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Introduction: Lichens are globally distributed symbiotic organisms comprising
fungi (mycobionts) and photosynthetic partners (photobionts), with exceptional
adaptability to extreme environments. Despite growing interest in lichen
symbiosis, chloroplast genome data for photobionts remain scarce, hindering
insights into symbiotic coevolution and genomic architecture.

Methods: To address this gap, we characterized the chloroplast genome of
Chloroidium sp. W5, a photobiont of the lichen Peltigera elisabethae, using next-
generation sequencing. The circular genome (190,579 bp) was assembled and
annotated using a combination of bioinformatics tools, including GetOrganelle
for genome assembly andGeSeq for annotation.We conducted a comprehensive
analysis of the genome’s structure, gene content, and repetitive elements. Codon
usage patterns were assessed using MEGA 11, and phylogenetic relationships
were inferred using maximum likelihood analysis with IQ-tree.

Results: The circular genome (190,579 bp) lacks the canonical quadripartite
structure (LSC/IR/SSC) and exhibits a strong AT bias (56.1%). Annotation
identified 110 functional genes, including 79 protein-coding genes, 28 tRNAs,
and 3 rRNAs. Repetitive sequence analysis revealed 5,000 dispersed repeats
(2.62% of the genome), predominantly forward and palindromic types, with SSR
loci showing a significant A/T preference. Codon usage analysis demonstrated a
pronounced bias toward A/U-ending codons (RSCU > 1), suggesting translational
adaptation to symbiotic nutrient constraints. Phylogenetic reconstruction
robustly placed Chloroidium sp. W5 within the Watanabeales clade (ML =
100), while synteny analysis revealed extensive genomic rearrangements
compared to close relatives.

Discussion: These findings enrich the chloroplast genome database for lichen
photobionts, shedding light on symbiosis-driven genomic plasticity and providing
a foundation for studying host-photobiont coevolution and lichen ecological
adaptation.
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Introduction

Lichens represent a paradigmatic case of symbiosis involving
heterotrophic fungi (mycobionts) and a population of compatible
photoautotrophic microorganisms (photobionts), such as algae
(phycobionts) and/or cyanobacteria (cyanobionts) (Garrido-
Benavent and Pérez-Ortega, 2017). They are extremely
ecologically adaptable and widespread in extreme environments
such as deserts, polar regions and high mountains (Nash, 1996).
As ‘pioneer species’ in the ecosystem, lichens play an irreplaceable
role in soil formation, carbon and nitrogen cycling, and
biogeochemical processes (Honegger, 2001). Historically viewed
as rigid binary partnerships between fungi and photosynthetic
organisms (algae/cyanobacteria) (Schwendener, 1869), lichens are
now understood to thrive through dynamic, diverse symbioses
rather than fixed species-specific interactions. Lichen-forming
fungi have the capacity to bind to a broad spectrum of genotypes
or species of photosynthetic partners, thus deviating from
established binding patterns (Allen and Lendemer, 2022). Lichen
algae may look and behave quite differently in symbiosis with
different lichen-forming fungi, in the free-living condition in
nature and in aposymbiotic laboratory culture (Ahmadjian, 1967;
Bubrick, 1988; Sanders and Masumoto, 2021). All this has hindered
progress in clarifying their identities, phylogenies and life histories.
Schwendener (1869) was the first to survey lichen ‘gonidia’ in a
phycological context, recognizing them as organisms distinct from
the surrounding fungus that correspond to known taxa of free living
algae. Although there has been much research on the genetic
characteristics of symbiotic fungi (Grube and Berg, 2009; Resl
et al., 2022; Cometto et al., 2024), the composition and
evolutionary mechanism of the chloroplast genome of symbiotic
algae is still poorly understood (Spribille et al., 2022), which severely
limits the in-depth analysis of lichen taxonomic relationships, host-
symbiont co-evolution and ecological adaptation mechanisms.

