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Topologically associating domains (TADs) uncovered on bulk Hi-C data are
regarded as fundamental building blocks of a three-dimensional genome, and
they are believed to effectively participate in the regulatory programs of gene
expression. The computational analysis of TADs on single-cell Hi-C (scHi-C) data
in the era of single-cell transcriptomics has received continuous attention since it
may provide information beyond that on bulk Hi-C data. Unfortunately, the
contact matrix for a single cell is ultra-sparse due to the low sequencing
depth. Coupled with noises, artifacts, and dropout events from experiments,
as well as cell heterogeneity caused by the cell cycle and transcription status, the
computational analysis of TAD structures at the single-cell level has encountered
some challenges not encountered at the bulk level. Herein, conduct a survey of
bioinformatic tools and applications for TAD structures at the single-cell level in
the light of artificial intelligence, including imputation of scHi-C data,
identification of TAD boundaries and hierarchy, and differential analysis of TAD
structures. The categories, characteristics, and evolutions of the latest available
methods are summarized, especially the artificial intelligence strategies involved
in these issues. This is followed by a discussion on why deep neural networks are
attractive when discovering complex patterns from scHi-C data with an
enormous number of cells and how it promotes the computational analysis of
TADs at the single-cell level. Furthermore, the challenges that may be
encountered in the analysis are outlined, and an outlook on the emerging
trends in the near future is presented cautiously.
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1 Introduction

1.1 What are topologically
associating domains?

Topologically associating domains (TADs) are chromatin
regions that show a high degree of self-interactions between loci
within the domains and a low degree of interactions with loci outside
the domains, even if they are a similar distance away (Dixon et al.,
2012; Bonev and Cavalli, 2016). The TAD structures were
discovered in 2012 (Dixon et al., 2012) with the help of the high-
throughput chromosome conformation capture (Hi-C) technology
(Lieberman-Aiden et al., 2009) at the bulk level. Hi-C is a powerful
experimental technology that combines high-throughput
sequencing with chromosome conformation capture (3C)
(Dekker et al., 2002), enabling the profiling of chromatin spatial
interactions on a genomic scale. It produces up to billions of paired-
end reads at the bulk level, followed by mapping, fragment
assignment, filtering, and binning procedures, and a contact
matrix, which is also known as an interaction matrix, is
generated. In a contact matrix, each row or column is called a
bin representing a fixed-size segment of DNA along chromosomal
coordinates. The fixed length is referred to as resolution, with
smaller values indicating higher resolutions. Each element in the
matrix indicates the frequency at which two bins physically associate
in the 3D space of chromatin. Its value is known as the interaction
frequency, which exhibits an exponential decay with an increase in
the distance between the two bins. Owing to the Hi-C contact
matrix, the spatial organizations of chromatin on multiple scales
have been investigated, including A/B compartments (Lieberman-
Aiden et al., 2009), TADs (Dixon et al., 2012), and chromatin loops
(Rao et al., 2014). Among them, TADs have gained much attention
since they are the fundamental structural units of chromatin
organizations and important functional units of gene regulations.
Getting off the ground, TADs were regarded as the triangular blocks
of elevated interaction frequencies along the diagonal of the contact
matrix (Dixon et al., 2012). These blocks are considered self-
contained regulatory circuits, underscoring their critical role in
maintaining insulated regulatory landscapes (Dixon et al., 2012).
Further studies showed that TADs exhibit a hierarchical
architecture; that is, sub-TADs are nested within meta-TADs.
The hierarchy balances structural stability with functional
plasticity, which means that while the meta-TADs preserve
overall domain integrity across cell types, the nested sub-TADs
undergo dynamic reorganization during cellular differentiation to
facilitate cell state-specific transcriptional programs. This structural
adaptability enables precise spatiotemporal control of gene
regulation while maintaining genomic stability (Berlivet et al.,
2013; Phillips-Cremins et al., 2013).

TAD structures have received continuous attention in the era of
single-cell transcriptomics. Unlike the bulk Hi-C technology, which
captures population-averaged spatial interactions of chromatin,
single-cell Hi-C (scHi-C) technology was put forward in 2013,
which allows for the profiling of spatial interactions of individual
cells, leading to the examination of cell-to-cell variability in
chromatin organizations (Nagano et al., 2013). The initial
protocol of scHi-C was refined by the same team in 2017 to
improve its throughput and sensitivity (Nagano et al., 2017).

