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Introduction: Idiopathic Pulmonary Fibrosis (IPF) is a chronic, progressive lung
disorder characterized by excessive fibrosis and structural remodeling of lung
tissue. The role of inflammation in developing and progressing IPF is increasingly
recognized as critical. However, the precise mechanisms and pathways of
inflammation in IPF remain unclear. This study aimed to identify inflammation-
related genes in IPF and develop a prognostic risk model using machine learning
approaches.

Methods: The IPF dataset GSE70866 from the Gene Expression Omnibus
database was analyzed to identify inflammation-related genes. Unsupervised
clustering algorithms were used to classify IPF samples, followed by weighted
gene co-expression network analysis (WGCNA) to identify highly correlated
genes. Least absolute shrinkage and selection operator (LASSO) regression
was then applied, and the intersection of results pinpointed critical hub genes,
primarilyCCL2 and STAB1. A rat model of pulmonary fibrosis was established, and
lentivirus transfection was used to knock down CCL2 expression. The
transfection effect and hub gene expression were validated using Quantitative
polymerase chain reaction, Western blot, immunohistochemistry, enzyme-linked
immunosorbent assay, hematoxylin-eosin staining, and Masson’s trichrome
staining. Levels of α-SMA and COL1A1 were also assessed.

Results: WGCNA and LASSO regression analyses identified CCL2 and STAB1 as
significant contributors to IPF, closely associated with patient prognosis and
immune cell infiltration. Protein-protein interaction network analysis established
CCL2 as a novel biomarker for IPF. In a rat model of IPF, CCL2 expression was
significantly elevated compared to that in the controls. Knockdown of CCL2
expression alleviated pulmonary fibrosis and reduced the expression of
COL1A1 protein and α-SMA protein. CCL2 promotes the expression of
COL1A1 protein and α-SMA proteins, suggesting that the mechanism of
inflammation-induced pulmonary fibrosis may involve the regulation of
COL1A1 and α-SMA by CCL2.

OPEN ACCESS

EDITED BY

Ming Xu,
Jiangsu Provincial Center for Disease Control,
China

REVIEWED BY

Chao Jiang,
Nanjing University of Chinese Medicine, China
Yang Bai,
First Affiliated Hospital of Chongqing Medical
University, China
Mukamengjiang Juaiti,
Central South University, China

*CORRESPONDENCE

Pengyuan Zheng,
pyzheng@zzu.edu.cn

RECEIVED 30 March 2025
ACCEPTED 04 June 2025
PUBLISHED 18 June 2025

CITATION

Bai B, ZhaoW, Li F, Mi Y and Zheng P (2025) Role
of inflammation-related genes as prognostic
biomarkers and mechanistic implications in
idiopathic pulmonary fibrosis.
Front. Genet. 16:1602588.
doi: 10.3389/fgene.2025.1602588

COPYRIGHT

© 2025 Bai, Zhao, Li, Mi and Zheng. This is an
open-access article distributed under the terms
of the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction in
other forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in this
journal is cited, in accordance with accepted
academic practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

Frontiers in Genetics frontiersin.org01

TYPE Original Research
PUBLISHED 18 June 2025
DOI 10.3389/fgene.2025.1602588

https://www.frontiersin.org/articles/10.3389/fgene.2025.1602588/full
https://www.frontiersin.org/articles/10.3389/fgene.2025.1602588/full
https://www.frontiersin.org/articles/10.3389/fgene.2025.1602588/full
https://www.frontiersin.org/articles/10.3389/fgene.2025.1602588/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2025.1602588&domain=pdf&date_stamp=2025-06-18
mailto:pyzheng@zzu.edu.cn
mailto:pyzheng@zzu.edu.cn
https://doi.org/10.3389/fgene.2025.1602588
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2025.1602588


Discussion: These findings establish CCL2 as a promising biomarker and potential
therapeutic target for IPF.
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Introduction

Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive
fibrotic lung disease characterized by destruction of the alveoli and
remodeling of the interstitial lung structures. Pathologically, IPF is
defined by fibrosis and structural alterations of lung tissue.
Clinically, it manifests as thickening of the alveolar walls,
reduced alveolar volume, and decreased lung elasticity (Richeldi
et al., 2017). Patients with IPF commonly present with symptoms
including persistent dry cough, fatigue, and progressively worsening
dyspnea on exertion. As the disease advances, severe complications
such as respiratory failure may arise (Glass et al., 2022). Despite
extensive research efforts, the precise etiology of IPF remains elusive.
Current therapeutic strategies primarily target pathological
processes, aiming to reduce inflammation and manage fibrosis
(Munchel and Shea, 2021; Abuserewa et al., 2021). Given the
irreversible nature of IPF and the difficulties in halting its
progression, elucidating its pathogenesis and identifying novel
biomarkers for diagnosis, therapy, and prognosis are of critical
importance.