The chloroplast genome (cpDNA), a circular double-stranded
DNAmolecule maintaining autonomous replication within plastids,
contains genes critical for photosynthesis and organellar gene
expression. Its structural evolution - particularly in gene content,
repetitive elements, and nucleotide composition - reflects adaptive
responses to environmental pressures (Howe et al., 2003; Spribille
et al., 2022). Green algae (divisions Charophyta and Chlorophyta)
serve as essential photosynthetic partners in lichen symbioses.
Among these, members of the Trebouxiophyceae, Ulvophyceae,
and Chlorophyceae classes (Chlorophyta) are particularly
prominent as photobionts (Leliaert et al., 2012). Molecular data
indicate the presence of numerous putative cryptic species within
the green algae genus (e.g., approximately 30 cryptosporidia have
been identified within Trebouxia, far exceeding traditional
classifications) (Leavitt et al., 2015). A significant impediment to
the advancement of lichen symbiotic algae research is the
significantly constrained availability of axenic cultures for study,
a constraint that stems primarily from the technical challenges in
isolating and culturing these organisms, which has resulted in an
extremely limited pool of viable research strains (Muggia et al.,
2020). The existing genome sequencing efforts for symbiotic algae
show pronounced taxonomic skewness, with overrepresentation of
model species like Trebouxia sp. DW1 (Wang et al., 2022) at the
expense of broader phylogenetic coverage. This limitation becomes

particularly salient given recent molecular evidence uncovering
widespread cryptic diversity in chlorophytic symbionts. In
Trebouxia alone, phylogenetic analyses have detected around
30 evolutionarily distinct lineages that defy differentiation
through classical taxonomic criteria (Leavitt et al., 2015),
suggesting current biodiversity assessments may significantly
underestimate true species richness. Genomic analyses of
individual strains enable precise delineation of genetic
boundaries, thus confirming the independent evolutionary origins
ofAsterochloris and Trebouxia. This provides molecular evidence for
revising the classification system of lichen photosynthetic symbionts
and resolving long-standing morphological confusions (Sanders and
Masumoto, 2021). Recent studies have revealed that lichen
symbiotic algal plastid genome evolution is characterised by
significant symbiosis specificity. In considering the
Trebouxiophyceae taxon, Puginier et al. (2024) determined that
symbiotic algae have acquired the glycoside hydrolase 8 (GH8) gene
via horizontal gene transfer (HGT). This gene encodes an enzyme
capable of specifically degrading β-1,3/1,4-glucans (e.g., lichenin) in
the cell walls of lichen-fungal symbionts (LFS). This molecular
mechanism directly contributes to the formation of the symbiotic
interface. It is imperative to note that Iha et al. (2021) demonstrated
that the chloroplast genome of the lichen symbiotic microalgae
Trebouxia exhibits distinctive features of structural remodelling.
Specifically, its inverted repeat sequences (IRs) undergo a significant
shortening, while key ribosomal protein genes (e.g., rps4) shift to the
nuclear genome. This reorganisation of gene functions may enhance
symbiotic adaptation by optimising nucleoplasmic co-regulatory
mechanisms.

In a comparative genomics study, Lemieux et al. (2014) found
that Coccomyxa subellipsoidea in the free-living state maintains an
intact quadripartite plastid genome structure (IR/LSC/SSC), with a
genome size of 160–180 kb encoding about 100–110 genes,
including a complete cluster of photosynthesis-related genes
(PSA, PSB, etc.), ribosomal RNA (rrn) and transfer RNA (trn)
genes. In contrast, the symbiotic Coccomyxa viridis studied by
Muggia et al. (2020) exhibited partial or complete loss of the IR
region, a phenomenon that may be related to genomic reduction due
to symbiotic selection pressure exerted by the host fungus. A
comparative analysis by Wang et al. (2022) revealed that the
Coccomyxa chloroplast genome exhibited a higher functional
gene conservation, particularly concerning key functional genes
involved in carbon fixation (rbcL) and photosystem II assembly
(psbA), in comparison to the symbiotic Trebouxia. This observation
was corroborated by Sanders and Masumoto (2021). This
discrepancy may be indicative of the distinct metabolic plasticity
exhibited by Coccomyxa in its free-living and symbiotic states.

