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Background: The malignant progression of pancreatic cancer (PC) is frequently
accompanied by intractable pain mediated through perineural invasion (PNI), yet
the underlying epigenetic regulatory mechanisms remain elusive.This study aims
to elucidate the role of DNAmethylation in the pathogenesis of PC pain, including
its interactive effects with the nervous and immune systems.
Methods: Integrating multi-omics data from TCGA-PAAD (Pancreatic
adenocarcinoma), we identified methylation driver genes (MDGs) using the
MethylMix algorithm. By intersecting MDGs with pain-related gene sets and
conducting multi-step regression modeling, we established a five-gene
prognostic signature (PSMB8/COL17A1/BICC1/CTRC/TRIP13). Next, in order to
elucidate the underlying mechanisms, we conducted differential expression
analysis, protein-protein interaction network analysis, functional enrichment
analysis, and single-cell sequencing. Additionally, we quantified immune
infiltration using CIBERSORT and TIMER.
Results: Pain-related MDGs are enriched in immune regulation, extracellular
matrix reorganization, and cation channel activity, constituting the “immune-
neural axis” of epigenetic regulation. The prognostic five-gene signature
significantly stratifies patient survival risk (HR = 3.83, p = 1.4e−8), with its
methylation levels positively correlated with CD4+ T cell infiltration and
negatively correlated with dendritic cells. Model-derived differentially
expressed genes exhibited dual immune-neural tropism at single-cell
resolution, prominently enriched in presynaptic signaling and synaptic vesicle
cycling. Mechanistically, MDGs orchestrate pain progression through PNI-
associated neural remodeling and K+ channel-mediated neuronal
hypersensitization.
Conclusion: This study establishes a visceral pain model centered on pancreatic
parenchymal nociception rather than secondary neural effects, and for the first
time proposes an interconnected regulatory network linking epigenetic
modifications, immune reprogramming, and neural plasticity, revealing dual
pain pathogenesis mechanisms: (1) immune microenvironment reshaping that
potentiates neuroinflammation, and (2) direct ion channel regulation enhancing
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neuronal excitability. These findings provide a mechanistic foundation for
developing methylation-based prognostic biomarkers and multimodal analgesic
therapeutic strategies targeting the immuno-neural nexus.
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1 Introduction

The global incidence of PC continues to rise, characterized by its
high malignancy and early-stage concealment. Over 80% of patients
are diagnosed at an advanced stage, losing the opportunity for
curative surgery. The high postoperative metastasis rate and a 5-
year survival rate of less than 10% place PC as the fourth leading
cause of cancer-related deaths worldwide (Kalra and Meltzer, 2025).
Pain, as a primary symptom, affects approximately 90% of patients,
significantly reducing quality of life and potentially triggering
anxiety, depression, and even suicidal tendencies (Tarasiuk et al.,
2023; Shrestha et al., 2024). In 2018, the WHO for the first time
classified “chronic cancer pain” as a distinct disease category
(Bennett et al., 2019), with effective pain management shown to
prolong survival (Ozcan et al., 2019). However, the mechanisms
underlying pain remain unclear, and clinical management relies
heavily on empirical approaches, highlighting the urgent need for
molecular mechanism research (Cai et al., 2021; Damm et al., 2020).

The study found that the main cause of PC pain is neuropathic
pain triggered by tumor cells invading nerves, which is considered a
result of PNI (Zhu et al., 2024). PNI defined as cancer cells invading
along nerves or the interstitial spaces of the neural sheath,
perineurium, and endoneurium, is a special way for cancer to
spread to distant sites (Zhu et al., 2024). The incidence of PNI in
PC is nearly 100%, which is negatively related to the survival rate,
and is a risk factor for R1 resection and recurrence (Selvaggi et al.,
2022; Ozaki et al., 1999). The sensory nerve endings distributed
within internal organs, such as the pancreas, and blood vessel walls
are capable of perceiving stimuli including osmotic pressure,
temperature, and pathological injuries (Drewes et al., 2020). Pain
signals are transmitted via nerve fibers to the cell bodies of cranial/
spinal ganglia (Jiang et al., 2025), and ultimately ascend to the
central nervous system through afferent nerves. This conduction
pathway confirms that visceral pain signals originate from
pathological changes within the parenchyma of the organs (Ten
Barge et al., 2025). However, previous studies on PNI-related pain
models in PC have primarily focused on the sciatic nerve and dorsal
root ganglia affected by tumor cells, concentrating on the pain signal
transmission process while ignoring the initial site of pain
generation in the viscera (Miura et al., 2018).

Recent studies have found that Schwann cells (key components
of peripheral nerves) are significantly enriched in pancreatic tumor
tissues (Xue et al., 2023). By interacting with tumor/immune/
stromal cells, Schwann cells activate tumor-neural system
dialogue, promoting metastasis and driving the process of
carcinogenesis (Xu W. et al., 2024). On the one hand, tumor
cells obtain more growth signals, remodel metabolism, and evade
immune surveillance to promote survival by inducing their own
innervation (Hirth et al., 2020). When PC cells invade nerves, they
disrupt the normal structure of nerve fibers, leading to abnormal

nerve signal transmission (Yang et al., 2024). Abnormal nerve
impulses are transmitted along damaged nerve fibers, triggering
pain sensations. During PNI, PC secretes nerve growth factors such
as NGF, which may increase the sensitivity of nerve endings, known
as hyperalgesia (Xu J. et al., 2024; Liu et al., 2024). PNI in PC may
also lead to changes in neural plasticity, including nerve hyperplasia
and hypertrophy, which further exacerbate abnormal nerve signal
transmission and hyperalgesia (Xu et al., 2023). On the other hand,
the sympathetic nerves, parasympathetic nerves, and sensory nerves
within the pancreas voluntarily adapt to the progressive malignant
process and establish bidirectional communication with the tumor
to support its growth (Feng et al., 2021). Besides direct effects, nerves
regulate the progression of PC by actively regulating the functions of
stroma and immune components, and the involvement of tumor
microenvironment (TME) complicates the bidirectional interaction
(Chen et al., 2020). Taking the immune system as an example,
immune cell activation andmediator release induce/maintain cancer
pain (Bethea and Fischer, 2021), and pain-related immune disorders
(mainly inflammation) and immunosuppression delay pain
resolution (Zhao et al., 2023), ultimately impairing patients’
immune function and prognosis. Combined with previous
studies, it was found that the immune system and nervous
system participate in regulating the occurrence and development
of pain. However, little is known about how the two systems are
related to the initial signal of pain generation.

In the study of pain-related mechanisms, epigenetic
modifications involving DNA methylation have also garnered
significant attention. In neuropathic pain models, DNMT-
mediated hyper-methylation of the Oprm1/Kcna2 gene
promoters leads to gene silencing, which triggers increased
neuronal excitability and hyperalgesia (Sun et al., 2017; Sun
et al., 2019). In rat dorsal root ganglion (DRG), DNMT1-driven
downregulation of Cnr1 gene methylation can weaken its inhibitory
effect on TRPV1, exacerbating visceral pain (Hong et al., 2015). In
CFA-induced chronic inflammatory pain, DNMT3b inhibition-
induced de-methylation of the NGF promoter upregulates NGF
expression and maintains the pain state by promoting C/EBPα
binding (Yuan et al., 2020). Although oral cancer studies suggest
that antitumor gene de-methylation and neurotrophin hyper-
methylation are involved in the PNI process (Hurnik et al.,
2022), the intrinsic association between DNA methylation and
PNI in PC pain remains unknown.