Accumulating evidence indicates that inflammation is involved
at multiple stages of IPF, playing a pivotal role in disease initiation
and progression (Mura et al., 2005). Lung tissues from IPF patients
exhibit mild inflammatory responses, characterized by the presence
of various pro-inflammatory mediators and immune cell infiltration
(Selman and Pardo, 2002; Bringardner et al., 2008). These immune
cells contribute to alveolar damage through the release of
inflammatory factors (Bringardner et al., 2008). Immune
dysregulation is a key contributor to IPF development, as
evidenced by several prognostic biomarkers linked to the disease
(Harrell et al., 2019). Inflammatory cytokines produced by immune
cells can activate fibroblasts, promote proliferation of connective
tissue cells, and facilitate angiogenesis (Jee et al., 2019). Investigating
inflammatory mediators as potential biomarkers may offer valuable
insights for predicting disease progression. Recent studies have
reported elevated levels of inflammation-related genes and
mediators in the bronchoalveolar lavage fluid (BALF) of IPF
patients (Lv et al., 2019; Yin et al., 2022). Furthermore, gene
expression profiles of BALF cells residing on the alveolar surface
have been demonstrated to predict patient survival (Prasse et al.,
2019). Consequently, some studies have developed prognostic
models for IPF based on multi-gene signatures derived from
BALF cells (He et al., 2022). While these findings underscore the

importance of inflammation in IPF pathogenesis and progression,
the specific roles and mechanistic implications of inflammation-
related genes in IPF prognosis remain incompletely understood and
warrant further investigation.

In this study, we analyzed mRNA microarray data from BALF
samples of IPF patients obtained from the Gene Expression
Omnibus (GEO) database to identify inflammation-related genes
with significant differential expression. Using various machine
learning methods, we constructed a risk model for IPF prognosis
integrating these inflammation-related genes. Validation of this
model aims to improve prognostic assessment and potentially
identify novel biomarkers to guide diagnosis, treatment, and
prognosis of IPF. Complementary animal experiments were
performed to investigate the mechanisms associated with key hub
genes implicated in IPF.

Materials and methods

Exploration of inflammation-related genes

We extracted 619 inflammation-related genes from Gene
Ontology (GO) and GO annotations (https://www.ebi.ac.uk/
QuickGO/) and compiled detailed annotation information for
these genes (Supplementary Table S1). The annotation included
gene function descriptions, cellular locations, and biological
processes, which are crucial for understanding how these genes
may influence the prognosis of IPF.

Data collection

The publicly available GSE70866 dataset, obtained from GEO,
was used for this study. This dataset includes mRNA expression data
from 176 patients with IPF, along with prognostic information. In
addition, we utilized the GSE175457 dataset as a validation set,
comprising 188 normal samples and 234 IPF samples. Since the
GSE70866 and GSE175457 dataset is publicly accessible, ethical
approval from the local ethics committee was not required.

Identifying differentially expressed
inflammatory genes and functional
enrichment

We analyzed the inflammation-related genes in the BALF of
patients with IPF and healthy controls using the GSE70866 dataset
with R’s “limma” package. A threshold was set with a false discovery
rate of less than 0.05 and a log2 |fold change| greater than 1. The
results were visualized using the “heatmap” and “ggplot2” packages.

Abbreviations: ROC, Receiver Operating Characteristic; AUC, Area Under
Curve; GO, Gene ontology; KEGG, Kyoto Encyclopedia of Genes and
Genome; PPI, Protein-protein interaction; GEO, Gene Expression
Omnibus; IPF, Idiopathic Pulmonary Fibrosis; WGCNA, Weighted Gene Co-
expression Network Analysis; LASSO, least absolute shrinkage and
selection operator.
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We further investigated the biological functions of differentially
expressed inflammatory genes through GO and Kyoto Encyclopedia
of Genes and Genomes (KEGG) analyses using the R packages
“clusterProfiler,” “org.Hs.e.g.,.db,” “enrichplot,” and “ggplot2.”
Additionally, gene set enrichment analysis (GSEA) was
conducted to explore the functional enrichment of these genes.

Weighted gene coexpression network
analysis (WGCNA)

We used WGCNA to identify gene modules in IPF that
exhibited strong correlations (Langfelder and Horvath, 2008).
Inflammation-related genes were further analyzed by performing
WGCNA using the R package. A soft thresholding power of five was
selected to construct the gene network and compute the similarity
and proximity in coexpression, which was then transformed into a
topological overlap matrix (TOM). Based on the TOM, hierarchical
clustering was applied to group the modules. Finally, we identified
modules that exhibited significant associations with clinical traits.