Peltigera Willd. is one of the earliest lichen genera described
(Willdenow, 1787). Subsequent studies have shown that there are
two different types of symbionts within the Peltigera: (1) a binary
symbiosis consisting of a cyanobacterium (e.g., Nostoc) and a fungus
(2) a green alga (e.g., Coccomyxa); as the main photosynthetic
symbiont (Miadlikowska et al., 2000). Previous research has
mainly focused on traditional taxonomy, mitochondrial genome
analysis and biological activity and component synergy (Wei et al.,
2009). Traditional classification of lichen symbionts has primarily
relied on morphological characteristics and short molecular markers
(e.g., ITS, rbcL) (Howe et al., 2003; Wei et al., 2009; Guo et al., 2021;
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Resl et al., 2022; Spribille et al., 2022; Pushpavathi and
Krishnamurthy, 2024; Cometto et al., 2024; Li et al., 2025a).
However, these approaches frequently result in ambiguous
species delimitation due to phenotypic plasticity and high
sequence conservation among closely related taxa (Armaleo et al.,
2019). Recent advances in genomic sequencing have provided new
taxonomic insights, exemplified by the complete chloroplast DNA
(cpDNA) assembly of Trebouxia sp. TR9, isolated from the lichen
Ramalina farinacea (Martínez-Alberola et al., 2020). Comparative
genomic analyses of this strain with other Trebouxiophyceae species
have demonstrated the utility of whole-organelle genomes in
refining lichen systematics. Building upon these findings, our
laboratory successfully sequenced and assembled the complete
cpDNA of Trebouxia sp. DW1, a photobiont isolated from
Peltigera rufescens, and conducted comparative genomic analyses
with related Trebouxiophyceae species (Wang et al., 2022).

In this study, the green alga symbiont (Chloroidium sp. W5) of
P. elisabethae was selected as the study subject, and the following
work was systematically carried out: (1) Chloroplast genome
composition analysis: high-throughput sequencing and
comparative genomics were used to reveal the structural
characteristics of the symbiotic algae chloroplast genome (such as
gene content, repetitive sequence distribution and GC content) and
to identify specific variations driven by the symbiotic environment.
(2) Repetitive sequence analysis: This analysis reveals the dynamics
of the Chloroidium sp. W5 genome structure and provides
important clues for studying coevolutionary mechanisms in
lichen symbiotic systems. (3) Codon preference analysis: The
codon usage preference of Chloroidium sp. W5 was calculated.
By analysing the frequency of codon usage, it reflects the
evolutionary pressure and adaptive changes of the chloroplast
genome. (4) Synteny Analysis: Revealing the conserved and
dynamically evolving features of Chloroidium sp. W5 genomic
structure and emphasizing the relevance of its structural
rearrangement to symbiotic adaptation through synteny analysis.
(5) Phylogenetic reconstruction and taxonomic determination: A
highly supported phylogenetic tree was reconstructed using both
whole-genome and chloroplast genomic data from
18 Trebouxiophycean species. Here, we discuss the structure,
organization, gene content of Chloroidium, a common terrestrial
coccoid green alga, and comparison analysis with other chloroplast
genomes reported for Trebouxiophyceae. We also provide a fairly
resolved phylogenetic reconstruction on the basis of well-conserved
chloroplast genes coding for proteins. It is evident that the study
methodology can be applied to non-model lichen symbionts.

Materials and methods

Sample collection and identification

In this study, specimens of Peltigera elisabethae Gyeln. were
collected from Xinjiang, Northwest China. Detailed species
information is provided in Supplementary Table 1. All voucher
specimens were deposited in the Herbarium of the College of Life
Science and Technology, Xinjiang University (XJU). Species
identification was conducted using an integrative approach
combining morphological, anatomical, and chemical analyses: (1)

Thallus shape, color, and upper surface texture were examined
under a dissecting microscope. Specialized structures—including
cephalodia (soredia, isidia, tomentum), vein morphology
(cephalodia, isidia, sorelia, tomentum, rhizine characteristics),
and apothecial features (size, color, shape)— were recorded. (2)
Photobiont analysis: The photobiont type (green algae or
cyanobacteria), distribution, cell morphology, and dimensions
were observed using a stereoscopic microscope.

