cytoscape software (Version: 3.10.2) using the
tool CytoHubba based on the calculated Node’s score. The node’s
scores were exported. Finally, the top 5 nodes ranked by degree were
abstracted as the core of the network and saved as an image.

Box plot and receiver operating
characteristic (ROC) curve showing the
expression and diagnostic performance of
the signature genes

Differential expression and ROC analysis were conducted.
Expression data were normalized using the normalizeBetweenArrays
function, with log2 transformation applied to datasets with large numeric
ranges (e.g., 99th percentile > 100 or range > 50 with a 25th percentile >
0). Expression data for control and treatment groups were integrated,
with samples labeled accordingly. Target genes were extracted based on
an intersection gene list. Differential expression analysis was performed,
and box plots were generated using ggpubr to compare gene expression
between groups, with statistical significance assessed. The top significant
genes were visualized. ROC curves were plotted for each intersected gene
using the pROC package. The area under the curve (AUC) and 95%
confidence intervals (calculated by bootstrap) were displayed on the ROC
plots, allowing the evaluation of gene classification performance. All
analyses were conducted in R with reproducible scripts.
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The KEGG signaling pathway analysis for the
signature genes

The KEGG signaling pathway analysis was performed using
GSEA software (V4.3.2). Briefly, GCT and CLS files for each
signature gene were prepared using a Perl script. The script
calculates the median expression value of the gene and
categorizes samples as having high (h) or low (l) expression
based on this median. Two output files are generated: a GCT
file containing expression data for all genes and a CLS file
classifying samples into high and low-expression groups. These
files are formatted to be compatible with the GSEA software for
downstream analysis. Then, the GCT file was loaded into GSEA
under the conditions including gene sets database as kegg_
medicus, phenotype labels as h_versus_l, and collapse/Remap to
gene symbol as No_collapse. Afterward, the top 10 high and low
enrichment pathways with a NOM p-value < 0.05 were selected
and grouped by an R script. The script reads all .tsv files from each
signature gene and combines them into a single data frame, and
assigns pathway names based on the names of the pathways. It
generates two main visualizations: a line plot of running
enrichment scores for each pathway and a heatmap of gene

rankings across pathways. Custom color palettes and refined
plot aesthetics are applied using the ggplot2 package. The two
plots are aligned and combined into a single layout using
gridExtra, ensuring consistent formatting.

LncRNA-miRNA-target genes interaction
network of the signature genes

To construct the interaction network based on the identified
signature genes, we first predicted miRNAs for the signature genes
by screening three miRNA databases, namely, miRanda (http://www.
microrna.org/microrna/home.do), miRDB (https://mirdb.org/), and
TargetScan (https://www.targetscan.org/vert_80/). Only those miRNAs
that appeared in at least two databases simultaneously were
included in the analysis. After that, targeted LncRNAs that have
an interaction with the predicted miRNAs were identified on the
spongeScan (http://conesalab.org/spongescan-a-web-for-detecting-
microrna-binding-elements-in-lncrna-sequences/). The interaction
network that shows the intricate interaction of the predicted
miRNAs and LncRNAs for the signature genes was generated
using Cytoscape (Version: 3.10.2).

FIGURE 2
Principal component analysis and differentially expressed genes related to fetoplacental programming. (A) Principal component analysis of the
dataset, (B) Differentially expressed genes displayed by a volcano diagram, and (C) 50 up and 50 downregulated differentially expressed genes displayed
by a heatmap.
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Results

PCA analysis and DGEs identification of
the dataset

PCA analysis of the dataset was performed, and the results are
shown in Figure 2A. In the PCA scatter plot, the horizontal axis
PC1 has a variance explanation rate of 19.05%, and the vertical axis
PC2 has a variance explanation rate of 16.39%. Different shapes and
colors are used to distinguish the control group (triangles) and the
GDM group (circles). There are also ellipses representing the 95%
confidence interval. As can be seen from the graph, there is a
separation trend between the two groups of samples in the
PC1 and PC2 dimensions, indicating that the inter-group
differences can be well distinguished. The dispersion degree of
samples can be evaluated by the size of the ellipses. Outliers such
as GSM2773499 can also be identified in Figure 2A. A total of
613 DEGs were found based on the cutoff criteria, with 260 of these
genes being upregulated while 353 were downregulated. The volcano

plot in Figure 2B shows these upregulated and downregulated DEGs.
The heatmap in Figure 2C shows the details of the top
50 upregulated and top 50 downregulated DEGs. The details of
all DEGs can be seen in the Supplementary Material.