Developing and confirming prognostic
biomarkers linked to inflammation-
related genes

To minimize the risk of overfitting, we used LASSO penalized Cox
regression analysis via the “glmnet” package in R to develop the
prognostic model. The risk score for each patient was calculated
using the regression coefficients corresponding to the normalized
expression levels of prognostic inflammation-related genes. Using the
median risk score as a threshold, we divided patients with IPF into two
groups: high-risk and low-risk. The Kaplan–Meier survival plots and
time-varying receiver operating characteristic (ROC) curves were
generated using the “survival,” “survminer,” and “timeROC” R
packages to assess the forecasting power of our prognostic model.
Additionally, the “heatmap” software was used to visually depict
gene expression patterns in each sample of the two risk groups.

Construction of protein-protein interaction
(PPI) network

To examine the interactions among these genes, we constructed
a PPI network of inflammation-related genes using the STRING
database. STRING, a public online resource, provides detailed
information on gene and protein interactions, helping to better
understand the functions and mechanisms of inflammation-related
genes during the prognostic process.

Analysis of the tumor immune response

We used the CIBERSORT method to investigate the association
between prognostic genes, risk scores, and immune cell infiltration.
Subsequently, the “ggplot2” package, in combination with the
“limma” R package, was used to examine the relationships
between hub genes, immune cells and immune checkpoints.

Preliminary experimental validation of genes
in the risk scoring model

Fifteen male Sprague–Dawley (SD) rats aged 6–8 weeks were
randomly divided into the control, model, and anti-CCL2
intervention groups. Bleomycin A5 (0.2 mL of physiological saline
containing 5 mg/kg) was injected into the trachea to induce the disease
model, ensuring proper anesthesia to minimize stress reactions. During
themodeling process, 10 μL of anti-CCL2 lentivirus solution (titer of 1 ×
109) was simultaneously administered through the trachea to the anti-
CCL2 group. The lentivirus was used to knock down the expression of
CCL2, with a successful infection confirmed by PCR. After 14 days of
normal feeding, the rats were euthanized and weighed, and samples
were collected. The entire lung was excised and weighed, and the left
lungs were immediately frozen in liquid nitrogen or fixed for
histological analysis.

Quantitative polymerase chain
reaction (qPCR)

Total RNA was extracted using a nuclear reaction reagent supplied
by McRea-Nagel Corporation. RNA content was measured using a
NanoDrop 2000 spectrophotometer (Thermo Fisher Scientific,
United States). Complementary DNA (cDNA) was synthesized
using the SuperScript III First-Strand Synthesis System (18080051;
Invitrogen). qPCR was performed on a CFX96 qPCR system (Bio-
Rad Laboratories) using a 2× SYBR Green master mix from Yeasen
Biotech. The data were used to quantify the comparative mRNA
expression of target genes, with GAPDH serving as the internal
control. The primer sequences used were:

• Forward primer: CAGCCAGATGCAATCAATGCC
• Reverse primer: TGGAATCCTGAACCCACTTCT

Protein immunoblotting analysis

To analyze protein expression in the lung tissue of IPF model
rats, we employed standardized biochemical methods. Tissues were
stored in liquid nitrogen, and proteins were extracted using a
radioimmunoprecipitation assay buffer and quantified with a
BCA Protein Assay Kit. Proteins were separated by sodium
dodecyl sulfate-polyacrylamide gel electrophoresis, transferred to
polyvinylidene fluoride membranes, and incubated with MCP-1-
specific antibodies. Protein bands were visualized and analyzed
using ImageJ software to quantify MCP-1 expression levels.

Immunohistochemistry (IHC)

Dewaxed tissue sections were rinsed with distilled after
treatment with an eco-friendly solution and ethanol. Antigens
retrieval was performed by microwaving the slides in a retrieval
solution, followed by natural cooling. The slides were then rinsed
three times with phosphate-buffered saline (PBS), treated with 3%
hydrogen peroxide (H2O2) in the dark, and washed again in PBS.
Subsequently, the sections were blocked with 3% bovine serum
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albumin (BSA), incubated overnight at 4°C with primary antibodies,
and washed in PBS. HRP-labeled secondary antibodies were added,
followed by incubation. Staining was performed using 3,3’-
diaminobenzidine, stopped with tap water, counterstained with
hematoxylin, dehydrated, mounted, and observed under a
microscope.