Almost at the same time, a single-nucleus Hi-C technology that
can provide tenfold more contacts per cell than the initial protocol
was used (Flyamer et al., 2017). Throughout the development of
scHi-C and its follow-up derivative technologies, TAD structures
have always been in focus, such as an investigation on whether TAD
structures exist at the single-cell level, similar to that at the bulk level.
Until 2018, stochastic optical reconstruction microscopy was
employed to generate the 3D image of chromatin in numerous
pseudocolors, reporting the positions and structures of a 30-kb
segment with nanoscale precision. The imaging data demonstrate
that TAD-like domains are physical structures with spatially
segregated globular conformations at the single-cell level, and the
positions of their boundaries show cell-to-cell variations (Bintu
et al., 2018). In 2022, a new technology called scSPRITE achieved
higher-resolution maps of individual cells than that can be produced
by proximity use of ligation since it can measure multiway DNA
contacts by introducing split-and-pool barcoding into the scHi-C
protocol. With the support of scSPRITE, TAD structures were
investigated on thousands of mouse embryonic stem cells, which
helped reveal chromatin organizations that govern regulatory
programs, offering deep insights into lineage commitment across
cell populations (Arrastia et al., 2022). Overall, these experiments at
the single-cell level show that TADs are not merely statistical
artifacts reflecting population-level interaction tendencies but
instead represent intrinsic characters of chromatin organizations
of individual cells. Under the guidance of these experiments,
currently, some computational methods have been used for the
analysis of TAD structures on scHi-C data. Among them, a few of
the latest methods have even started to dissect the hierarchy of
TADs, although it remains an open question on whether TAD
structures are also hierarchized at the single-cell level.

1.2 Computational analysis of TADs on scHi-
C data

Keeping in step with the experimental explorations of chromatin
organizations of individual cells, similar to that at the bulk level,
some state-of-the-art bioinformatic tools and applications for the
analysis of TAD structures at the single-cell level come into being.
They span over a variety of regards; herein, we mainly focus on their
advancements in terms of the imputation of scHi-C data,
identification of TAD structures, differential analysis of TAD
structures, and challenges and emerging trends in the light of
artificial intelligence (Figure 1).

2 Imputation of scHi-C data

It has been observed that some sequencing read signals of
individual cells may not be captured in scHi-C experiments due
to its low sequencing depth, cross-linking efficiency differences, and
biological variations (Zheng et al., 2022). That causes some
interaction frequencies to be observed at a low or moderate
count level in one cell but not be detected in another cell under
the same population, which is known as the dropout event. The
curse of these dropouts in scHi-C data inevitably hinders the
downstream analysis of TAD structures. Thus, an imputation
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preprocessing is devoted to addressing this problem, which aims to
separate the dropout zeros from biological zeros, and tries to recover
the missing interaction frequencies caused by dropout events so that
the overall quality of the scHi-C data can be enhanced, thus allowing
researchers to make full use of the data and perform more accurate
downstream analyses, such as TAD structures.

Currently, several imputation methods for scHi-C data have
been developed. At the very beginning, considering that the
imputation methods for scRNA-seq data have made
breakthroughs in recent years, how well these methods can be
applied to scHi-C data was investigated, including MAGIC (van
Dijk et al., 2018), scImpute (Li and Li, 2018), SCRABBLE (Peng
et al., 2019), and scRMD (Han et al., 2020). The results show that
these imputation methods indeed have an ability to handle scHi-C
data, but they are mainly evaluated via their impact on cell
clustering, leaving other biologically meaningful concerns
uninvolved (Han et al., 2020). Roughly around the same time,
the methods dedicated to scHi-C data imputation have emerged
(Table 1). According to the representation format of scHi-C data,
these imputation methods can be divided into two distinct
categories, namely, matrix imputation and graph imputation. The
former directly runs on the scHi-C contact matrix, including
HiCImpute (Xie et al., 2022), scVI-3D (Zheng et al., 2022), and
scDEC-Hi-C (Liu et al., 2022). Meanwhile, the latter treats the
contact matrix as the adjacency matrix of a graph, including
scHiCluster (Zhou et al., 2019), SnapHiC2 (Li et al., 2022),