This study integrated TCGA PC methylation data with the
MSigDB pain gene set, and identified 26 pain-related MDGs using
the MethylMix algorithm to construct a pain risk scoring model.
After stratifying patients based on this model and combining it
with single-cell analysis, it was revealed that tumor-derived
pain signals drive neuroplastic changes and immune
microenvironment reprogramming through PNI, leading to a
molecular axis of poor prognosis (Figure 1). This study
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innovatively focuses on the primary visceral pain site (distinct
from secondary neural effects) and systematically analyzes the
complete mechanism of pain signaling from its initial generation

to transmission. It provides a theoretical foundation for the early
diagnosis of PC pain and targeted multi-modal analgesic strategies
for the “immune-neural hub”.

FIGURE 1
The flowchart of this article.

Frontiers in Genetics frontiersin.org03

Zhang et al. 10.3389/fgene.2025.1600883

mailto:Image of FGENE_fgene-2025-1600883_wc_f1|tif
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2025.1600883


2 Materials and methods

2.1 Data collection

We downloaded RNA sequencing data, metabolomics data,
somatic mutation data, and The Cancer Genome Atlas (TCGA;
https://portal.gdc.cancer.gov/repository) (Zhang and Wang, 2015)
from 178 PC tissues and four normal pancreatic tissues. The pain-
related gene set HP_PAIN (M38128) was obtained by searching the
keyword “pain” from the Molecular Signatures Database (MSigDB),
which contains 835 genes related to pain (MSIGDB_URL:https://
www.gsea-msigdb.org/gsea/msigdb/human/geneset/HP_PAIN).
The mRNA expression profiles and clinical information of the
GSE183795 dataset were downloaded from the GEO database as
a validation cohort. This dataset includes microarray gene
expression profiles of 139 pancreatic tumors, 102 adjacent non-
tumor tissues, and three normal pancreases from donors with
pancreatic ductal adenocarcinoma patients.

2.2 Identify pain - related MDGs in PC and
conduct functional enrichment analysis

By using the beta hybrid model of the MethylMix package,
we can identify sample subpopulations of PC with different
DNA methylation compared with normal tissues, so as to
identify differential and functional DNA methylation.
Functional DNA methylation refers to 471 MDGs of PC
based on significant negative correlation of matched gene
expression data. By intersecting with pain-related genes in
the MsigDB database, 26 pain-related MDGs were
ultimately obtained.

Conduct Gene Ontology (GO) analysis and Kyoto
Encyclopedia of Genes and Genomes (KEGG) analysis on
26 genes, and analyze gene characteristics from aspects of
molecular function, biological process and cellular component
as well as the interactions and regulations of their pathways in
biological systems.

2.3 Construction and validation of risk
scoring model

In this study, using the TCGA cohort, we employed the R
package glmnet to integrate survival time, survival status, and
gene expression data, and utilized the lasso-cox method for
regression analysis. Additionally, we set up 10-fold cross-
validation to obtain the optimal model. We set the λ value to
be 0.0675911321389309, and finally obtained a model
formula constructed by 10 genes as follows: RiskScore =
2.94730303909491e-05*CTRC+0.0038277720604039*TRIP13+
0.00767681073907178*PSMB8-0.00156609272886264*IRF4+
5.34857478531571e-05*GNE+0.00651372422293902*BICC1+
0.00119961881628371*COL17A1-0.00169964562145739*FERMT3-
0.00549988980019879*KCNJ2-0.000188824126427788*MAFB.

After multivariate survival analysis, five pain-related MDGs
were found to be significantly associated with overall survival.
These five genes are CTRC, TRIP13, PSMB8, BICC1, and

COL17A1. We used the R package maxstat (Maximally selected
rank statistics with several p-value approximations version: 0.7-25)
to calculate the optimal cutoff value of RiskScore. We set the
minimum number of samples in a group to be greater than 25%
and themaximum number of samples in a group to be less than 75%.
Finally, the optimal cutoff value was obtained as 1.81837560981286.
Based on this, patients were divided into high-risk and low-risk
groups. Then, we further used the survfit function in the R package
survival to analyze the prognostic differences between the two
groups, and the logrank test method was used to evaluate the
significance of prognostic differences between different groups of
samples. Eventually, we observed significant prognostic differences
(p = 1.4e−8). Analyzed the relationship between risk scoring and
pathological grading and staging, and observed the survival curves of
the five main pain-related MGDs that make up the risk scoring
model We selected the mRNA expression profiles and clinical
information of the GSE183795 dataset downloaded from the
GEO database as the validation cohort to observe the survival
curves and prognostic analysis of high-risk and low-risk
subgroups, thus verifying the risk score model.

2.4 Analysis of key pain-related MDGs

MethylMix is an algorithm for identifying highly methylated
and hypo-methylated genes associated with diseases. MethylMix
identifies methylation states based on the β-mixture model and
compares them with normal DNA methylation states. MethylMix
uses a new statistical quantity, namely, the difference methylation
value or DM value, which is defined as the difference between the
methylation state and the normal methylation state. Finally, the
matched gene expression data are used to identify functional
methylation states other than differences by focusing on the
methylation changes that affect gene expression. This study,
based on the TCGA PC gene expression matrix and DNA
methylation, analyzed 471 PC MDGs by using the MethylMix
package. The methylation states of five key pain-related MDGs
and their correlations with mRNA expression levels were analyzed,
and the gene expression differences in tumors and normal tissues
were also analyzed.

2.5 Differential gene selection and weighted
gene Co-expression network
analysis (WGCNA)

Based on the risk score model, TCGA PC patients were divided
into high-risk and low-risk subtypes. Limma is a differential
expression screening method based on the generalized linear
model. Here, we used the R package limma (version 3.40.6) for
differential analysis to obtain differentially expressed genes between
the high-risk and low-risk subtypes. A total of 5,962 differentially
expressed genes were identified with a fold change of 1.5 and p <
0.05, including 3,886 upregulated genes and 2,076 downregulated
genes. After analyzing their chromosomal locations, all differentially
expressed genes underwent WGCNA to identify differentially
expressed genes in the most relevant modules. Combined with
survival time and survival status, the most relevant module cyan
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was determined, which encompassed 89 genes. Enrichment analysis
of GO and KEGG was performed on the genes in this module.

2.6 Construction of protein-protein
interaction (PPI) networks and identification
of hub genes

To study the differentially expressed genes associated with pain
risk subtypes in PC methylated driver genes, we input the selected
cyan module genes into the String database to construct a PPI
network, with a cutoff value set at 0.400, and visualized it using
Cytoscape software. Subsequently, we utilized the Molecular
Complex Detection (MCODE) tool in Cytoscape to analyze the
gene interaction information. By applying criteria of degree cutoff =
2, node score cutoff = 0.2, and K-Core = 2, we identified hub
modules within the PPI network, comprising eight genes, and
conducted a visualization analysis of their gene functions.

2.7 Analysis of tumor mutation burden

Tumor Mutational Burden (TMB) as an emerging biomarker,
can assist in predicting patients’ response to immunotherapy. In
this study, we analyzed the mutational landscape of the top
20 most frequently mutated genes in the pain-related risk
subtypes of PC patients, demonstrating the specific mutation
conditions of all samples. With the help of “maftools” package in
R software, we calculated the tumor mutation conditions of PC
patients. The “survival” package was used to determine the
optimal cut-off value, and the samples were divided into high
TMB group and low TMB group based on TMB differential
analysis. Subsequent survival analysis was conducted
regarding the TMB.