WGCNA for screening co-expression genes
related to FPVE programming

Figures 3A,B show the relationship between the soft threshold
(power value) and the scale-free topologymodel goodness-of-fit (signed
R2), as well as mean connectivity. Figure 3A demonstrates that as the
soft threshold increases, signed R2

first rises and then plateaus from 5 to
20, reflecting the degree to which the node degree distribution fits the
power-law model. Figure 3B indicates that the mean connectivity
decreases with increasing soft threshold. The significance of creating
this plot lies in selecting a soft threshold that allows signed R2 to reach a
plateau and meet the requirements, balancing network sparsity and
connectivity to construct a gene co-expression network with scale-free

FIGURE 3
Identification of disease-related co-expression genes by WGCNA. (A) Scale-Free Topology Model Fit vs. Soft Threshold Plot to determine the
optimal soft threshold power to make the constructed gene co-expression network have scale-free characteristics, (B) Mean Connectivity vs Soft
Threshold Plot to understand the impact of different soft thresholds on the sparsity of the network, (C) Gene Dendrogram and Module Assignment Plot,
(D) The GeneModules and Traits forWGCNA, and (E) The interaction between DEGs and genes in theMEdarkgreenmodule by Venn diagram. DEGs,
Differentially expressed genes; WGCNA, Weighted correlation network analysis.
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properties, which lays the foundation for subsequent module
identification and hub gene analysis. We can see that the optimal
soft threshold was at 5. Figure 3C shows the gene dendrogram and
modules labeled in different colors for WGCNA. Figure 3D shows the
association analysis of 11 modules (named with ME + color, such as
MEblue) with phenotypes (Control/Treat). By calculating the Pearson
correlation coefficient (r) and significance (p-value) between the
module eigengene (the first principal component of gene expression
within the module) and phenotypes, the results are visualized with
phenotypes on the horizontal axis and correlation coefficients on the
vertical axis. The height of bars or position of points reflects the value of
r, and the p-value is indicated in parentheses.Modules are distinguished
by color or labels. Figure 3D identifies core modules significantly
associated with phenotypes (e.g., MEdarkgreen with Treat group: r =
0.68, p = 4 × 10−6), providing directions for revealing the regulatory
mechanisms between gene networks and phenotypes. We can see that
genes from the dataset were clustered into 11 modules, and the

MEdarkgreen module, which included 1,391 co-expression genes,
exhibited the highest correlation and the most significant difference
(cor = −0.75; p = 8e-08) among these modules (Figure 3D). After
intersecting with genes fromDEGs, 192 co-expression hub genes related
to FPVE programming were identified (Figure 3E).

GO and KEGG analyses of the co-expression
hub genes

TheGO and KEGG analyses were performed based on intersected
genes from WGCNA and DEGs. In this study, the GO analysis
focused on three categories, including biological process (BP),
cellular component (CC), and molecular function (MF), which
represent three different aspects of gene functions. Figure 4A is a
brief summary of the results of the GO analysis in terms of a circle
diagram. The circle diagram consists of four different circles from the

FIGURE 4
Results of the GO and KEGG analyses of hub genes. (A) The results of the GO analysis were shown by a circle diagram, (B) The results of the GO
analysis were shown by a bubble diagram, (C) The results of the KEGG analysis of the hub genes were shown by a bar diagram, and (D) The results of the
KEGG analysis of the hub genes were shown by a bubble diagram. ; GO, gene ontology; KEGG, Kyoto encyclopedia of genes and genomes.