Higashi (Zhang et al., 2022), TADGATE (Dang et al., 2024), and
HiC-SGL (Zheng et al., 2024). In accordance with the model
structure and learning paradigms, these methods can be grouped
into traditional machine learning imputation and deep learning
imputation. The former requires handcrafted model design and
iterative optimization, including scHiCluster, SnapHiC2, and
HiCImpute. The latter conducts a training on an end-to-end
deep neural network with large-scale data, including scVI-3D,
Higashi, scDEC-Hi-C, TADGATE, and HiC-SGL. Depending on
the processing scope of scHi-C data, these methods can be
partitioned into the chromosome scale and genome scale. The
former focuses on one individual chromosome at a time,
including scHiCluster, SnapHiC2, HiCImpute, scVI-3D, scDEC-
Hi-C, and TADGATE.Meanwhile, the latter utilizes the information
throughout the entire genome, including Higashi and HiC-SGL. In
addition, according to whether external data are introduced, these
methods can also be separated into monomodal imputation and
multimodal imputation. The former relies solely on scHi-C data,
including scHiCluster, SnapHiC2, scVI-3D, scDEC-Hi-C,
TADGATE, and HiC-SGL. Meanwhile, the latter makes use of
other types of data apart from scHi-C data, including HiCImpute
for bulk Hi-C data and Higashi for epigenomic signals.

In view of the advances and evolution along time, the first
method devoted to the imputation of scHi-C data, called
scHiCluster, came into being in 2019, where a strategy of
random walk with restart is used on a graph since the scHi-C

FIGURE 1
Overview of computational analysis for TADs on scHi-C data. (A) Spatial organizations of chromatin onmultiple scales, including A/B compartments,
TADs, and loops. (B)Computational methods for analysis of TADs at the single-cell level in the light of artificial intelligence, including imputation of scHi-C
data, identification of TAD structures, differential analysis of TAD structures, and challenges and emerging trends.
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contact matrix can be naturally regarded as the adjacency matrix of
an edge-weighted undirected graph due to its symmetry and ultra-
sparsity at the single-cell level, with nodes corresponding to bins and
interaction frequencies being the weights of edges. In 2022, several
imputation methods for scHi-C data emerged: SnapHiC2 adopts a
sliding window approximation to accelerate the graph imputation
on the basis of scHiCluster. HiCImpute establishes a Bayesian
hierarchical model to distinguish structural zeros from dropout
zeros by leveraging bulk Hi-C data. scVI-3D pioneers a matrix
imputation by introducing a deep generative model of the
variational autoencoder. Higashi pushes the imputation of scHi-C
data from a chromosome scale forward to a genomic scale using a
hypergraph representation learning framework that incorporates
scHi-C data and epigenomic signals. In 2023, scDEC-Hi-C emerged
as a matrix imputation with the help of the generative adversarial
network. In addition, in the year 2024, the graph neural network
(GNN) mainly dominated this field, such as TADGATE with the
graph attention autoencoder andHiC-SGL with subgraph extraction
and graph representing learning. In the GNN, the imputation of
scHi-C data can be regarded as a link prediction problem, where the
lost edges between nodes can be predicted by leveraging other
existing edges in the graph, and the propagation of information
between neighboring nodes during the training of GNN can
contribute to the prediction of lost edges. In simple terms,
assuming that there is a strong link between nodes A and B via
an edge and that nodes B and C are in the same case, it is very likely
that nodes A and C are linked, even though the edge between them is
unseen. That makes the graph neural network more preferable for
imputation compared with matrix-based approaches. Generally, the
imputation methods for scHi-C data are advancing and evolving
from matrix imputation to graph imputation, from traditional
machine learning to matrix-based neural networks and even
graph neural networks, from the chromosome scale to genomic
scale, and from the monomodal strategy to multimodal strategy.