2.8 Immune cell infiltration and gene set
enrichment analysis

IOBR (Zeng et al., 2021) is a computing tool for immune
tumor biology research. Here, based on the expression profile of
TCGA PC patients, the R software package IOBR selected xCell
method to calculate 64 immune cell infiltration scores and
immune, matrix and microenvironment scores for each
sample. The CIBERSORT method calculated 22 immune cell
infiltration scores for each sample and analyzed the correlation
between immune cell infiltration scores and 10 hub genes. For
Gene Set Variation Analysis (GSVA), we used the R software
package to calculate the enrichment score of each sample in the
gene set from GSVA (version 1.40.1). We predefined the gene
rank. Specifically, we first used gene expression to reach the
spectrum, using the Hanzelmann et al. method, and downloaded
the hallmark subset from the Molecular Signatures Database
(http://www.gsea-msigdb.org/gsea/downloads.jsp) to evaluate
relevant pathways and molecular mechanisms, Set the
minimum gene set to 5 and the maximum gene set to 5,000,
and calculate the enrichment scores of each sample in each gene
set. Finally, the enrichment score matrix was obtained.

2.9 Analysis of the correlation between gene
methylation, copy number variation and
immune infiltration

GSCALite is a web-based platform for gene set cancer analysis.
GSCALite integrates cancer genomics data of 33 cancer types from
TCGA, drug response data from GDSC and CTRP, and normal tissue
data from GTEx for an integrated data analysis workflow in gene set
analysis. In this study, the key genes under investigation are input into
the GSCALite platform to analyze their interrelationships with immune
infiltration. TIMER is a comprehensive database whose primary
function is to systematically analyze six types of tumor-infiltrating
immune cells (B cells, CD4+ T cells, CD8+T cells, neutrophils,
macrophages, and dendritic cells) in different cancer types through
the TIMER algorithm. At the same time, it analyzes the relationship
between gene expression and tumor purity. Genes that are highly
expressed in the tumor microenvironment are negatively correlated
with tumor purity, while genes that are highly expressed in tumor cells
are positively correlated with tumor purity.

2.10 Single-cell sequencing analysis

CDCP is a comprehensive platform for single-cell data
integration, sharing and analysis. Users can obtain detailed
information about samples in the datasets included in the CDCP
single-cell data platform online, and are allowed to use tSNE
(t-Distributed Stochastic Neighbor Embedding) cell
dimensionality reduction maps and clustering analysis maps of
different cell types to visualize each single-cell dataset. In this
study, the CDCP online platform was utilized to analyze the gene
expression of key genes in single cells in the pancreas or nerves and
visualize them for comparison.

3 Results

3.1 Construction and validation of risk
scoring model for pain-related MDGs in PC

Emerging evidence has established epigenetic regulation,
particularly DNA methylation, as a central modulator of chronic
pain pathophysiology (Jiang et al., 2022). To systematically
investigate methylation-driven mechanisms underlying PC-
associated pain, we performed multi-dimensional bioinformatics
analysis of PC samples from TCGA (n = 178). High-resolution
methylation arrays and RNA-seq data were integrated through the
MethylMix algorithm, revealing 471 aberrantly methylated driver
genes (FDR < 0.05) with 333 hypermethylated and
138 hypomethylated candidates (Supplementary Table 1). Cross-
referencing these epigenetic drivers with a curated database of
835 nociception-associated genes (PainGenesDB v4.0) identified
26 high-confidence pain-related MDGs (15 hypermethylated,
11 hypomethylated; Figure 2A; Supplementary Tables 2, 3). GO
enrichment analysis revealed that these 26 genes are enriched in
extracellular matrix structural constituents, DNA-binding
transcription activator activity, ligand-gated cation channel
activity, and other molecular functions. In biological processes,
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they are enriched in the regulation of immune system processes,
immune function modulation, and cell differentiation regulation. In
terms of cellular components, they are enriched in the extracellular
matrix and integral components of the plasma membrane
(Figure 2B). KEGG enrichment analysis showed that these genes

are associated with signaling pathways such as T cell receptor
signaling pathway and Th17 cell differentiation (Figure 2C).
Thus, it can be seen that PC pain-related MDGs may play a role
in immune response and cell differentiation and proliferation,
suggesting an intrinsic link between methylation and pain in PC.

FIGURE 2
Construction and validation of risk scoring model for pain-related MDGs in PC. (A) 26 pain-related MDGs of PC were obtained by intersection of PC
MDGs and pain gene collection in MSigDB. (B) GO enrichment analysis of 26 pain-related MDGs in PC. (C) KEGG enrichment analysis of 26 pain-related
MDGs in PC. (D) Using the R software package glmnet, integrate survival time, survival status, and gene expression data, and perform regression analysis
using lasso coxmethod to obtain 10 genes, the λ value is 0.0675911321389309 for. (E) Forest plot of 5 pain-relatedMDGswith significant differences
obtained from multivariate Cox regression analysis. (F) KM curve of pain risk scoring model. (G) ROC curve of pain risk scoring model. (H) Prognostic
heatmap analysis of pain risk scoring model. (I) Prognostic heatmap analysis of pain risk scoring model in GSE183795 dataset.
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The lasso-cox regression analysis was conducted on the screened
26 pain-related MDGs, followed by a 10-fold cross-validation to
obtain the optimal risk scoring model (Figures 2D,E). The λ value
was determined to be 0.0675911321389309. The formula for the
model constructed using the final 10 selected genes is as follows:

RiskScore = 2.94730303909491e-05*CTRC+0.0038277720604039*
TRIP13+0.00767681073907178*PSMB8-0.00156609272886264*
IRF4+5.34857478531571e-05*GNE+0.00651372422293902*BICC1+
0.00119961881628371*COL17A1-0.00169964562145739*FERMT3-
0.00549988980019879*KCNJ2-0.000188824126427788*MAFB.

After multivariate survival analysis, five pain-related MDGs
were identified as significantly correlated with overall survival
(Figure 2F). These five genes are: PSMB8, COL17A1, BICC1,
CTRC, and TRIP13. The hazard ratio (HR) is 3.83. Using the R
package “maxstat”, the optimal cutoff value for RiskScore was
calculated to be 1.81837560981286. Based on this value, patients
were divided into high and low groups, showing significant
prognostic differences (p = 1.4e−8) (Figure 2G). The ROC curve
revealed that the AUCs for patient survival at 1, 3, and 5 years were
0.76, 0.84, and 0.84, respectively (Figure 2H). The prognostic

heatmap analyzed the relationship between different risk scores
and patient follow-up time, events, and changes in gene expression.
It was observed that as the risk score increased, the survival rate of
patients decreased (Figure 2I). The risk scoring model was validated
using the mRNA expression profiles and clinical information from
the GSE183795 dataset as a validation cohort (Figure 2J).The HR of
GSE183795 is 1.95 (p = 2.3e−3), and the ROC curve reveals that the
AUCs for patient survival at 1, 3, and 5 years were 0.55, 0.64 and
0.67, respectively, which is significant (Supplementary Figure 1).