Phycobiont isolation and culture conditions

Three replicate samples (ca. 1 cm2) were collected from a single
P. elisabethae specimen. Each sample was processed as follows: (1)
rehydration in sterile water for ≥30 min, (2) surface sterilization
through 2-3 sterile water rinses, and (3) homogenization in
1,000 μL sterile water using an autoclaved mortar in a laminar
flow hood until complete fragmentation. Microscopic examination
(10 μL aliquot) confirmed algal cell debris presence.
Approximately 50–100 μL of homogenate was cultured on BGII
solid medium (Hopebio HB8793) via spread-plate method under
controlled conditions (20°C, 12/12 h light/dark cycle, 3,000 lux
illumination) using Illuminated Incubator (Ningbo Jiangnan
Instrument Factory, model RXZ-436). Initial microcolonies
emerged after 10 days, developing visible colonies within
15–20 days. Pure cultures were obtained through successive
streak-plate isolation on BGII medium. The isolated
Chloroidium sp. W5 strains exhibited slow growth, requiring
30–40 days cultivation for experimental use, with concurrent
strain preservation. Cultivation maintained the original light
regime and medium composition throughout subculturing.
Whole-genome sequencing (WGS) of the purified target strain
Chloroidium sp. W5 was subsequently performed using the
DNBSEQ sequencing platform (Shenzhen, China).

Chloroplast genome assembly and
annotation

The chloroplast genome of Chloroidium sp. W5 was assembled
using GetOrganelle V1.7.4.1 (Jin et al., 2020) followed by genome
annotation using the web-based platform GeSeq V2.03 (Tillich et al.,
2017) with default parameters. The annotation results were
manually refined to verify gene boundaries, intron-exon
structures, and functional assignments using Geneious V2022.1.1
(Kearse et al., 2012). A circular genome map was generated using
OGDRAW V1.3.1 (Lohse et al., 2007) (https://chlorobox.mpimp-
golm.mpg.de/OGDraw.html), and further optimized for visual
clarity using vector graphic editing software.

Repetitive sequence analysis

This study characterized repetitive elements in the Chloroidium
sp. W5, focusing on four distinct categories: interspersed repeats,
tandem repeats, simple sequence repeats (SSRs), and dispersed
duplications. Tandem repeat detection was performed through
Tandem Repeats Finder V4.09 (Benson, 1999) using parameters
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optimized for plastid genomes: alignment weights 2/7/7 (match/
mismatch/indel) and minimum alignment score 50. Interspersed
repeats were identified using REPuter (Kurtz et al., 2001) with
Hamming distance 3, maximum length 5,000 bp, and minimum
size 30 bp. SSRs were detected through MISA V2.1 (Beier et al.,
2017) with motif thresholds set as follows: mono- (≥10), di- (≥5), tri-
(≥4), tetra- (≥3), penta- (≥3), and hexanucleotide (≥3) repeats. All
identified repeats were mapped to coding and non-coding regions
using TBtools V2.018 (Chen et al., 2020) with manual verification of
repeat boundaries against annotated gene features.

Codon usage analysis

Codon usage patterns and interspecific divergence in
Chloroidium sp. W5 chloroplast genomes were analyzed
through synonymous codon preference assessment of
conserved CDSs. The CDSs were systematically extracted
using PhyloSuite V1.2.2 (Zhang et al., 2020) with stringent
filtering including removal of pseudogenes and truncated
ORFs, exclusion of RNA-coding genes, and retention of
sequences ≥300 bp to ensure statistical reliability. Relative

FIGURE 1
Circular maps of Chloroidium sp. W5 chloroplast genome. Genes with different functions are represented by different colors. The genes inside the
circle are on the direct strand, and the genes outside the circle are on the reverse strand.
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synonymous codon usage (RSCU) values were then calculated in
MEGA 11 (Tamura et al., 2021) following standard codon
normalization protocols.

Synteny analysis

The Chloroidium sp. W5 chloroplast genome obtained in this
study was analysed for covariance with three chloroplast genomes
from the family Coleoptera (Chloroidium sp.; Polulichloris maxima;
Kalinella pachyderma). The covariance analysis was performed
using Mauve V2.4.0 (Darling et al., 2004).