3 Identification of TAD structures

The identification of TAD structures has always been an
interesting issue from the time when it was found on Hi-C
contact matrix at the bulk level since they are believed to be the

fundamental structural units of chromatin organizations and their
disruptions can be linked to various genetic disorders and cancers,
providing essential insights into genomic function and disease
mechanisms. With the rapid development of the scHi-C
technology in recent years, whether TADs found at the bulk level
can also be detected on the scHi-C contact matrix has become a
concern. It has been demonstrated that the bioinformatic methods
designed for the identification of TADs at the bulk level are not
applicable on scHi-C data due to the ultra-sparsity of the contact
matrix, noises, and artifacts from experiments and heterogeneity of
individual cells. More specifically, the proportion of zeros in the
scHi-C contact matrix is extremely large, and the interaction
frequencies are usually quite small as a result of the low
sequencing depth. Moreover, these weak interaction signals are
coupled with various noises and artifacts introduced during
experiments and are diversified by different functional states of
individual cells, such as cell cycle and transcription status. Thus, the
boundaries between TADs are not apparent, and the interaction
patterns within them are blurred.

At present, several bioinformatic methods have been proposed
for the identification of TAD structures on the scHi-C contact
matrix, imputed or not (Table 2). According to whether the
hierarchical architecture of TADs is considered, these methods
can be divided into boundary identification and hierarchy
identification. The former regards TADs as insulated regions
without mutual containing, including deTOKI (Li et al., 2021),
our scKTLD (Liu et al., 2024), TADGATE (Dang et al., 2024),
MUTI (Zhou et al., 2024), and scCAFE (Wang et al., 2024).
Meanwhile, the latter takes into account the sub-TADs nested
within meta-TADs, including deDoc2 (Li et al., 2023), HiCS (Ye
et al., 2023), and JOnTADs (Zeng et al., 2024). Depending on the
representation format of scHi-C data, these methods can also be
grouped into identification by matrix and identification by graph.
The former regards TADs as blocks that are symmetric along the
diagonal of the contact matrix and has higher interaction
frequencies, including deTOKI, HiCS, deDoc2, MUTI, and
JOnTADs. Meanwhile, the latter treats TADs as communities of
nodes within a graph that have a stronger density of connections,
including our scKTLD, TADGATE, and scCAFE. In addition, as far
as we know, MUTI is the only multimodal approach that conducts
an analysis at the TAD level by integrating non-simultaneous scHi-

TABLE 1 Methods for imputation of scHi-C data.

Method Group Description Language Year

scHiCluster Graph/CS Random walk with restart Python 2019

SnapHiC2 Graph/CS Random walk with restart, sliding window Python 2022

HiCImpute Matrix/CS Bayesian hierarchical model Python 2022

scVI-3D Matrix/DL/CS Variational autoencoder (VAE) Python 2022

Higashi Graph/DL/GS Hypergraph neural network Python 2022

scDEC-Hi-C Matrix/DL/CS Generative adversarial network Python 2023

TADGATE Graph/DL/CS Graph attention autoencoder Python 2024

HiC-SGL Graph/DL/GS Subgraph extraction, graph representation learning Python 2024

“CS” and “GS” denote the chromosome scale and genome scale, respectively. “DL” indicates deep learning.
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C and scRNA-seq data. Only scCAFE has the ability to identify the
spatial organizations of chromatin onmultiple scales; i.e., apart from
TADs, it can also detect A/B compartments and loops
simultaneously at the single-cell level, while the other methods
remain on a single scale.

From the view of the timeline, the identification of TAD
structures at the single-cell level is pioneered by deTOKI that
was launched in 2021. This method splits the scHi-C contact
matrix into sub-matrices and employs non-negative matrix
factorization to seek the regions that insulate the chromatin into
blocks with minimal chance of clustering. Since 2023, HiCS and
deDoc2 pushed the identification of TAD boundaries forward to
that of the hierarchical architecture at the single-cell level. The
former converts the problem of the identification of hierarchical
TADs into finding peaks of insulation strength at different levels,
and the latter employs a dynamic programming strategy to find
chromatin partitions with global minimal structure entropy for both
the whole and local matrix. In 2024, several methods rapidly
emerged. Our scKTLD and TADGATE began to identify TAD
structures by graph rather than by matrix. The former
introduced graph embedding and change point detection to
discover TAD boundaries. Meanwhile, the later turns to the
graph neural network, a graph autoencoder specifically, to detect
boundaries. MUTI identifies TAD boundaries using an insulation
score and conducts a further analysis at the TAD level by
introducing a multimodal strategy relying on scHi-C and scRNA-
seq data. In addition, there were two other methods that were
launched in the same year, including JOnTADs and scCAFE.
JOnTADs still calls TAD boundaries by the matrix instead of by
graph using line-shaped scanning and dynamic programming.
Nevertheless, it is applicable on the Hi-C contact matrix at both
bulk and single-cell levels, and it has the ability to handle multiple
samples. In addition, as the latest method in this year, scCAFE builds
a unified framework for the identification of chromatin spatial
organizations on multiple scales, including A/B compartments,