Frontiers in Genetics frontiersin.org07

Liu et al. 10.3389/fgene.2025.1600756

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2025.1600756


outer to inner circles, which represent GO ID, the number of genes
enriched in the GO ID, the number of genes enriched in the GO ID
based on the dataset, and the percentage of genes enriched in the
dataset. As shown in Figure 4B, the top 10 categories for BP
included ribonucleoprotein complex biogenesis, ncRNA
processing, RNA splicing, mitochondrial gene expression,
ribosome biogenesis, mitochondrial translation, mitochondrial
respiratory chain complex assembly, 2′-deoxyribonucleotide
metabolic process, deoxyribonucleotide metabolic process, and
deoxyribose phosphate metabolic process. Figures 4C,D show
the results of the enrichment of signaling pathways participated
by hub genes in terms of bar plot and bubble plot, respectively. The
top 10 enriched signaling pathways include ribosome, Parkinson’s
disease, Prion disease, oxidative phosphorylation, Huntington’s
disease, Amyotrophic lateral sclerosis, Alzheimer’s disease,
Thermogenesis, aminoacyl-tRNA biosynthesis, and nucleotide
metabolism Figure 4C.

Protein-protein interaction network
construction and extraction of the core of
the network based on identified hub genes

Figure 5A shows the interaction between proteins of the
identified hub genes. Network nodes represent proteins.

Specifically, the color nodes represent query proteins and the
first shell of interactors, while the white nodes represent the
second shell of interactors. For the content in nodes, the empty
nodes represent proteins of unknown 3D structure, while the
filled nodes represent a 3D structure that is known or predicted.
The edges of the network represent protein-protein associations
evidence provided by known interactions (Curated databases
and experimentally determined), predicted interactions (Gene
neighborhood, gene fusions, and gene co-occurrence), and
others (Textmining, co-expression, and protein homology).
Figure 5B shows the core abstracted from the protein network
consisting of Ribosomal protein S13 (RPS13), Mitochondrial
ribosomal protein S5 (MRPS5), mitochondrial ribosomal

FIGURE 5
Further screening of the signature genes by protein-protein interaction network. (A) The protein-protein interaction network of the hub genes, (B)
The core network of the protein-protein interaction network of the hub genes. Note: The color in Panel (B) was labeled depending on the degree score
ranking by Cytoscape. The higher the score, the redder the color. On the contrary, the lower the score, the yellower the color.

TABLE 1 Top five important genes obtained by degree score ranking of the
network of hub genes by the Cytoscape software.

Name Score Rank

RPS13 24 1

MRPS5 22 2

MRPL22 19 3

MRPL21 18 4

NDUFS3 17 5
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protein L22 (MRPL22), mitochondrial ribosomal protein
L21 (MRPL21), and NADH: ubiquinone oxidoreductase
subunit S3 (NDUFS3) based on the score ranking (Table 1)
assessment in Cytoscape and were used as the final signature
genes that may related to FPVE programming. Among these
genes, the redder the color they are, the more interaction they
have in the network.

The expression and predictive performance
of the signature genes

The results showed that primary human FPVEs from those
women with GDM exhibited significantly lower expression of
RPS13, MRPS5, MRPL22, MRPL21, and NDUFS3 compared to
those from normal pregnancy (Figures 6A–E). Importantly, we
found that these signature genes had an excellent diagnostic
performance with the AUC of 0.976, 0.979, 0.917, 0.958, and
0.994, respectively, in the ROC (Figures 7A–E). The significant
difference and the high diagnostic performance of the signature
genes indicated that they may play crucial roles in FPVE
programming and the related gestational complications
linked to FPVE dysfunction. The importance of the signature
genes makes it necessary to further uncover the signaling
pathways and the regulatory network linked to the
signature genes.

KEGG signaling pathway analysis of the
signature genes

Signaling pathways involved by these signature genes were
studied under the GDM conditions in human vascular FPVEs,
and the results are shown in Figure 8. The results showed that
RPS13 is involved in electron transfer in complex I, EP-NE-
ADRB-CAMP signaling pathway, global genome NER,
mitochondrial complex UCP1 in thermogenesis, type I
interferon to JAK-STAT signaling pathway, variant mutation
caused aberrant a-beta to electron transfer in complex I, variant
mutation caused aberrant HTT to 26S proteasome-mediated
protein degradation, variant mutation caused aberrant SNCA
to 26S proteasome-mediated protein degradation, variant
mutation caused aberrant SNCA to electron transfer in
complex I, variant mutation caused aberrant TDP43 to
electron transfer in complex I, variant mutation inactivated
PINK1 to electron transfer in complex I, and variant scrapie
conformation PRPSC to 26S proteasome-mediated protein
degradation (Figure 8A). MRPS5 participates in
ARL8 regulated microtubule plus end-directed transport,
electron transfer in complex I, variant mutation caused
aberrant a-beta to 26S proteasome-mediated protein
degradation, variant mutation caused aberrant a-beta to
electron transfer in complex I, variant mutation caused
aberrant HTT to 26S proteasome-mediated protein