3.2 Risk model is significantly related to
pathological staging of PC

Based on the tumor staging and TNM staging information of PC
patients from TCGA, combined with the risk score derived from
pain-related MDGs, the correlation between the risk score and the
clinical information of PC was evaluated. In the tumor staging of PC,
stage Ⅰ tumors generally do not have regional lymph node metastasis
or distant metastasis, while stage Ⅱ and Ⅲ tumors have different

FIGURE 3
Clinical relevance and gene survival curve of risk model. (A) Correlation between TCGA PC patient grade and risk score. (B) Correlation between
T stage and risk score in TCGA patients with PC. (C)Correlation betweenN stage and risk score in TCGA PCpatients. (D)Correlation betweenM-stage and
risk score of TCGA PC patients. (E) Kaplan Meier curve of PSMB8. (F) Kaplan Meier curve of COL17A1. (G) Kaplan Meier curve of BICC1. (H) Kaplan Meier
curve of CTRC. (I) Kaplan Meier curve of TRIP13 (ANOVA, P ≤ 0.05).
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degrees of regional lymph node metastasis, and stage Ⅳ tumors are
generally accompanied by distant metastasis. As can be seen from
the results in Figure 3A, the high-risk score is most correlated with
PC stage Ⅱ. Stage Ⅱ tumors have 1–3 regional lymph node
metastases. It is speculated that pain-related MDGs play an
important role in the early metastasis process of tumors.
Observing the results of the correlation between the TNM
staging and the risk score of PC patients, it can be seen that pain
is correlated with the size of the primary tumor (T staging) and the
situation of regional lymph node metastasis to different degrees. No
significant association with distant metastasis (Figures 2B–D). It can
be seen that the risk score model constructed in this study is more
suitable for the stage where PC begins to spread but has not yet had
distant metastasis. A high-risk score indicates that the tumor has a
tendency to metastasize. The Cox multivariate analysis obtained five
key pain-relatedMDGs. The Kaplan-Meier curves of these five genes
in TCGA PC patients were drawn respectively, and it can be seen
that PSMB8, COL17A1, BICC1 and TRIP13 are significantly
correlated with the prognosis (Figures 2E–I). The metastatic
propensity signature (high COL17A1/PSMB8, low CTRC)
suggests: PNI facilitation via collagen remodeling (COL17A1),
immune-evasion priming through proteasomal antigen processing
(PSMB8),protective trypsin depletion in tumor
microenvironment (CTRC).

3.3 Characterization of key pain-related
DNA MDGs

The MethyMix algorithm can identify genes’ low/high
methylation states through the beta mixture model and find
DNA MDGs in diseases by analyzing the correlation of the
expression levels of corresponding genes. The expression patterns
(left) and negative correlation maps (right) of key pain-related
MDGs in different samples are shown in Figure 4 (PSMB8:
Figure 4A, COL17A1: Figure 4C, BICC1: Figure 4E, CTRC:
Figure 4G, TRIP13: Figure 4I). Combined with the differential
methylation values of each driver gene (it’s the average difference
in methylation between tumor samples and normal samples,
Supplementary Table 4), it can be seen that PSMB8 and CTRC
are not methylated in normal samples of PC in the TCGA database.
Observing the mRNA expression levels of key pain-related MDGs in
pancreatic tumor and normal samples, significant differences can be
seen in the mRNA expression levels of PSMB8 and TRIP13 (PSMB8:
Figure 4B, COL17A1: Figure 4D, BICC1: Figure 4F, CTRC:
Figure 4H, TRIP13: Figure 4J).

3.4 Differential gene identification and
WGCNA of risk scoring model

In the TCGA cohort, limma analysis identified a total of
3,886 upregulated and 2,076 downregulated differentially
expressed genes (DEGs) (|logFC| > 1.5 and p-value < 0.05)
between the two pain-related risk subtypes (Figure 5A;
Supplementary Table 5). Chromosomal mapping revealed
chromosome 19 enrichment (q = 0.003) of upregulated genes,
while downregulated genes clustered on 7q21.3 (PAX/POU

domain loci; Figure 5B). The heatmap visualization of the first
50 differentially expressed genes is shown in Figure 5C. The
goodSamplesGenes method in the R package WGCNA was used
to remove outlier genes and samples, and then the scale-free co-
expression network was further constructed using WGCNA.
Pearson correlation matrix and average linkage method were
applied to all pairs of genes, and then a weighted adjacency
matrix was constructed. The adjacency relationship was
transformed into a topological overlap matrix (TOM), which can
measure the network connectivity of a gene, defined as the sum of its
adjacency relationships with all other genes, for network gene ratio,
and the corresponding dissimilarity (1-TOM) was calculated
(Figures 5D,E). Genes with similar expression profiles were
classified into gene modules. According to the dissimilarity
measure based on TOM, average linkage hierarchical clustering
was carried out, and the minimum size (gene group) of the gene
dendrogram was set to be 30 (Figures 5F,G). The sensitivity was set
as 3. In order to further analyze the modules, the dissimilarity of
characteristic genes of the modules was calculated, a cutting line was
selected for the module dendrogram, and some modules were
merged. In addition, modules with a distance less than 0.25 were
also merged. Finally, 17 co-expression modules were obtained,
among which the Gray module was considered as unable to be
reasonably combined with any other model. Visualizing the
correlations of the 17 co-expression gene modules resulted in
Figure 5H, from which it can be seen that the darkgreen module
has the highest correlation with the black module. By
comprehensively analyzing the correlations of the 17 co-
expression gene modules with tumor staging, it can be seen that
the cyan module is most correlated with tumor stage and TNM
staging. Therefore, it was selected as the key module for subsequent
analysis, which contains a total of 89 genes (Figure 5I;
Supplementary Table 6).

3.5 Enrichment analysis of keymodule genes
and construction of protein-protein
interaction networks

Subsequently, GO and KEGG enrichment analyses were
performed on the crucial cyan module. The analysis results of
biological processes indicated that the genes in the cyan module
were concentrated on the establishment of extracellular protein
localization and the secretion and transport of hormones,
including insulin, neurotransmitters, and peptide hormones
(Figure 6A). The analysis results of cellular components showed
that the genes in the cyan module were focused on the process of
signal transduction, including neuronal projection terminals, axon
terminals, external vesicle membranes, synaptic vesicle membranes,
transport vesicle membranes, potassium channel complexes, etc., all
of which are closely related to signal transduction in the nervous
system (Figure 6B). The molecular function analysis results of the
cyan module genes revealed a close correlation with ATPase-
coupled ion transmembrane transporter activity, potassium
channel activity, voltage-gated cation channel activity, and
synaptotagmin binding (Figure 6C). The KEGG analysis results
demonstrated that the genes in the cyan module were concentrated
on oxidative phosphorylation, mannose-type O-glycan biosynthesis,
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FIGURE 4
Characteristics of five pain-related epigenetic driver genes. (A) The methylation level of the PSMB8 gene (left) and the correlation diagram between
its mRNA expression and DNA methylation level (right). (B) Differential mRNA expression of the PSMB8 gene in TCGA PC tissue and normal pancreatic
tissue. (C) The methylation level of the COL17A1 gene (left) and the correlation diagram between its mRNA expression and DNAmethylation level (right).
(D)Differential mRNA expression of the COL17A1 gene in TCGA PC tissue and normal pancreatic tissue. (E) Themethylation level of the BICC1 gene
(left) and the correlation diagram between its mRNA expression and DNAmethylation level (right). (F) Differential mRNA expression of the BICC1 gene in
TCGA PC tissue and normal pancreatic tissue. (G) Themethylation level of the CTRC gene (left) and the correlation diagram between itsmRNA expression
andDNAmethylation level (right). (H)Differential mRNA expression of the CTRC gene in TCGA PC tissue and normal pancreatic tissue. (I) Themethylation
level of the TRIP13 gene (left) and the correlation diagram between its mRNA expression and DNA methylation level (right). (J) Differential mRNA
expression of the TRIP13 gene in TCGA PC tissue and normal pancreatic tissue.
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and diabetes or synaptic vesicle recycling-related aspects
(Figure 6D). Among them, the pathogenic mechanisms related to
sugar metabolism and diabetes are closely associated with pancreatic
tissues, while synaptic vesicle recycling-related functions account for
the largest proportion in the KEGG analysis of the cyan module,
which is consistent with the results of GO enrichment analysis. By

visualizing the synaptic vesicle recycling process and marking the
genes involved in the cyan module in green, it can be seen that the
genes in the cyan module participate in multiple key steps of
synaptic vesicle recycling in signal transduction and are crucial
for signal transduction (Figure 6E). The PPI network diagram of the
cyan module genes was obtained by importing them into the

FIGURE 5
Differential gene analysis of different risk subtypes. (A) Volcano plot of differentially expressed genes related to pain, using |logFC| > 1.5 and p-value <
0.05 as screening criteria. (B)Chromosome locations of 5,962 differentially expressed genes. (C)Heatmap of the top 50 differentially expressed genes. (D)
Scale-free topology model fitting of 5,962 differentially expressed genes analyzed by WGCNA. (E) Average connectivity of differentially expressed genes
analyzed by WGCNA. (F) Sample clustering of differentially expressed genes analyzed by WGCNA. (G) Gene clustering of differentially expressed
genes analyzed by WGCNA. (H)Module eigengene clustering of differentially expressed genes analyzed by WGCNA. (I)Heatmap of correlation between
WGCNA analysis modules of differentially expressed genes and phenotypes.
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Cytoscape software (Figure 6F). Using the MCODE module in the
Cytoscape software to contract the genes, eight key differentially
expressed genes were obtained, namely, PTPRN2, CPE, SNAP25,
ABCC8, PTPRN, CHGB, SCG5, and PCSK2, these genes are all
downregulated in the risk scoring model (Figure 6G).