TADs, and loops. Among them, TAD boundaries are detected by
graph VAE and hierarchical clustering with connectivity
constraints. It can be seen that these methods generally exhibit a
progression from the TAD boundary to TAD hierarchy, from the
matrix to graph, from traditional machine learning to the graph
neural network, and from only TADs to multi-scale architectures.

4 Differential analysis of TAD structures

Differential analysis has always been a long-standing topic in
bioinformatic analysis of diverse omics data at the single-cell level
since it allows the investigation of cell heterogeneity, cell
differentiation, and the occurrence and progression of diseases.
The TAD structures of individual cells are dynamically changing
and are closely related to the spatial regulation of gene expression.
For example, at the single-cell level, a significant decrease in TAD
structure strength has been observed during the transition from
transcriptionally active immature oocytes to transcriptionally
inactive mature oocytes in mice (Flyamer et al., 2017). In
addition, the disruption of TAD boundaries has also been
discovered in malignant glioblastoma cells, which can rewire
enhancer–promoter interactions and contribute to glioblastoma
progression (Chang et al., 2024). This makes the differential
analysis of TAD structures helpful for discovering structural
changes of chromatin organizations across different conditions.
The structure affects the function, and the differential analysis of
TAD structures is beneficial for gaining new biological insights and
understanding how the 3D genome organizations are disrupted
in diseases.

The computational differential analysis of TAD structures on
scHi-C data is still in the early stage of development. Due to the
ultra-sparsity of the scHi-C contact matrix and heterogeneity of
individual cells, differential analysis of TADs is gradually moving
ahead in the midst of various difficulties and challenges, and only a

TABLE 2 Methods for identification of TAD structures on scHi-C data.

Method Group Description Language Year

deTOKI Boundary/matrix Non-negative matrix factorization Python 2021

HiCS Hierarchy/matrix Find peaks of insulation strength at different levels Python 2023

deDoc2 Hierarchy/matrix
/DA

Dynamic programming, minimum structural entropy
Mann–Whitney U test

Java 2023

scKTLD Boundary/graph Graph embedding, change point detection Python 2024

TADGATE Boundary/graph Graph attention autoencoder Python 2024

MUTI Boundary/matrix/multimodal Insulation score Python 2024

JOnTADs Hierarchy/matrix
/multi-sample

Line-shaped scanning and dynamic programming Python 2024

scCAFE Boundary/graph
/multi-scale

Graph VAE and hierarchical clustering with connectivity constraints Python 2024

DiffDomain Boundary/matrix
/DA

High-dimensional random matrix theory R/Python 2024

SEE Matrix/DA Interaction density variation mapping Python 2025

“DA” indicates differential analysis.
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few methods have emerged recently, including deDoc2 (Li et al.,
2023), DiffDomain (Hua et al., 2024), and SEE (Li et al., 2025).
Among them, deDoc2 and SEE are designed for TADs at the single-
cell level. The former gives out the TAD structure changes between
cell-cycle stages of mice embryonic stem cells using the
Mann–Whitney U test beyond the identification of hierarchical
TADs. In addition, the latter reveals the rearrangements of TADs
during differentiation of oligodendrocyte cells by interaction density
variation mapping, while conducting an investigation of chromatin
dynamics on the combination of scRNA-seq data and scHi-C data.
DiffDomain was initially designed for differential analysis of TADs
at the bulk level and can be extended to Hi-C data at the single-cell
level using a pseudo-bulk strategy. Moreover, it is advantageous that
DiffDomain has the ability to separate the TAD structural variations
into six distinct groups, namely, strength-change, loss, split, merge,
zoom, and complex patterns, and it can also quantify the cell-to-cell
variability of TAD structures directly on the scHi-C contact matrix
imputed by scHiCluster. Generally, it seems that the deep learning
network dedicated to differential analysis of TAD structures at the
single-cell level has not been formed yet. There is still a lot of room
for development in the field.