FIGURE 6
Box plot showing the expression of the signature genes. (A–E) Box plot showing the expression of RPS13, MRPS5, MRPL22, MRPL21, and NDUFS3,
respectively. RPS13, Ribosomal Protein S13; MRPS5, Mitochondrial ribosomal protein S5; MRPL22, Mitochondrial ribosomal protein L22; MRPL21,
Mitochondrial Ribosomal Protein L21; NDUFS3, NADH: Ubiquinone Oxidoreductase Core Subunit S3.
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degradation, variant mutation caused aberrant SNCA to 26S
proteasome-mediated protein degradation, variant mutation
caused aberrant SNCA to electron transfer in complex I,
variant mutation caused aberrant TDP43 to electron transfer
in complex I, variant mutation inactivated UBQLN2 to 26S
proteasome-mediated protein degradation, variant scrapie
conformation PRPSC to 26S proteasome-mediated protein
degradation (Figure 8B). MRPL22 participates in electron
transfer in complex I, EP-NE-ADRB-CAMP signaling
pathway, global genome NER, mitochondrial complex
UCP1 in thermogenesis, type I interferon to JAK-STAT
signaling pathway, variant mutation caused aberrant a-beta to
electron transfer in complex I, variant mutation caused aberrant
HTT to 26S proteasome-mediated protein degradation, variant
mutation caused aberrant SNCA to 26S proteasome-mediated
protein degradation, variant mutation caused aberrant TDP43 to
electron transfer in complex I, variant mutation inactivated
PINK1 to electron transfer in complex I, variant scrapie
conformation PRPSC to 26S proteasome-mediated protein
degradation (Figure 8C). MRPL21 plays a crucial role in env
factor iron to anterograde axonal transport, electron transfer in

complex I, mitochondrial complex UCP1 in thermogenesis, type
I interferon to JAK-STAT signaling pathway, variant mutation
caused aberrant a-beta to electron transfer in complex I, variant
mutation caused aberrant HTT to 26S proteasome-mediated
protein degradation, variant mutation caused aberrant SNCA
to 26S proteasome-mediated protein degradation, variant
mutation caused aberrant SNCA to electron transfer in
complex I, variant mutation caused aberrant TDP43 to
electron transfer in complex I, variant mutation inactivated
PINK1 to electron transfer in complex I, variant scrapie
conformation PRPSC to 26S proteasome-mediated protein
degradation (Figure 8D). NDUFS3 is important in env factor
iron to anterograde axonal transport, env factor-Zn to
anterograde axonal transport, pathogen HCMV-US28 to
GNAI-AC-PKA signaling pathway, CX3CR1-GNAI-AC-PKA
signaling pathway, electron transfer in complex I, EP-NE-
ADRB-CAMP signaling pathway, LHCGR-GNAS-PKA
signaling pathway, microtubule nucleation, mitochondrial
complex UCP1 in thermogenesis, PTH-PTH1R-PKA signaling
pathway, variant mutation caused aberrant a-beta to electron
transfer in complex I, variant mutation caused aberrant SNCA to

FIGURE 7
The ROC curves of the signature genes. (A–E) The ROC curve for RPS13, MRPS5, MRPL22, MRPL21, and NDUFS3, respectively. ROC, receiver
operating characteristic; RPS13, Ribosomal Protein S13; MRPS5, Mitochondrial ribosomal protein S5; MRPL22, Mitochondrial ribosomal protein L22;
MRPL21, Mitochondrial Ribosomal Protein L21; NDUFS3, NADH:Ubiquinone Oxidoreductase Core Subunit S3.
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26S proteasome-mediated protein degradation, variant mutation
caused aberrant SNCA to electron transfer in complex I, variant
mutation caused aberrant TDP43 to electron transfer in complex
I, variant mutation inactivated PINK1 to electron transfer in
complex I (Figure 8E).