3.6 Gene diversity of TCGA PC and single cell
analysis of key MDGs

The diversity of biological DNA sequences plays a crucial role in
the occurrence and development of diseases by affecting gene
expression products or gene regulatory processes, resulting in

different traits in individuals. Single nucleotide polymorphism
(SNP) is a major form of genetic diversity and can occur in both
coding and non-coding regions of the genome. We utilized the
CMplot package to visualize the distribution of SNPs in the genomes
of PC patients (Figure 7A). Subsequently, we identified the top
2 genes with the highest mutation rates among TCGA PC patients
(Figure 7B). It is noteworthy that mutations in KRAS, TP53,
SMAD4, and CDKN2A were the most common in both
subgroups, among which KRAS and TP53 were the most
dominant, with more than 5% in both groups. Missense
mutations were the most common, followed by nonsense
mutations. By summarizing the somatic mutation situation of
cyan module genes, it was found that mutations were mainly

FIGURE 6
Enrichment analysis of key module genes and construction of protein-protein interaction network. (A) Biological processes of GO enrichment
analysis in the cyanmodule. (B)Cellular components of GO enrichment analysis in the cyanmodule. (C)Molecular functions of GO enrichment analysis in
the cyanmodule. (D) Top 10 pathways of KEGG enrichment analysis in the cyanmodule. (E)Genes involved in synaptic vesicle cycling in the cyanmodule.
(F) Cytoscape software visualizes the protein-protein interaction network of the cyan module. (G) Cytoscape software visualizes key genes of the
cyan module.
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SNPs, mainly concentrated in C>T and C>A (Figure 7C). The
characteristic risk score was positively correlated with TMB (R =
0.2, p = 0.0096, Figure 7D left), while survival analysis showed that a
higher level of TMB was significantly associated with a longer OS
(p = 0.02, Figure 7D right).

Subsequently, we compared the copy number variations
(CNVs) or mutations of five pain-related MDGs with various
immune cells to observe the impact of gene changes in pain-
related MDGs on immune infiltration in PC. Here, B cells, CD8+

T cells, CD4+ T cells, macrophages, neutrophils, and dendritic
cells (DCs) were selected to analyze the correlation between
CNVs or mutations of genes and these immune cells. Among
them, the CNVs of PSMB8, COL17A1, and BICC1 showed no
obvious correlation with these six types of immune cells. The
CNV of CTRC was significantly positively correlated with
macrophages, and the TRIP13 was significantly positively
correlated with neutrophils (Supplementary Figure 2A),
indicating that the CNV changes of these five key pain-related
MDGs had a relatively small impact on immune infiltration in
PC. Combining the mutation changes of five pain-related MDGs,
it can be seen that PSMB8 was significantly positively correlated
with B cells, CD8+ T cells, and neutrophils; COL17A1 was
significantly positively correlated with B cells, CD8+ T cells,
and CD4+ T cells, and significantly negatively correlated with
neutrophils and DCs; no significant correlation was found
between the mutations of BICC1 and CTRC and immune
cells; the mutation of TRIP13 was significantly positively
correlated with CD8+ T cells and CD4+ T cells, and
significantly negatively correlated with neutrophils and DCs
(Supplementary Figure 2B). By comprehensively analyzing five
MDGs and various immune cells, it was found that low CNVs of
these five key MDGs were closely associated with CD4+ T cells,
B cells, natural killer (NK) cells, etc., while high CNVs were
significantly correlated with CD8-naive, natural regulatory
T cells (nTreg), neutrophils, etc (Supplementary Figure 2C).
Further analysis of the correlation between Single Nucleotide
Variant (SNV) of five MDGs and immune infiltration showed
that there was no significant correlation between them
(Supplementary Figure 2D). At the same time, we also
investigated the correlation between the mRNA expression
levels of these genes and immune cells (Supplementary Figure
3). Combined with the above research findings, it can be
concluded that the mutation is the most significant aspect in
their DNA variations in terms of the impact on immune
infiltration among these five key MDGs.

In order to observe the distribution of five pain-related MDGs in
PC tissues or the immune microenvironment, we utilized the CDCP
database and selected five public single-cell analysis data sets, namely,
GSM6567161, GSM6567159, GSM663326, GSM728974 and
GSM663329, to observe the gene distribution (Figure 7E). Among
them, GSM6567161 and GSM6567159 mainly focus on the immune
landscape of PC; GSM663326 and GSM663329 are concerned with
the comparison between PC and corresponding normal tissues;
GSM728974 focuses on tumor microenvironmental changes. It can
be seen that the expressions of these genes mainly exist in PP cells,
epithelial cells, mesenchymal cells, and acinar cells, which are several
types of pancreatic tissue cells.

3.7 Analysis of immune function and drug
sensitivity of differentially expressed genes

Based on the aforementioned research, it can be discovered that
the pain risk subtypes constructed by the MDGs exhibit significant
correlations with cellular immune functions. Through the GSEA-
hallmark enrichment analysis of 5,962 differentially expressed genes
in the risk scoring model, it was shown that the high-risk subgroup
was associated with interferon-α response, interferon-β response,
immune response, TGF-BETA signaling and IL6-JAK-
STAT3 signaling, while the low-risk subgroup was associated
with pancreas beta cell, spermatogenesis, myogenesis, oxidative
phosphorylation and hedgehog signaling (Figure 8A). The
analysis results of 22 types of immune cells for differentially
expressed genes indicated that there were significant differences
in dendritic cells resting, Macrophages M andMacrophagesM1 cells
(Figures 8B,C). After performing immune cell infiltration and GSVA
enrichment scoring on the previously screened MCODE
differentially expressed genes, it was found that they were closely
related to multiple immune cells (Figure 8D). By analyzing the
correlations between PC ESTIMATEScore, ImmuneScore,
StromalScore and TumorPurity and the risk score, it can be seen
that the high-risk score was significantly positively correlated with
ESTIMATEScore and StromalScore, but negatively correlated with
TumorPurity (Figure 8E). The analysis of MCODE gene immune
cells showed a positive correlation between gene expression and
immune cell function (Supplementary Figure 4). Due to the
downregulation of gene expression in high-risk subtypes, it
suggests a decrease in cellular immune function and an increase
in the proportion of immune infiltration. This indicates that in the
high-risk subgroup of PC, the proportions of immune cells and
stromal components are higher, suggesting a higher likelihood of
immune infiltration. Combined with the drug sensitivity analysis
results from CTRP and GDSC websites, the drug sensitivity
predictions of different tumor chemotherapy drugs can be
seen (Figure 8F).