Enzyme-linked immunosorbent
assay (ELISA)

A total of 100 mg of tissue was weighed and homogenized with
900 μL of buffer. Standard, sample, and blank wells were set
up. Subsequently, 100 μL of standards and samples were added to
the respective wells. The mixture was incubated at 37°C for 1 h. After
incubation, the liquid was discarded, and 100 μL of Detection Solution
A was added. The wells were incubated again. The wells were washed
five times, and then 100 μL of Detection Solution B was added, followed
by incubation for 30 min. The wells were washed again, and 90 μL of
3,3’,5,5’-Tetramethylbenzidine substrate was added. The color change
was monitored, and the optical density values were measured.

Hematoxylin-eosin (HE) staining

For HE staining, fresh lung tissue was fixed in a fixative solution
for more than 24 h to ensure adequate preservation. The tissues were
trimmed, dehydrated, and embedded in paraffin. Wax blocks were
sectioned into 4 μm slices. The slices were deparaffinized, stained
with hematoxylin, rinsed, differentiated, and counterstained.
Finally, the stained sections were mounted for observation.

Masson trichrome staining

For Masson staining, paraffin sections were dewaxed using an
environmentally friendly solution and anhydrous ethanol, then rinsed
with tap water. Frozen sections were returned to room temperature and
fixed in a tissue fixative. The slices were stained withMasson A solution
overnight, rinsed with tap water, and stained with a mixture of Masson
B and C for 1 min. Differentiation was performed, followed by
immersion in Masson D for 6 min and Masson E for 1 min. The
sections were then stained with Masson’s F solution, rinsed with 1%
acetic acid, dehydrated, cleared, and mounted using neutral balsam.

Data analysis

Statistical analyses were conducted using SPSS Statistics 23
(IBM, Armonk, NY, United States) and R software (version
4.3.2). For data with a normal distribution, means of continuous
variables were compared using independent t-tests and are described
as mean ± standard deviation. For non-normally distributed data,
the Mann-Whitney U test was employed, with results presented as
median [interquartile range]. Survival rate comparisons were
performed using log-rank tests and Kaplan-Meier analyses.
Statistical visualization was generated using GraphPad Prism 8.
All tests were two-sided, with a significance level set at α = 0.05.

Results

Inflammation-related genes in IPF

We analyzed gene expression profiles in the bronchoalveolar
lavage fluid (BALF) of 176 patients with idiopathic pulmonary
fibrosis (IPF) and 20 healthy controls using the
GSE70866 dataset. Our investigation concentrated on
inflammation-related genes, selected from the QuickGO database
and comprising a total of 619 genes. The objective was to identify
differentially expressed inflammation-related genes in IPF patients
compared to healthy individuals, aiming to elucidate inflammatory
processes underlying IPF pathogenesis. Through rigorous
differential expression analysis, we identified 41 inflammation-
related genes exhibiting significant expression differences between
the two groups. To visually represent these results, a heatmap
illustrating the top 20 differentially expressed genes was
generated (Figure 1A), facilitating a comparative overview of
gene expression patterns.

Furthermore, a volcano plot summarizing the differential
expression analysis was constructed (Figure 1B). This plot
revealed that 13 inflammation-related genes were downregulated
in IPF patients, potentially reflecting suppression of specific
inflammatory pathways. In contrast, 28 inflammation-related
genes were upregulated, suggesting an intensified inflammatory
response characteristic of IPF. These findings are important as
they pinpoint specific inflammation-related genes that may
contribute critically to IPF pathogenesis and progression.
Identification of these genes lays the groundwork for the
development of novel therapeutic strategies targeting
inflammatory mechanisms, which may ultimately improve
disease outcomes by mitigating inflammation-driven fibrosis.

Functional enrichment analysis

GO and KEGG pathway enrichment analyses were performed to
investigate the functional roles of the differentially expressed
inflammation-related genes. GO enrichment analysis revealed
significant overrepresentation of Biological Process (BP) terms
associated with leukocyte migration. In the Cellular Component
(CC) category, enriched terms included secretory granules,
cytoplasmic vesicles, and vesicle lumens. Molecular Function
(MF) terms showed enrichment in cytokine receptor binding,
cytokine activity, and G protein-coupled receptor binding
(Figure 2A). KEGG pathway analysis further highlighted
significant enrichment in the cytokine–cytokine receptor
interaction pathway (Figure 2B). Together, these results indicate
that the differentially expressed genes participate in key biological
functions and signaling pathways, providing insights into the
potential mechanisms driving their involvement in IPF
pathogenesis.