5 Artificial intelligence in TAD analysis

The introduction of artificial intelligence benefits the
bioinformatic analysis of TADs at the single-cell level,
considering a great number of cells from scHi-C experiments and
the complex patterns underlying the large-scale scHi-C data. Getting
off the ground, some traditional methods that are successful on
sparse matrices and other single-cell omics data were introduced
into the analysis of TADs at the single-cell level, such as the random
walk with restart strategy in scHiCluster, which is the first method
for scHi-C data imputation, and the non-negative matrix
factorization algorithm in deTOKI, which is the first method for
TAD identification at the single-cell level. These traditional methods
have some advantages, such as a clear decision-making process, less
dependence on a large sample size, and incorporation of prior
knowledge. However, while deep learning methods were
introduced into the analysis of TADs on scHi-C data, their
outstanding performance is truly impressive. It was observed that
the end-to-end deep learning network typically surpasses traditional
methods, owing to its advantage of learning knowledge from large-
scale scHi-C data coupled with noises and artifacts.

The artificial intelligence methods for TAD analysis at the
single-cell level are evolving. scHi-C data are usually presented in
the form of a contact matrix, and a matrix-based neural network is
relatively mature, which makes the matrix-based deep learning
methods involved first, such as the variational autoencoder in
scVI-3D. With time, the limitations of this kind of deep learning
methods have been gradually exposed. They accept fixed-size input
tensors, but the lengths of chromosomes vary from one another,
resulting in a series of tensors with different sizes for different
chromosomes, especially on a genomic scale. Together with the high
dimensionality of the contact matrix, especially at high resolutions,
these methods are becoming inadequate for some issues. To address
this problem, several strategies have been developed. Some directly
utilize a series of input tensors with different sizes for chromosomes,

such as the concatenation of the latent vectors for different input
tensors in scDEC-Hi-C, while others split a contact matrix into a
great number of sub-matrices with a fixed size by a divide-and-
conquer strategy. Moving forward, with the emergence and
development of the graph neural network, it was noticed that the
contact matrix is symmetric and ultra-sparse at the single-cell level,
which can be naturally regarded as the adjacency matrix of a graph,
with nodes corresponding to bins and interaction frequencies being
the weights of edges. Given this design, the imputation of scHi-C
data can be regarded as how to recover the lost edges in a graph,
which happens to be the well-known link prediction problem in
graph neural networks, where the unseen edges can be predicted by
leveraging other existing edges of the graph. Meanwhile, TAD
structures can be considered the communities of nodes within a
graph that have a stronger density of connections. Following this
train of thought, some hypergraph or graph deep learning methods
were developed, such as the hypergraph representation learning in
Higashi for imputation on a genome scale and the graph VAE and
hierarchical clustering with connectivity constraints in scCAFE for
TAD identification. It is worth noting that the propagation of
information from well-captured paths to under-captured paths
during the training of the graph neural network contributes to
the prediction of lost edges, which is the recovery of missing
interactions. In addition, the aggregation of information from
neighboring nodes benefits the capture of topological structures
in the graph, facilitating the analysis of spatial organizations of
chromatin, including TAD structures. In addition, the graph neural
network is more suitable for application in multimodal analysis
owing to the permission of multi-dimensional attributions of nodes
and the existence of heterogeneous graphs. That makes the graph
neural network highly attractive, especially with the continuous
accumulation of simultaneous multimodal data beyond Hi-C data at
the single-cell level, although its development is relatively
insufficient.