LncRNA-miRNA-target genes interaction
network construction

Our results showed that the LncRNA-miRNA-RPS13 interaction
network comprises 10 nodes and 9 edges with 8 LncRNAs and
1 miRNA participate in the network (Figure 9A); the LncRNA-
miRNA-MRPS5 interaction network comprises 13 nodes and
12 edges with 10 LncRNAs and 2 miRNAs participate in the
network (Figure 9B); the LncRNA-miRNA-MRPL22 interaction
network comprises 46 nodes and 46 edges with 33 LncRNAs and
12 miRNAs participate in the network (Figure 9C); the LncRNA-
miRNA-MRPL21 interaction network comprises 3 nodes and 2 edges
with 1 LncRNA and 1 miRNA participate in the network (Figure 9D);
and the LncRNA-miRNA-NDUFS3 interaction network comprises
8 nodes and 7 edges with 5 LncRNAs and 2miRNAs participate in the
network (Figure 9E).We can see that the expression of these signature
genes is regulated by a number of miRNAs and LncRNAs.
For example, the MRPL22 gene is regulated by 12 miRNAs and
33 LncRNAs, andMRPS5 is regulated by 2miRNAs and 10 LncRNAs.
The details of the microRNAs and LncRNAs that are involved in the
regulation of signature genes are shown in Figure 9.

Discussion

This study employed integrated bioinformatics approaches to
dissect the molecular mechanisms underlying FPVE dysfunction in
GDM. Key discoveries include: Identification of 613 DEGs associated
with FPVE programming in GDM, with mitochondrial ribosomal
proteins (MRPS5, MRPL21, MRPL22), ribosomal subunit RPS13, and
mitochondrial complex I subunit NDUFS3 emerging as pivotal
signature genes. Functional enrichment analyses linking these genes
to oxidative phosphorylation, ribosome biogenesis, and stress-response
pathways, all critical for placental energy metabolism and vascular
development. Regulatory network construction reveals complex
LncRNA-miRNA-mRNA interactions that post-transcriptionally
modulate the expression of these signature genes in GDM.

GDM imposes a hyperglycemic and pro-oxidative milieu on the
placenta, disrupting FPVE function, a key interface for maternal-fetal
nutrient exchange (Sun et al., 2020;Madazli et al., 2008; Li et al., 2013).
Our findings align with this paradigm, highlighting mitochondrial
and ribosomal dysfunction as central drivers of FPVE impairment in
GDM. The downregulation of mitochondrial ribosomal proteins
(MRPS5, MRPL21, MRPL22) underscores their critical role in
maintaining placental bioenergetics. These proteins are essential for
synthesizing mitochondrial respiratory chain components, and their
deficiency in GDM likely impairs electron transport in complex I,
reducing ATP production and exacerbating reactive oxygen species
accumulation (Zhao et al., 2019). This aligns with prior studies
showing that mitochondrial stress in placental endothelial cells
correlates with fetal growth restriction (Hu et al., 2020; Burton and

FIGURE 8
The KEGG analysis of the signature genes. (A–E) The possible signaling pathways that RPS13, MRPS5, MRPL22, MRPL21, andNDUFS3may participate
in, respectively. RPS13, Ribosomal Protein S13; MRPS5, Mitochondrial ribosomal protein S5; MRPL22, Mitochondrial ribosomal protein L22; MRPL21,
Mitochondrial Ribosomal Protein L21; NDUFS3, NADH:Ubiquinone Oxidoreductase Core Subunit S3.
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Jauniaux, 2018) and gestational hypertension (Vaka et al., 2018; Smith
et al., 2021; Opichka et al., 2021; McElwain et al., 2020). For instance,
MRPS5 mutations have been linked to mitochondrial translational
errors and impaired nucleocytoplasmic communication, mechanisms
that may amplify FPVE dysfunction under GDM-induced metabolic
stress (Akbergenov et al., 2018).

RPS13, a component of the cytoplasmic ribosome, emerges as a
key regulator of FPVE proliferation. Guo et al. (2011) demonstrated
that RPS13 suppresses the cell-cycle inhibitor p27 (Kip1) in cancer
cells, and our data suggest a conserved mechanism in FPVEs.
Reduced RPS13 expression in GDM may elevate p27 (Kip1)
levels, arresting endothelial cells in the G1 phase and impairing
angiogenesis, a process vital for placental vascular remodeling (Tan
et al., 2024). Concurrently, RPS13’s involvement in global protein
synthesis highlights its role in maintaining FPVE structural
integrity, as disrupted production of junctional proteins could
compromise barrier function and nutrient transport.