Phylogenetic analysis

Phylogenetic analysis was performed using Chloroidium
sp. W5 and 18 related sequences from GenBank (Supplementary
Table 2), with Schizomeris leibleinii and Stigeoclonium helveticum as
outgroups. PCGs were extracted using Phylosuite V1.2.3 (Zhang
et al., 2020), aligned with MAFFT V7.475 (Katoh et al., 2019), and
concatenated using Sequence Matrix (Vaidya et al., 2011). The
optimal evolutionary model was determined, and maximum
likelihood (ML) analysis was conducted with IQ-tree V1.6.8
(Nguyen et al., 2015). The resulting phylogenetic tree was
visualized using FigTree V1.4.3.

FIGURE 2
The repeated distributionmap ofChloroidium sp. W5 chloroplast genome. Each circle from inside to outside represents: Interspersed repeats (black
represents Forward, blue represents Palindromic); SSRs; Tandem repeats.
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Results

Features of the newly assembled
Chloroidium sp. W5 chloroplast genome

The complete chloroplast genome sequence of Chloroidium
sp. W5 has been deposited in GenBank under accession number
PV414516. This circular DNA molecule measures 190,579 bp in
length (Figure 1), lacking the typical quadripartite chloroplast
structure characterized by the absence of a large single copy
region (LSC), small single copy region (SSC), and inverted repeat
regions (IR). The nucleotide composition of the genome is as
follows: A 53,653 (28.1%), C 41,483 (21.8%), G 42,288 (22.2%),
and T 53,155 (27.9%). A total of 110 coding genes were annotated in
the chloroplast genome, including 79 protein-coding genes,
28 tRNA genes, and 3 rRNA genes (Supplementary Table 3).

Repetitive element analysis

A systematic analysis of repeat sequences in the chloroplast
genome of Chloroidium sp. W5 (Figure 2) revealed significant
characteristics of dispersed repeats. A total of 5,000 dispersed
repeats were identified, accounting for 2.62% of the total genome
length. The length distribution of these repeats spanned a wide
range, from 98 bp to 190,313 bp, with the longest repeats located in
two regions: 189,385 bp–189,650 bp (265 bp) and

190,313 bp–190,578 bp (265 bp). In terms of repeat type
distribution, forward repeats (F, 2,448) and palindromic repeats
(P, 2,552) were the predominant forms, while complementary
repeats (C) and reverse repeats (R) were not detected. Analysis of
SSRs using MISA software identified 40 SSRs loci in the genome,
with lengths ranging from 10 to 20 bp. Among these,
mononucleotide repeats were the most abundant (22, 55%),
followed by hexanucleotide repeats (6), while tri-, tetra-, and
pentanucleotide repeats were each detected twice (2). Combined
with the genomic base composition characteristics (Supplementary
Tables 4, 5), the chloroplast genome of Chloroidium
sp. W5 exhibited a significantly higher AT content compared to
GC content, which explains the pronounced preference for A/T
bases in SSR loci. Further analysis of tandem repeats identified
24 tandem repeat loci in the Chloroidium sp. W5 genome. Notably,
significant T-base enrichment was observed in specific regions, such
as 49,182 bp–49,218 bp (72% T content) and 124,167 bp–124,197 bp
(51% T content).

Codon usage analysis

Analysis of the relative synonymous codon usage (RSCU) across
the entire chloroplast genome of Chloroidium sp. W5 (Figure 3)
revealed that the coding sequences comprise 64 codons, encoding
20 amino acids. Codon usage analysis indicated that leucine (Leu),
serine (Ser), and arginine (Arg) are each encoded by six codons,

FIGURE 3
Codon usage analysis of Chloroidium sp. W5 chloroplast genome. The X-axis comprises the 20 standard amino acids that encode the protein, and
the encoding codon is featured below each amino acid. The Y-axis is the frequency of codon usage.
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whereas methionine (Met) and tryptophan (Trp) are encoded by
only one codon. Among these, the codon UUA, encoding leucine
(Leu), exhibited the highest usage frequency. Within the

Chloroidium sp. W5 chloroplast genome, 28 codons had an
RSCU value ≥ 1, all of which ended with A/U, demonstrating a
pronounced A/U bias (Supplementary Table 6).

FIGURE 4
Comparative chloroplast genome rearrangement analysis of the 4 Watanabeales species (Chloroidium sp.; Polulichloris maxima; Kalinella
pachyderma; Chloroidium sp. W5) using Mauve. Homologous regions between different species were represented by the same color blocks. Species in
this study are shown in bold.