6 Challenges and emerging trends

As an area of active research, the bioinformatic analysis of TADs
on scHi-C data is expected to provide more knowledge beyond that
on bulk Hi-C data. Undoubtedly, some challenges that have never
been met at the bulk level will be encountered at the single-cell level.
1) The ultra-sparsity of scHi-C data. A Hi-C contact matrix for each
cell is ultra-sparse due to the low sequencing depth, especially at
higher resolutions. Coupled with noises, artifacts, and dropout
events from experiments, the boundaries of TADs are utterly
blurred, and their hierarchical patterns are even less visible. This
poses great challenges to the identification of TAD structures and
downstream analysis. 2) Heterogeneity of individual cells. At the
single-cell level, individual cells within a population exhibit
significant heterogeneity, even if they are of the same cell type.
While examining the changes of TAD structures across cell
populations, it is necessary to distinguish which differences are
related to the normal evolutions of cellular functional states, such as
the cell cycle and transcription status, and which are abnormal
changes caused by different conditions of interest, such as the
occurrence and development of diseases. The heterogeneity
increases the difficulties for the bioinformatic analysis of TAD
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structures, especially differential analysis. 3) Lack of simultaneous
multimodal data. Nowadays, researchers have started to introduce
other omics data besides scHi-C data, such as bulk Hi-C data,
scRNA-seq data, and scChIP-seq data, into the bioinformatic
analysis of TADs. It is expected that the results can be improved
by the fusion of information frommultiple sources. The multimodal
strategy is undoubtedly attractive, but in practice, there is a serious
lack of multimodal data, especially simultaneous multimodal data, at
the single-cell level due to experimental technologies, leaving bulk
Hi-C data, which can only impose constraints on cell population as a
whole, rather than on individual cells. Currently, it has been noticed
that a few emerging bioinformatic tools are attempting to handle the
non-simultaneous multimodal data, such as the generation of the
scHi-C contact matrix from bulk Hi-C data using scRNA-seq as a
guide signal in scGrapHiC (Murtaza et al., 2024) and the definition
of cell subpopulations by integrating non-simultaneous scHi-C and
scRNA-seq data into MUTI. This, in turn, further highlights the lack
of simultaneous multimodal data for scHi-C data analysis. 4)
Interplay between multi-scale architectures. The spatial
organizations of chromatin on multiple scales, including A/B
compartments, TADs, and loops, are not independent, but are
nested and interactive. A/B compartments provide global active
states, influencing the formation of TADs and loops. TADs confine
the regulation to specific domains, giving a context for chromatin
loops. The loops, in turn, are the specific means of implementing
regulation within TADs. In addition, cell development and diseases
are often associated with the disruptions on multiple scales. This
makes it arduous to have an all-around view of organization changes
and link them to biological processes by just relying on the analysis
of TAD structures alone.

Considering the rapid development of bioinformatic analysis
for TAD structures at the single-cell level and the challenges
encountered at present, here is an arbitrary outlook for the
emerging trends. 1) From the matrix-based neural network to
GNN: benefiting from a cell number that can reach up to tens of
thousands at the single-cell level, the matrix-based neural network
has been widely used for analyzing scHi-C data, such as
imputation. This kind of neural network can learn knowledge
that is not easy to obtain for traditional methods, but it also faces a
dilemma caused by the high dimensionality and ultra-sparsity of
the scHi-C contact matrix, leading to the emergence of some
networks that analyze small patches of the genome. Considering
that the contact matrix is naturally suitable for being represented
by graph-structured data due to its symmetry and ultra-sparsity,
even on a genomic scale, the GNN seems promising for future
applications, although it is not yet fully developed compared with
the matrix-based neural network. 2) From scHi-C data to
multimodal data: scHi-C data alone may have some limitations
in the bioinformatic analysis of TAD structures, and the
integration with other modal data may help refine this issue.
For example, histone modification data can act as additional
markers to demarcate TAD boundaries, reducing the adverse
effects by ultra-sparsity and noises associated with scHi-C data.
It is foreseeable that multimodal data analysis will play an
important role in the near future, especially with the rapid
development of experimental technologies and continuous
accumulation of simultaneous multimodal data at the single-cell
level. 3) From cell populations to temporal dynamics: the TAD

structures of chromatin in the nucleus are temporally dynamic.
Beyond the differential analysis of TADs between cell populations,
tracking the dynamics may inform how TADs change over time.
With the support of the scHi-C technology, the chromatin spatial
interactions of a large number of individual cells at different time
points are available. This allows us to develop bioinformatic tools
to construct a trajectory for TAD structures during cell
differentiation or disease progression, providing insights into
their reorganizations and determining critical regulatory events.
4) From single-scale architecture to multi-scale architectures: the
organizations of chromatin on multiple scales interact with each
other to tune the spatial regulation of gene expressions. For
example, a TAD within a compartment is more likely to
contain actively transcribed genes, and a loop within the TAD
can enhance the interaction between an enhancer and a promoter,
which makes an investigation of TADs on a single scale far from
enough. In the future, it is expected that a multi-scale analysis at
the single-cell level may discover new spatial regulatory patterns by
incorporating regulatory information from different scales.
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