NDUFS3, a subunit of mitochondrial complex I, bridges energy
metabolism and stress resistance. Wang et al. (2024) showed that
NDUFS3 activates the AMPK pathway tomitigate oxidative stress, and
its downregulation in GDM may blunt this protective response,

promoting endothelial apoptosis (Yang et al., 2023; Ma et al., 2023).
Intriguingly, our KEGG analysis linked NDUFS3 to neurodegenerative
disease pathways (e.g., Parkinson’s disease), raising questions about
potential long-term neurological sequelae in GDM-exposed offspring,
a hypothesis warranting longitudinal follow-up studies.

We can see that the identified signature genes exhibit striking
overlap with molecular pathways implicated in other pregnancy
complications. Like GDM, preeclampsia is characterized by
placental oxidative stress and mitochondrial dysfunction,
suggesting that they may share therapeutic targets for vascular
disorders in pregnancy. For fetal growth restriction (FGR),
ribosomal dysfunction, as evidenced by RPS13 downregulation,
mirrors mechanisms observed in FGR, where impaired placental
nutrient transport drives fetal hypoperfusion (Gordijn et al., 2016).
This convergence highlights FPVE dysfunction as a common
denominator in multiple adverse pregnancy outcomes.

Given the importance of these signature genes, we constructed the
LncRNA-miRNA-target gene interaction networks, which may offer
valuable perspectives on their regulatorymechanisms. As demonstrated
by the networks, these genes are subjected to regulation by multiple
non-coding RNAs, creating a complex regulatory framework in which a

FIGURE 9
LncRNA-miRNA-target genes interaction network of the signature genes. (A) The LncRNA-miRNA-RPS13 interaction network, (B) The LncRNA-
miRNA-MRPS5 interaction network, (C) The LncRNA-miRNA-MRPL22 interaction network, (D) The LncRNA-miRNA-MRPL21 interaction network, and (E)
The LncRNA-miRNA-NDUFS3 interaction network. LncRNA, Long noncoding RNA; miRNA, MicroRNA. RPS13, Ribosomal Protein S13; MRPS5,
Mitochondrial ribosomal protein S5; MRPL22, Mitochondrial ribosomal protein L22; MRPL21, Mitochondrial Ribosomal Protein L21; NDUFS3, NADH:
Ubiquinone Oxidoreductase Core Subunit S3.
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number of miRNAs and LncRNAs influence each gene. These results
emphasize the intricate nature of post-transcriptional regulation in
biological systems. Such networks not only deepen our understanding
of gene regulation but also highlight potential biomarkers for the early
detection of FPVE dysfunction. The insights derived from the
interaction network may serve as a useful resource for future
investigations into FPVE dysfunction in GDM.

For future research directions, one potential approach to
alleviate FPVE dysfunction could be targeting the non-coding
RNAs within the regulatory network established by this study to
modulate the post-transcriptional expression of these signature
genes. Additionally, the development and application of specific
medications aimed at enhancing placental bioenergetics, coupled
with anti-oxidative damage therapies, may offer promising strategies
for mitigating complications associated with GDM.

While this study provides robust bioinformatics insights, several
limitations require addressing. On the one hand, this study was
performed without external dataset validation because of the lack of
appropriate datasets. On the other hand, this study lacks
experimental validation. Functional studies in human placental
endothelial cell lines, such as HUVECs treated with high glucose,
and mouse models of GDM are essential to confirm the causal roles
of RPS13 and mitochondrial ribosomal proteins in FPVE
dysfunction. Future research integrating these approaches will
strengthen the translational impact of our findings, paving the
way for precision interventions to improve fetal outcomes in GDM.

Conclusion

This study establishes mitochondrial and ribosomal dysfunction
as central mechanisms driving FPVE programming in GDM. The
identified signature genes (RPS13, MRPS5, MRPL21, MRPL22,
NDUFS3) not only unravel the molecular cascade linking
maternal hyperglycemia to fetal vascular dysfunction but also
offer tangible targets for diagnostic and therapeutic innovation.
By situating these findings within the broader landscape of
pregnancy complications, our work underscores the critical role
of FPVE in mediating adverse fetal outcomes and advocates for
multi-omics approaches to unravel their complex etiology.
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