Construction of predictive model

We conducted WGCNA and identified the brown module as
exhibiting the highest correlation with IPF (Figures 3A,B). From
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the genes in the brown module, we identified several hub genes
associated with IPF, including SPP1, CCR3, FFAR3, CCL2, and
STAB1. Using LASSO regression analysis, we further refined the
selection and identified 18 genes suitable for constructing the
prognostic model, such as CXCR6, BDKRB1, TPST1, PPBP, CLU,
CCL2, BMP6, LIPA, CXCL5, CAMP, ELF3, IL1RL1, AOC3, PLD4,
S1PR3, CMKLR1, PROK2, STAB1 (Figures 3C,D). Based on the
calculated risk scores, the IPF samples were divided into high-
risk and low-risk groups. The prognostic model’s predictive
ability was then evaluated through survival rate and ROC
curve analyses. Kaplan-Meier analysis showed that the
survival rate of the high-risk group was significantly lower
than that of the low-risk group (Figure 3E). Additionally,
time-dependent ROC analysis revealed that the areas under
the curve (AUC) for survival rates at 1, 3, and 5 years were
0.836, 0.864, and 0.974, respectively (Figure 3F).

Hub gene selection

Through the intersection ofWGCNA and LASSO, we identified two
genes, CCL2 and STAB1 (Figure 4A). Based on this prognostic
inflammation-related gene set, we used the STRING online platform
to generate a PPI network (Figure 4B). The results revealed that theCCL2
gene had significantly more interactions than the other genes, suggesting
its potentially more crucial role. Differential analysis and ROC curve
result for CCL2 and STAB1 showed elevated expression levels in IPF,
which correlated with patient prognosis (Figures 4C–F). Finally, we used
the GSE175457 dataset as a validation set to generate boxplots of CCL2
and STAB1 expression levels (Supplementary Figure S1). The results
showed that CCL2 expression was significantly higher in IPF samples
compared to normal samples (p = 0.0038), whereas STAB1 expression
showed no significant difference (p = 0.44). Based on these findings, we
focused our investigation on CCL2.

FIGURE 1
Differential Analysis. (A)Heatmap showing the top 20 differentially expressed genes. (B) Volcano plot displaying differentially expressed genes; green
indicates downregulated genes, while red represents upregulated genes.

FIGURE 2
Functional Enrichment Analysis. (A) GO functional enrichment analysis. (B) KEGG pathway enrichment analysis.
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Immune function and cell infiltration in
high-risk and low-risk groups

We investigated immune function and immune cell infiltration
in IPF patients by comparing the high- and low-risk groups.
Immune function was significantly enhanced in the high-risk
group, particularly in antigen-presenting cell co-stimulation,

CCR, parainflammation, and T-cell co-inhibition (Figure 5A).
Immune cell infiltration analysis showed elevated levels of
macrophages M0, activated dendritic cells, and neutrophils in the
high-risk group, while those of T cells (CD4 memory resting) and
resting mast cells were reduced (Figure 5B). These findings suggest
that high-risk patients exhibit greater immune activity and immune
cell infiltration.

FIGURE 3
Development of the Predictive Model. (A,B) Correlation of feature genes from different module with IPF. (C,D) Gene set selected for prognostic
model construction through LASSO regression analysis. (E) Survival curves for samples grouped by risk levels, ranging from low to high. (F) Time-
dependent ROC curve showing the performance of the prognostic model at 1, 3, and 5 years for IPF. The false positive rate is shown on the x-axis, and the
true positive rate is shown on the y-axis. The AUC value indicates the area under the curve.
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GSEA

KEGG pathway enrichment analysis was conducted using GSEA
to compare high-CCL2 and low-CCL2 expression groups. The
“CYTOKINE_CYTOKINE_RECEPTOR_INTERACTION” pathway
demonstrated the highest enrichment in patients with high-CCL2
IPF (Figure 6). Notably, pathways strongly associated with CCL2
expression overlapped with those enriched for differentially
expressed inflammatory genes, suggesting a critical role for CCL2
and inflammatory pathways in IPF pathogenesis.

CCL2 and immune checkpoints

Although immune checkpoint blockade therapies have shown
remarkable success, a substantial proportion of patients exhibit
marked resistance (Mei et al., 2021; Nie et al., 2022). To explore
the association between CCL2 expression and immunotherapy in
patients with IPF, we analyzed its relationship with various
immune checkpoints. Our findings revealed that CCL2 was
significantly and positively correlated with immune
checkpoints, including CD276 and CD40 (Figures 7A,B).