FIGURE 5
The phylogenetic tree of 18 species of Trebouxiophyceae and Chlorophyceae based on the PCGs.
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Synteny analysis

Colinearity analysis (Figure 4) reveals the degree of conservation
and dynamic evolution of chromosome structure during species
evolution by systematically comparing the linear arrangement
characteristics of homologous sequences between genomes of
different species. In the visualisation of covariance mapping,
different colour blocks usually correspond to specific nucleotide
conserved regions or amino acid functional domains, and the
change in their colour gradient intuitively reflects the degree of
sequence homology attenuation. It is noteworthy that the genomic
covariance pattern of Chloroidium sp. W5 shows a remarkable
specificity: The homologous regions of this species not only
frequently break and recombine, but also form a highly complex
network of topological connectivity with neighbouring species. This
disordered covariance suggests that the genome may have undergone
large-scale structural remodelling during its evolutionary history,
including but not limited to asymmetric insertions/deletions of
chromosomal segments, multilocus inversions and
transchromosomal translocations. These cumulative genomic
changes led to significant divergence in gene arrangement. This
provides molecular evidence for its unique evolutionary pathway.

Phylogenetic analysis

Phylogenetic analysis of the chloroplast genome sequences was
performed using the maximum likelihood method (Figure 5), which
demonstrated that Chloroidium sp. W5 forms a highly supported
sister branch (ML = 100) with the congeneric species Chloroidium
sp. This finding is consistent with the results of previous
phylogenetic studies based on multiple loci (Darienko et al.,
2015), thereby providing further confirmation of the taxonomic
status of the strain. The construction of a phylogenetic tree reveals
that species belonging to the order Watanabeales form a
monophyletic group (ML = 100), thereby substantiating the
phylogenetic independence of this taxonomic group. It is
noteworthy that Chloroidium sp. W5 branches farther away from
Chlorella vulgaris and has significant phylogenetic isolation (ML =
99), a result that is consistent with recent studies on the revision of
the phylogenetic classification of the family Chlorellaceae (Bock
et al., 2011), confirming that the two belong to different taxonomic
units. Furthermore, the phylogenetic topology demonstrates a
moderately supported phylogenetic relationship between the
Prasiolales + Trebouxiales branch and the order Microthamniales
(ML = 83), suggesting that these taxa may share a common
evolutionary origin. This finding, which indicates a common
evolutionary origin for these taxa, echoes the results of recent
molecular clock studies on the differentiation of early green algae
(Fučíková et al., 2014). Additionally, support values for all branch
nodes in the phylogenetic tree are labeled above the corresponding
branches, with bootstrap values exceeding 50%.

Discussion

Chloroidium sp. W5, the photosynthetic symbiont of the lichen P.
elisabethae, exhibits several remarkable chloroplast genomic features