3.8 Single-cell analysis of key MCODE genes
in the pancreas or nerves

In the development mechanism of PC pain, besides
inflammatory pain caused by changes in immune function,
neuropathic pain caused by tumor tissue compressing nerves is
also crucial. Combined with previous studies, it can be seen that the
risk scoring model constructed by pain-related MDGs may have
certain correlations with early metastasis of pancreatic tumors. The
selected differentially expressed genes play important roles in
synapses related to nerve signal transmission and voltage-gated
ion channels. Therefore, we further analyzed their expression
distributions in the pancreas and nerves (Figure 9).
GSM6567159 is a single-cell analysis data set of the immune
landscape of PC, and GSM523652 is a single-cell transcription
atlas of the human spinal cord. It can be seen that MCODE is
expressed in different degrees not only in pancreatic tissues but also
more in nerve cells, providing further evidence for the influence of
perineural infiltration of PC on pain.
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FIGURE 7
Correlation between single nucleotide polymorphism distribution, mutation status, and immunoinfiltration in TCGA PC. (A) Distribution of single
nucleotide density in TCGA PC patients. (B) Waterfall diagram of somatic mutation in TCGA PC. (C) Summary of Gene Somatic Mutations in the cyan
Module. (D)Correlation between tumormutation load and risk score or survival of TCGA PC. (E) Results of single-cell analysis for the five pain-associated
driver genes, It’s PSMB8 (GSM6567161), COL17A1 (GSM6567159), BICC1 (GSM6603326), CTRC (GSM7289740), and TRIP13 (GSM6603329).
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4 Discussion

In recent years, the global incidence of PC has shown a sharp
increase. As one of the leading causes of cancer deaths, the diagnosis
and treatment of PC are particularly important (Li et al., 2025). Pain
is a significant factor affecting the quality of life for PC patients and
is crucial for patient outcomes (Tarasiuk et al., 2023). The main
mechanisms of PC pain include direct compression and infiltration

of surrounding nerves by the tumor, as well as the release of
inflammatory mediators (Zhu et al., 2024). Previous studies have
indicated that cancer pain primarily involves genetic and epigenetic
regulation. Epigenetic regulation, including DNA methylation,
histone modifications, and non-coding RNAs, affects
neuroinflammation, neuronal sensitization, and pain transmission
by regulating the expression of pain-related genes or the activity of
signaling pathways (Ni et al., 2024). Based on differences in the

FIGURE 8
Analysis of immune function and drug sensitivity of differentially expressed genes. (A) Enrichment analysis of GSEA-hallmark for risk score model
differentially expressed genes. (B) Stacked bar plot of estimate scores for 22 kinds of immune cells of differentially expressed genes. (C) Boxplot of scores
for 22 kinds of immune cells of differentially expressed genes. (D) Immune cell infiltration and GSVA enrichment analysis scores of eight key genes (*:
p-value < 0.05; #: FDR < 0.05). (E)Correlation analysis between risk score and stromal cell score (StromalScore), immune cell score (ImmuneScore),
total score (ESTIMATEScore, the sum of stromal cell score and immune cell score), tumor purity (TumorPurity) of differentially expressed genes. (F) Drug
sensitivity analysis results from CTRP and GDSC websites.
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degree of PNI and inflammatory mediators/chemokines between PC
and adjacent normal tissues, we extracted relevant data from TCGA
for PC and adjacent normal tissues. Using the MethylMix software
package, 471 MDGs were identified, and five pain-related MDGs
(PSMB8/COL17A1/BICC1/CTRC/TRIP13) significantly associated
with overall survival (OS) were finally selected for prognostic
stratification of PC patients (HR = 3.83, p < 0.001). High-risk
patients exhibit pronounced immunosuppression, with enriched
functions in synaptic vesicle cycling and signal transmission.
Combined with single-cell analysis, it was observed that
differentially expressed genes are widely distributed in both the

pancreas and nerves, suggesting that pain-related MDGs not only
affect the immune microenvironment but also regulate signal
transmission between tumors and nerves. This is a key process in
initiating visceral nociception. Our study finds that the complex
pathogenesis of PC pain extends beyond mechanical compression
and inflammatory mediator release, involving intricate immuno-
neural genetic crosstalk (Figure 10).

Epigenetic modifications can affect gene expression at multiple
levels, including transcription, splicing, stability, and translation,
thereby influencing the physiological and pathological functions of
cells. These modifications primarily consist of DNA methylation,

FIGURE 9
Single-cell analysis of eight key differentially expressed genes in pancreas or nerves. (A) Gene expression profiles of single-cell analysis of eight key
differentially expressed genes in the pancreas (GSM6567159), which are, in sequence, PTPRN2, CPE, SNAP25, ABCC8, PTPRN, CHGB, SCG5, PCSK2. (B)
Gene expression profiles of single-cell analysis of eight key differentially expressed genes in nerves (GSM5236520), which are, in sequence, PTPRN2, CPE,
SNAP25, ABCC8, PTPRN, CHGB, SCG5, PCSK2.
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histone modifications, non-coding RNAs, RNA modifications, and
chromatin remodeling (Zheng et al., 2025). Among these, DNA
methylation is the earliest and most extensively studied epigenetic
modification. Research has found that DNAmethylation can inhibit
or activate genes related to pain perception, conduction, and
regulation, thereby altering nerve cells’ response to pain (Sun
et al., 2019). In a model of spinal nerve ligation (SNL) in male
Sprague Dawley rats, a persistently low level of hypomethylation was
observed at CpG sites in the DRG. Reducing DNA methylation can
cause pain hypersensitivity, while increasing DNA methylation can
alleviate neuropathic pain (Garriga et al., 2018). DNA methylation
can also regulates neural plasticity, affecting connections and
communication between nerve cells (Pratt et al., 2022). In oral
cancer, abnormal demethylation of various tumor suppressor genes
and hypermethylation of nerve growth factors have been found to be
involved in the development of PNI (Hurnik et al., 2022). In this
study, MDGs were identified using the MethylMix package
combined with gene expression profiling and methylation data
analysis. These genes showed a negative correlation between
methylation and mRNA expression, and differences in DNA
methylation levels were observed between cancer and normal
samples, resulting in 471 MDGs. Further screening yielded
26 MDGs related to PC pain, followed by GO and KEGG
enrichment analyses. GO enrichment analysis revealed three
main functions of these epigenetic regulators: (1) structural
regulation through extracellular matrix organization, (2)

transcriptional reprogramming via DNA-binding activator
activity, and (3) neuronal excitability modulation through ligand-
gated cation channels. KEGG pathway dissection uncovered the
convergence of the immune-pain axis, with significant enrichment
in T cell receptor signaling and Th17 differentiation pathways.
Notably, our findings maybe suggest a novel mechanistic link: (1)
epigenetic silencing of ion channels may disrupt pain signal
transduction, (2) methylation-mediated immune modulation
(Th17 pathway genes) indicates tumor microenvironment
crosstalk, and (3) Methylation of structural genes (COL family)
may alter the PNI ability of tumors. The multi-scale integration of
methylation drivers with pain biology demonstrates epigenetic
coordination between cancer progression and nociceptive
signaling for the first time. Further analysis of the 26 genes led to
the construction of a risk scoring model, identifying five key genes:
PSMB8, COL17A1, BICC1, CTRC, and TRIP13. Among them,
PSMB8, an immunoproteasome component, plays a crucial role
in inflammation regulation (Yang et al., 2009; Kitamura et al., 2011).
Abnormal methylation of PSMB8 has been reported in ovarian,
breast, and colorectal cancers (Liew et al., 2018; Siebenkas et al.,
2017; Tian et al., 2022). COL17A1, a member of the collagen family,
exhibits abnormal promoter methylation leading to overexpression
in cervical and epithelial cancers, enhancing tumor invasiveness
(Thangavelu et al., 2016). It has also been identified as a potential
biomarker for PC prognosis (Huang et al., 2022). BICC1, an RNA-
binding protein, influences tumor progression in colon cancer