FIGURE 4
Hub Gene Selection. (A) Venn diagram showing overlapping genes between WGCNA and LASSO. (B) PPI network. (C,D) Box plots illustrating the
expression levels of CCL2 and STAB1 in IPF and normal samples. (E,F) ROC analysis of CCL2 and STAB1 in IPF (***P < 0.001).
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These results suggest that patients in the high-CCL2 group may
benefit more from immune therapy, particularly with immune
checkpoint inhibitors.

CCL2 expression and correlation with
immune cells in IPF

To validate the role of CCL2, immune cell infiltration was
analyzed in IPF patients stratified by CCL2 expression levels.
High CCL2 expression was associated with increased infiltration
of M0 macrophages and activated dendritic cells, whereas low
CCL2 expression corresponded to elevated levels of resting
memory CD4+ T cells and M2 macrophages (Figure 5C).
Correlation analysis further demonstrated a positive association
between CCL2 and neutrophils as well as activated dendritic
cells, alongside a negative correlation with resting memory CD4+

T cells (Figure 5D).
Subsequent investigation focused on the relationship between

CCL2 and macrophage polarization markers in IPF patients.
CCL2 exhibited a significant positive correlation with the
M2 macrophage marker CD206 (R = 0.18, p = 0.02), whereas no

significant correlation was observed with the M1 macrophage marker
NOS2 (R = 0.016, p = 0.83; Figures 8B,C). These findings highlight the
pivotal role of CCL2 in modulating macrophage phenotypes,
with its strong association with M2 macrophages implicating it
in immune regulation and disease progression in IPF.

Expression of CCL2 in rat models

To validate CCL2 expression, quantitative PCR (qPCR) and
Western blot analyses were performed on lung tissue from IPF-
induced rats, while qPCR was also conducted on infected rats to
assess the efficiency of lentiviral transfection. As shown in Figure 9,
compared to normal rat lung tissue, CCL2 expression at both the
mRNA and protein levels was significantly elevated in IPF lung
tissue. These results are consistent with our database analysis,
supporting the notion that increased CCL2 expression may
contribute to IPF pathogenesis. Furthermore, following chronic
lentiviral transfection, CCL2 expression in the anti-CCL2
treatment group was significantly reduced relative to the IPF
group, indicating that lentiviral transfection effectively suppresses
CCL2 expression.

FIGURE 5
Immune Cell Infiltration. (A,B) Box plots illustrating variations in immune function and infiltration levels across groups with low to high risk. (C) Box
plot illustrating differences in immune cell infiltration levels between the high-CCL2 and low-CCL2 expression groups. (D) Correlation analysis showing
the relationship between CCL2 expression levels and immune cell infiltration in patients with IPF (*P < 0.05; **P < 0.01; ***P < 0.001).
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HE staining and Masson’s trichrome staining

To further validate the model’s effectiveness, hematoxylin and
eosin (HE) and Masson’s trichrome staining were performed. HE
staining provided a detailed visualization of tissue architecture,
allowing assessment of inflammatory cell infiltration and

structural alterations in lung tissue. In the model group, HE
staining (Figure 10) revealed prominent infiltration of
inflammatory cells, primarily lymphocytes, monocytes, and
macrophages, indicating a pronounced chronic inflammatory
response. Additionally, notable pathological features such as
thickened alveolar walls and airway remodeling were observed,

FIGURE 6
Gene set enrichment analysis.

FIGURE 7
(A, B) Heatmap of Correlation between CCL2 and Immune Checkpoints. The red color indicates a positive correlation.

Frontiers in Genetics frontiersin.org09

Bai et al. 10.3389/fgene.2025.1602588

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2025.1602588


FIGURE 8
Relationship between CCL2 and Immune Cell Infiltration. (A) Correlation heatmap showing the differences in infiltration levels between CCL2 and
various immune cells. (B) Scatter plot displaying the relationship betweenCCL2 and the expression level of the macrophageM1marker NOS2. (C) Scatter
plot showing the association between CCL2 and the expression level of the macrophage M2 marker CD206 (*P < 0.05; **P < 0.01; ***P < 0.001).

FIGURE 9
Validation of CCL2 Expression. (A) qPCR comparison of CCL2 gene expression levels in lung tissues from the control (Con) group, IPF group, and
anti-CCL2 group. (B) Western blot analysis comparing CCL2 protein expression levels in lung tissues from IPF and control rats (**P < 0.001;
***P < 0.0001).
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consistent with the hallmark characteristics of idiopathic pulmonary
fibrosis (IPF). Masson’s trichrome staining was employed to
evaluate collagen deposition. In the model group, a marked
increase in blue-stained collagen fibers was evident,
demonstrating a positive correlation between collagen
accumulation and fibrosis severity. These observations align with
previously reported collagen deposition patterns in IPF,
underscoring the critical role of aberrant collagen accumulation
in disease pathology (Figure 10). Importantly, collagen deposition
was significantly reduced in the anti-CCL2 treatment group
compared to the model group, suggesting that lentiviral-
mediated knockdown of CCL2 partially attenuates fibrosis
progression.