that provide novel insights into the evolutionary adaptation
mechanisms of lichenized algae. The absence of the canonical
quadripartite structure (LSC/SSC/IR) in this chloroplast genome is
particularly noteworthy. This structural simplification aligns with
observations in other symbiotic algae such as Trebouxia and
Coccomyxa (Poquita-Du et al., 2024), suggesting potential adaptive
advantages in symbiotic systems. The loss of inverted repeats (IRs),
known to maintain chloroplast genome stability (Turmel et al., 2017),
may indicate relaxed selective pressures in the protected symbiotic
environment. Similar genome reduction patterns have been
documented in other obligate symbionts (Smith and Keeling,
2015), supporting the hypothesis that symbiotic lifestyles promote
genomic streamlining. In this study, comparative genomics analysis
revealed significant genomic rearrangements in the chloroplast
genome of Chloroidium sp. W5, including multiple types of
structural variants such as inversions, deletions, insertions and
duplications. These rearrangement events may affect gene function
through multiple mechanisms. First, structural variants may alter
promoter regions, particularly due to the absence of the typical
chloroplast tetrameric structure (LSC/IR/SSC) in this species, which
could significantly impact transcription initiation efficiency and gene
expression levels (Daniell et al., 2016). Second, gene rearrangements
may lead to the loss of gene function or the acquisition of novel
functions, a phenomenon previously reported in chloroplast genome
studies of other plants (Jansen and Ruhlman, 2012). Notably, the
present study found that the chloroplast genome of Chloroidium
sp. W5 contains a high abundance of repetitive sequences and SSR
sites. These repetitive elements may promote genomic rearrangement
through homologous recombinationmechanisms (Wicke et al., 2011),
which in turn affects gene function. From an evolutionary perspective,
the stability of the chloroplast genome is critical for maintaining the
stability of endosymbiotic relationships. Our results suggest that
genome rearrangements may disrupt this stability, which in turn
affects the symbiotic interface between chloroplasts and host cells,
particularly in terms of the efficiency of material and energy exchange
(Smith and Keeling, 2015). Of particular interest, the abundance of
scattered repeat sequences in the Chloroidium sp. W5 genome may
provide a genetic basis for the adaptation of this species to extreme
environments by promoting genomic variation. This finding echoes
the results of Chumley et al. (2006) in Pelargonium x hortorum,
suggesting that repetitive sequence-mediated genome rearrangement
may be an important mechanism for plant adaptation to
environmental stress. Therefore, we hypothesize that the genomic
plasticity feature observed in Chloroidium sp. W5 may be one of the
key factors for its ability to survive in extreme environments. Tuller
et al. (2010) demonstrated that in systems where there is high
expression, such as in bacteria and yeast, natural selection tends to
optimise codon usage patterns. This means that highly expressed
genes tend to use the optimal codons (especially A/U ending-type
codons) that match the host tRNA library. This minimises ribosomal
stalling during translation and increases the efficiency of protein
synthesis. It is noteworthy that the Chloroidium sp. W5 chloroplast
genome exhibited a significant A/U-type codon preference (RSCU >
1) in this study, a finding that is highly consistent with the theoretical
predictions of Tuller et al. (2010). Moreover, this codon preference
demonstrated a synergistic evolutionary pattern with the significantly
high AT content (56.1%) characterising this genome, strongly
suggesting that this may be a genome-level adaptive strategy
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developed during the long-term adaptation of the lichen symbiosis
system. This adaptive evolution may be achieved through the following
mechanisms: (1) optimising the translation efficiency of
photosynthesis-related genes to adapt to the symbiotic environment;
and (2) reducing energy consumption to cope with the nutrient-limited
conditions typical of lichen symbionts. In the present study, the
chloroplast genomes of Chloroidium sp. W5 were compared with
those of extremophilic red algae. The results demonstrated structural
simplification (IR loss, gene reduction), repetitive sequence expansion,
and functional gene specialisation. However, the adaptive mechanisms
differed between the two groups. Symbiotic algae rely on host
interactions and maintain symbiotic efficiency through codon
optimisation and genome plasticity. In contrast, extremophilic algae
respond directly to physical stresses (e.g., retention of heat- and salt-
tolerance genes). Collectively, these findings lend support to the
hypothesis that environmental stresses drive adaptive genome
evolution, and they provide molecular evidence for understanding
the evolutionary strategies of organisms in extreme or symbiotic
environments.

Phylogenetic reconstructions based on chloroplast gene
sequences have contributed to resolve deep level relationships
within the Trebouxiophyceae (Lemieux et al., 2014).
Phylogenomic analysis definitively placed Chloroidium
sp. W5 within the Watanabeales clade, resolving previous
taxonomic uncertainties (Darienko et al., 2015). Its distant
relationship with Chlorella species supports recent revisions in
Trebouxiophyceae classification (Bock et al., 2011). The
moderately supported relationship between Watanabeales and the
Prasiolales + Trebouxiales clade suggests these taxa may share
ancestral adaptive features for symbiotic lifestyles (Wang et al.,
2022). Synteny analysis (Figure 4) revealed extensive genomic
rearrangements, indicating a dynamic evolutionary history for
Chloroidium sp. W5. These structural variations may represent
adaptive responses to the symbiotic environment, with similar
patterns reported during niche specialization in other algal
lineages (Leliaert et al., 2012). These findings confirm that lichen
symbiosis imposes unique evolutionary pressures on chloroplast
genomes, driving: (i) structural simplification through gene loss and
relocation; (ii) genomic plasticity via repeat expansion; and (iii)
nucleotide-level adaptation in codon usage and base composition.
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