FIGURE 10
Research mechanism diagram. Abnormal methylation genes in pancreatic cancer cells disrupts the immune system and the homeostasis of the
extracellular matrix, leading to inflammatory tumors compressing nerves and causing inflammatory pain and neuropathic pain. These abnormal
methylation genes also affect the tumor-immune-neural microenvironment through synaptic signaling, resulting in further enhancement of
inflammation, continuous transmission of pain signals, and ultimately persistent and severe cancer pain (Figure was created with BioGDP.com).
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through pathways such as extracellular matrix (ECM) receptor
interaction and focal adhesion (Lv et al., 2020). CTRC
(chymotrypsin C) encodes a protein crucial for regulating the
activation and degradation of trypsinogen and
procarboxypeptidase, protecting the pancreas from pancreatitis
and influencing pain progression in chronic pancreatitis
(Demcsak et al., 2024; Dunbar et al., 2025). TRIP13 encodes a
thyroid hormone receptor-interacting protein, also known as a
hormone-dependent transcription factor, promoting the
progression of pancreatic ductal adenocarcinoma by facilitating
tumor tissue growth and metastasis (Afaq et al., 2024). Based on
the speculation of regulatory mechanisms combining five genetic
features and above, it can be observed that a crucial genetic driver
coordinates the regulation among three parties. PSMB8 affects
neuroinflammation by regulating the activity of
immunoproteasome, while COL17A1 and BICC1 promote the
progression of PNI in tumor cells by regulating matrix
homeostasis and ECM. The disruption of CTRC destabilizes
pancreatic protease, exacerbating substantive nociception, and
TRIP13 may influence related pain progression through
hormonal regulation. The above research results indirectly
suggest that epigenetic dysregulation in PC may be involved in
the regulation of cancer pain by affecting immune reprogramming
and the nervous system. However, further exploration is needed to
determine whether there is a direct connection between epigenetics,
immunology, and neurology. The specific internal relationships and
molecular mechanisms also require more clinical and functional
validation.

In the context of cancer pain, previous studies have
predominantly focused on the regulatory mechanisms of pain
within the nerve conduction pathway, overlooking the role of the
tumor itself and the complex tumor-nerve crosstalk (Xu et al.,
2024a). PC tumors consist of malignant tumor cells, stromal
cells, immune cells, and other extracellular matrix components.
Past research suggests that dynamic remodeling of the tumor
microenvironment is critical to the progression of cancer pain.
During malignant proliferation, mechanical compression of
surrounding tissues by the tumor mass causes injury, and the
release of various inflammatory factors (such as prostaglandins,
interleukins, and tumor necrosis factors) can damage nerve endings,
triggering inflammatory pain (Capodanno and Hirth, 2023).
Metabolites of cancer cells, such as lactic acid, induce local
acidosis and activate ASICs/TRPV1 ion channels (Qian et al.,
2021). Additionally, tumor cells can directly invade nerves,
causing structural damage (Gil et al., 2010). More importantly,
studies have confirmed that tumor-associated macrophages
(TAMs) can activate Schwann cells through the bFGF/PI3K/Akt/
c-myc/GFP pathway. Schwann cells secrete IL-33, recruiting
macrophages into the perineural environment and promoting
their M2 tumor-promoting polarization (Zhang et al., 2024). The
positive feedback loop between the two has a significant impact on
the PNI process in PC, indicating crosstalk between the immune
system and nervous system in the development of cancer pain.
Differential expression analysis of 22 immune cell types in this study
showed that pain risk subtypes are associated with dendritic cell
dysfunction and M0/M1 macrophage imbalance. Immune cell
infiltration and GSVA enrichment scores indicated that MCODE
differentially expressed genes are negatively correlated with various

immunosuppressive cells such as nTregs, neutrophils, and DC cells,
and positively correlated with immune effector cells such as CD8 T,
Tfh, NK, CD4 T, and MAIT. Previous research and analysis results
suggest that the tumor parenchymal microenvironment, rather than
secondary neural effects, regulates PC pain progression through
neuro-immune interactions. However, the epigenetic regulatory
mechanisms involved still require further exploration.

By conducting a WGCNA on the differential genes of different
pain risk subgroups, the cyan module containing 89 differential
genes most relevant to the T staging was obtained. The results from
KEGG suggest that these differential genes are involved in synapse
vesicle recycling, insulin secretion, diabetes, and other pancreas-
related functions. GO analysis revealed that the biological processes
of these differential genes are primarily enriched in signal release,
hormone secretion and transport, and synaptic plasticity regulation.
Synaptic plasticity refers to the dynamic changes in synaptic
transmission efficiency, including long-term potentiation (LTP)
and long-term depression (LTD) (Costenla et al., 2001). In pain
pathways (such as the spinal dorsal horn, thalamus, and cortex), LTP
can lead to hyperalgesia and allodynia by enhancing synaptic
transmission efficiency (Rygh et al., 2002). In chronic pain,
glutamic acid triggers calcium influx through NMDA receptors,
activating downstream signals (such as CaMKII, PKC), inducing
synaptic LTP, and amplifying pain signals (Bliss et al., 2016). The
cellular components andmolecular functions of the cyan module are
mainly enriched in vesicle transport, potassium ion channels, and
related transporter activity regulation. Vesicle transport is
responsible for the synthesis, storage, and release of
neurotransmitters (such as glutamate, substance P, and CGRP)
(Tao et al., 2022). In nerve damage or inflammation,
dysregulation of vesicle transport-related proteins (such as
SNARE complexes, synaptotagmin) leads to excessive release of
glutamate and substance P, enhancing postsynaptic neuronal
excitability (Pan and Rutecki, 2014). CGRP and substance P
participate in neurogenic inflammation through vesicle release,
further activating peripheral and central pain pathways
(Meseguer et al., 2014). Botulinum toxin (BoNT) inhibits vesicle
release by cleaving SNARE proteins and has been used to treat
migraine and neuropathic pain (Vacca et al., 2020). Potassium ion
channels affect the generation and transmission of pain signals by
regulating membrane potential repolarization and neuronal
excitability (Loucif et al., 2018). Thus, it can be seen that gene
expression differences among different pain subtypes are mainly
concentrated in various steps of pain-related signal transmission.It
can be seen that the differentially expressed genes of pain risk
subtypes affect various nodes of pain signal transmission through
dynamic regulation of neurotransmitters and synaptic efficacy
reprogramming. Since differentially expressed genes are also
involved in insulin secretion and diabetes-related pathways, it
suggests to some extent the organ-specific coupling of
neuroendocrine-nociceptive transmission. The above studies
indicate to some extent the potential connection between
epigenetic regulation and tumor-neural crosstalk, and the specific
mechanism is also the focus of further exploration.