ELISA and immunohistochemical analysis

We subsequently evaluated the successful construction of the
IPF model using ELISA. In the IPF rat model, detecting COL1A1
(collagen I) holds significant biological importance. COL1A1,
the most abundant collagen protein, constitutes the matrix of
lung tissue and plays an important role in tissue repair and
remodeling. In IPF, lung tissue undergoes abnormal fibrosis,
leading to excessive deposition of COL1A1. This deposition

serves as a key marker of fibrosis, reflecting the structural
changes and severity of fibrosis in lung tissue. Our results
demonstrated a marked increase in COL1A1 expression in the
model group, indicating extensive fibrosis. Conversely, the anti-
CCL2 group exhibited a significant decrease in
COL1A1 expression levels (Figure 11A), suggesting that CCL2
knockdown mitigated fibrosis. In immunohistochemical
analysis, we assessed the expression levels of α-SMA and
COL1A1. α-SMA, a classical marker of myofibroblasts, is
typically upregulated during fibrosis. The results revealed a
pronounced increase in α-SMA and COL1A1 in the model
group, indicating enhanced myofibroblast transformation and
collagen deposition during IPF progression (Figure 11B).
Treatment with anti-CCL2 significantly reduced the
expression of α-SMA and COL1A1, highlighting that
CCL2 likely promotes the expression of these proteins. These
findings underscore the pivotal role of CCL2 in driving the
fibrosis process.

Discussion

Idiopathic pulmonary fibrosis (IPF) is a chronic disease
characterized by structural damage, fibrosis, and progressive loss

FIGURE 10
He and Masson’s staining for different groups.
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of pulmonary function; however, its etiology and pathogenesis
remain incompletely understood (Mei et al., 2021). Inflammation
plays a critical role in the development and progression of IPF. Lung
tissues from patients with IPF commonly exhibit inflammatory
responses involving various pro-inflammatory factors and
immune cells. These mediators contribute to alveolar tissue
injury by producing inflammatory molecules that accelerate
fibrosis (Nie et al., 2022; Nie et al., 2023).

This study investigated the potential roles of inflammation-
related genes in IPF prognosis by analyzing gene expression
profiles in bronchoalveolar lavage fluid (BALF). Our findings
revealed differentially expressed inflammation-related genes in
BALF from patients with IPF, several of which were associated
with disease prognosis. These genes participate intricately in IPF
pathology by influencing inflammation, fibrosis, and the injury and
remodeling of lung structures through multiple critical pathways.
Moreover, their differential expression provides insights into the
role of inflammation at various stages of IPF progression, offering
novel perspectives for predicting disease outcomes.

Our analysis identified CCL2 as a key gene within the
inflammatory gene network in IPF (Figure 4). Previous studies
have demonstrated that the development of fibrotic lesions
depends on chemokines released from injured lung tissue,
particularly CCL2 and CCL12 (Moore and Hogaboam, 2008). As
a chemokine, the upregulation of CCL2 and CCL7 promotes the
infiltration and activation of inflammatory cells during IPF
progression, thereby sustaining lung inflammation (Deng et al.,
2013; Krafft et al., 2013; Shinoda et al., 2009). Shinoda et al.
reported that BALF levels of CCL2 were significantly elevated in
IPF patients who did not survive beyond 5 years post-diagnosis
compared to those with better prognoses, suggesting that elevated
CCL2 predicts poorer outcomes (Shinoda et al., 2009). Similarly, our

study found increased CCL2 expression in IPF patients, which may
contribute to enhanced immune cell accumulation in the lungs,
further promoting inflammatory infiltration and potentially
worsening prognosis.

Regarding immune cell infiltration, the high-CCL2
expression group exhibited increased levels of
M0 macrophages and activated dendritic cells compared to
the low-CCL2 expression group. Conversely, the low-CCL2
group showed greater infiltration of resting memory CD4+

T cells and M2 macrophages (Figure 5C). Correlation analysis
revealed a negative association between CCL2 expression and
resting memory CD4+ T cells, and positive correlations with
neutrophils and activated dendritic cells (Figure 5D). Immune
dysregulation and inflammation are fundamental to the
pathogenesis of chronic lung diseases, including IPF (Jee
et al., 2019), and immune cell infiltration correlates with
disease severity (Wang et al., 2020). CIBERSORT analysis
confirmed elevated M0 macrophages and activated dendritic
cells in the high-CCL2 group, indicative of heightened
inflammatory activation (Li et al., 2018).

The transforming growth factor-beta (TGF-β) pathway is a
central regulator of fibrosis, promoting fibroblast proliferation,
myofibroblast differentiation, and extracellular matrix
production, thereby playing a pivotal role in IPF. Studies have
shown that CCL2 expression is upregulated in IPF lung tissue and
correlates with macrophage infiltration, which may enhance
TGF-β-mediated fibroblast activation (O’Donnell et al., 2019).
In other fibrotic conditions such as liver fibrosis,
CCL2 contributes to hepatic stellate cell activation, partially
through TGF-β signaling (Car et al., 1994). These findings
suggest that in IPF, CCL2 may indirectly exacerbate fibrosis by
recruiting macrophages that promote TGF-β production,

FIGURE 11
(A) ELISA results for different groups (#P < 0.01; **P < 0.01). (B) Expression Levels of α-SMA and COL1A1.
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establishing a positive feedback loop. Additionally, the nuclear
factor kappa B (NF-κB) pathway, a key regulator of inflammation,
is implicated in IPF; elevated CCL2 levels in bronchoalveolar
lavage fluid and lung tissue are associated with increased NF-κB
activity in macrophages, suggesting that NF-κB may drive
CCL2 expression in IPF (Seki et al., 2009; Deshmane et al.,
2009). Collectively, these data highlight the importance of the
relationship between CCL2 expression and immune cell
infiltration in the inflammatory responses underlying IPF.

The identification of immune checkpoints such as
programmed death-1 (PD-1) and cytotoxic T lymphocyte
antigen-4 (CTLA-4) has revolutionized cancer
immunotherapy (Antoniades et al., 1992). Recent
immunohistochemical studies have demonstrated significantly
elevated PD-1 expression in lung tissues from healthy donors,
IPF patients, and lung cancer patients, with notably higher
expression in IPF and lung cancer samples compared to
healthy controls (Tesch et al., 2024). Moreover, preclinical rat
models have shown that immune checkpoint inhibitors can
reduce lung fibrosis severity (Ono et al., 2023). In this study,
we observed a positive correlation between CCL2 and several
immune checkpoints, suggesting that CCL2 may serve as a
promising target for future immunotherapeutic strategies.
Although we validated CCL2 expression in rat IPF models,
the complex interactions between immune cells and immune
checkpoints require further experimental exploration.

In conclusion, CCL2 appears to enhance the expression of
fibrosis-related proteins COL1A1 and α-smooth muscle actin (α-
SMA), implicating these proteins in mediating the pro-fibrotic
effects of CCL2. COL1A1, a major extracellular matrix
component, plays a critical role in various physiological and
pathological processes. The increased expression of α-SMA, a key
cytoskeletal protein, reflects the differentiation of fibroblasts into
myofibroblasts—a hallmark of pulmonary fibrosis. Previous
studies have reported a positive correlation between CCL2 and
COL1A1, suggesting that COL1A1 modulates local inflammation
by stimulating CCL2 synthesis. Furthermore, in liver fibrosis
models, CCL2 and other pro-inflammatory markers are elevated
alongside COL1A1 overexpression, indicating a synergistic role
in fibrosis (Milbank et al., 2023). CCL2 recruits monocytes to
sites of injury, initiating local inflammatory responses that may
closely interact with α-SMA expression (Qin et al., 2020).
Additionally, IL-19 has been shown to modulate α-SMA
expression via CCL2 and TGF-β signaling pathways in models
of diabetes-induced kidney damage, contributing to fibrosis
development (Ni et al., 2018). Investigating the interplay
among these molecules will deepen our understanding of
disease mechanisms and may reveal novel therapeutic targets
for IPF. It is worth noting that the gene expression differences
between bronchoalveolar lavage fluid and lung tissue samples
may reflect inherent cellular heterogeneity. While this introduces
variability, it also captures distinct aspects of IPF
pathophysiology, providing complementary insights. Future
studies using matched samples from the same patients could
help clarify these differences.

In summary, inflammation-related genes interact through
multiple critical pathways influencing the pathological processes
and prognosis of IPF. Based on these genes, we developed a robust

prognostic model and identified CCL2 as a representative gene
involved in inflammatory responses. CCL2 is closely linked to
immune cell infiltration and multiple immune checkpoints in
IPF, making it a promising biomarker. Moreover,
CCL2 promotes the expression of COL1A1 and α-SMA,
suggesting its pro-fibrotic effects are mediated, at least in part,
through these proteins.
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