Using cytoscope to screenMCODE genes from the cyanmodule,
eight most significant pain-related differential genes were identified,
namely, PTPRN2, CPE, SNAP25, ABCC8, PTPRN, CHGB, SCG5,
and PCSK2. TIMER analysis revealed that the expression levels of
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these genes in PC are mostly negatively correlated with tumor
purity, indicating high expression in the tumor
microenvironment. However, PTPRN2 showed a positive
correlation with tumor purity, suggesting relatively higher
expression in the tumor. Therefore, the GSM6567159 PC
immune landscape dataset and the GSM5236520 human spinal
cord dataset were selected for single-cell analysis of MCODE
genes. Among them, PTPRN2 encodes a protein tyrosine
phosphatase receptor expressed in endocrine and neuronal cells
(Sorokin et al., 2015), playing a role in exocytosis and affecting
synaptic plasticity in neurons (Jiang et al., 1998). The single-cell
analysis in this study found that PTPRN2 is distributed in pancreatic
delta cells and mesenchymal cells, while in the spinal cord, it is
evenly distributed in astrocytes, neurons, and stem cells. Immune
cell function analysis suggested a positive correlation between
PTPRN2 expression levels and various cells such as B cells, CD8+

T cells, and CD4+ T cells in PC. In high pain risk subtypes,
PTPRN2 expression levels decrease, leading to reduced cellular
immune function. CPE encodes an enzyme widely present in
neuroendocrine cells, playing a key role in the processing of
peptides and hormones. Studies suggest that CPE can promote
the entry of eosinophil cationic protein into neuroendocrine cells
(Wu et al., 2004). In the pancreas, CPE may be involved in the post-
processing of hormones such as insulin and glucagon, closely related
to pancreatic function (Chen et al., 2023). Single-cell analysis of the
pancreas showed that CPE is abundantly distributed in pancreatic
Alpha and Beta cells, as well as in astrocytes, neurons, and stem cells.
In high pain risk subtypes, CPE expression levels decrease, positively
correlating with the function of various immune cells such as B cells,
CD8+ T cells, and CD4+ T cells, leading to reduced cellular immune
function. Studies have found that SNAP25 increases the release of
excitatory neurotransmitters (such as glutamic acid) in the dorsal
horn of the spinal cord through presynaptic mechanisms, potentially
leading to an imbalance of excitatory/inhibitory neurotransmitters,
thus mediating the development of neuropathic pain (Tafoya et al.,
2006). In this study, SNAP25 is less distributed in PC, mainly in
neuronal cells, positively correlating with immune cell function. The
ABCC8 gene encodes the SUR1 subunit of the ATP-sensitive K+
channel (KATP) in pancreatic beta cells. Mutations in this channel
can lead to congenital hyperinsulinism (CHI), a disease associated
with excessive or unregulated insulin secretion. Although it does not
directly cause pain, it may have indirect links to the physiological
functions of the pancreas and related pain states (Gloyn et al., 2003).
Single-cell analysis showed less distribution of ABCC8 in pancreatic
tissue and neurons. In high pain risk subtypes, ABCC8 expression
levels decrease, positively correlating with the function of various
immune cells such as B cells, CD8+ T cells, and CD4+ T cells, leading
to reduced cellular immune function. PTPRN is a receptor-type
tyrosine phosphatase primarily involved in regulating secretory
granule control in neuroendocrine cells and islet beta cells,
affecting the release of hormones (such as insulin) and
neurotransmitters (Harash et al., 2012) Chromogranin B (CHGB)
is a marker protein of secretory granules, involved in regulating the
storage, processing, and release of neuropeptides and
catecholamines (Fung et al., 2008) SCG5 is a key component of
secretory granules, involved in regulating the processing and
secretion of neuropeptides and hormonesPC (Avgan et al., 2023)
SK2 is responsible for cleaving inactive precursor proteins (such as

neuropeptide precursors) into active forms (such as endorphin,
proinsulin)ese (Podvin et al., 2018) four gene-encoded proteins
all play a role in the production and transmission of
neurotransmitters. Single-cell analysis revealed that PTPRN and
SCG5 are distributed in pancreatic beta cells, while the expression of
CHGB and PCSK2 is relatively low. In spinal cord tissue, PTPRN
expression is low, while CHGB, SCG5, and PCSK2 are all enriched in
neuronal cells. TIMER immune infiltration analysis showed that
these genes regulate cellular immune function through the tumor
microenvironment. Thus, it can be inferred that in the risk
subgroups of pain-related MDGs in PC, differential gene
expression primarily regulates neurotransmitter processing and
transmission steps in neural signals through the tumor
microenvironment, further confirming the mutual crosstalk
between tumor and nerves.Immune function and single-cell
resolution reveal that PC pain-related MCODE genes constitute
neurotransmitter processing hubs that mediate immune-neural
interactions through the tumor microenvironment. Among them,
PTPRN2/CPE/SCG5/PCSK2 regulate immune function based on
the neuroendocrine system, SNAP25/CHGB/PTPRN affect neural
signaling based on synaptic signal transmission, and
ABCC8 indirectly participates in pain regulation based on the
physiological characteristics of ion channels. This study proposes
for the first time at the single-cell level that tumor epigenetics hijack
both neuroendocrine and immune systems by affecting the
microenvironment, leading to the development and progression
of cancer pain. It focuses on pancreatic parenchymal damage rather
than nerve transmission as the key to PC pain, providing a new
perspective for the mechanistic study of cancer pain.

The current clinical research progress has indirectly validated
the “DNA methylation-immunity-neuro” interaction model
speculated in this study to some extent. This is specifically
manifested in the combined therapy of DNA methyltransferase
inhibitors (DNMTi) and immune checkpoint inhibitors (ICI), as
well as analgesic research on drugs targeting MCODE genes. Studies
have found that DNMTi can reverse tumor immunosuppression by
reactivating antitumor immune signals or reshaping the expression
of immune checkpoints. In ovarian cancer, Peng et al. discovered
that DNMTi enhances the therapeutic effect of anti-PD-L1 by
reactivating Th1-type chemokines and increasing T-cell
infiltration (Peng et al., 2015). La ure Ricard et al. treated nine
patients with relapsed/refractory Angioimmunoblastic T-cell
lymphoma (AITL) using a combination of 5-azacytidine (one of
the DNMTi) and nivolumab (anti-PD-1 checkpoint blockers). The
overall response rate reached 78% with reduced chemotherapy
toxicity (Ricard et al., 2024). In breast cancer, combined therapy
with PD-1 antibodies and guadecitabine (one of the DNMTi) can
enhance MHC-I expression and increase CD8 T-cell infiltration in
TME, thereby enhancing the therapeutic effect of PD-1 antibodies
(Luo et al., 2018). In mouse models of melanoma, colorectal, breast,
and ovarian tumors, the combined treatment of DNMTis and anti-
CTLA-4 ICI can extend survival to some extent (Guo et al., 2023). Cl
inical drug research on MCODE genes has found that potassium
channel openers such as retigabin and flupirtine are effective in
treating neuropathic pain caused by nerve ligation models,
inflammatory pain caused by formaldehyde, and visceral pain
caused by capsaicin (Busserolles et al., 2016). Perineural injection
of botulinum toxin type A (pBONT-A) targeting SNAP25 under
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ultrasound guidance can alleviate pain associated with PC nerve
infiltration (Meyer-Frießem et al., 2019).

Through bioinformatics analysis, this study proposes an
innovative regulatory framework: There is a significant correlation
between DNA methylation changes in PC pain, the progression of
PNI, and the remodeling of the immune microenvironment. At the
mechanistic level, it has been found that methylated driver genes are
associated with pathological processes such as neural plasticity and
immunosuppression, suggesting that epigenetic reprogramming may
participate in the pathogenesis of pain through PNI-related nerve
damage and immune remodeling. However, the causal relationship
between the two still needs experimental verification. The constructed
“epigenetic-immune-neural” three-dimensional network provides a
testable hypothesis for subsequent mechanistic studies. However,
there are several limitations to this study: Firstly, studies based on
public datasets have insufficient sample diversity and lack multi-
center validation. Secondly, the lack of in vivo models prevents the
analysis of the spatiotemporal dynamics of pain signals. Finally, the
discovery of correlation has not been verified through functional
experiments, and the specific molecular mechanism cannot be
clarified. Future research should focus on establishing an in situ
PC model for neural epigenome editing, tracking the dynamic
evolution of methylation during the PNI process, and determining
the proportional weight of immune and neural contributions to the
pain phenotype.
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