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Although fluorescence in situ hybridization (FISH) is a standard approach for
characterizing the chromosomal structure involving a region of interest, FISH
targeting single chromatids is not routinely performed. However, this latter
approach seems principally well-suited to distinguish small, tandem inverted
duplications from direct duplications in clinical cases. A commercially available
single-chromatid FISH approach, called “directional genomic hybridization”
(dGH™), was applied in this study to nine cases of small supernumerary
marker chromosomes (sSMCs) known to contain inverted duplications.
Successful detection of small inverted duplications has been demonstrated for
the first time in this study using a custom KromaTiD dGH™ InSite Assay. In all five
euchromatic sSMC cases, inversions were detected using the dGH single-
chromatid molecular cytogenetic assay. Thus, the dGH method of FISH is a
readily applicable, straightforward approach for identifying small inverted
duplications that are undetectable by conventional (molecular) cytogenetic
methods. This technique may be used to identify the presence of small
inversions within regions presenting a copy number gain as detected by
chromosome microarray. Distinguishing small inverted duplications from
direct duplications may have an impact on topologically associating domains
(TADs) and, thus, on clinical outcome.
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1 Introduction

The advent of chromosomal microarrays (CMAs) has enabled major advances in the
detection of previously undetectable small deletions and duplications in the human genome
(Martin et al., 2015). Such copy number variations (CNVs) in the range from kilobase to
megabase pairs can be further characterized by fluorescence in situ hybridization (FISH)
(Liehr, 2021). In this way, tandem duplications can be clearly distinguished from insertions
elsewhere in the genome (Gu et al., 2016) and from the presence of a small supernumerary
marker chromosome (sSMC) (Liehr et al., 2009) or a CNV resulting from a (more complex)
chromosomal rearrangement (Pellestor et al., 2011). The influence of duplications on the
formation of topologically associating domains (TADs) has been shown in recent studies.
TADs are important in the regulation of DNA replication and transcription; TAD
disruption can be due to submicroscopic rearrangements like an inversion, a deletion,
and, specifically, a duplication (Lupiáñez et al., 2016; Franke et al., 2016; Rajderkar et al.,
2023). These findings highlight the importance of characterizing and studying these events.
However, standard FISH and other methods cannot easily determine whether a small
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duplication is in direct or inverted orientation, even though inverted
duplications of this type have been linked to diseases like retinitis
pigmentosa (de Bruijn et al., 2020).

Several FISH approaches are described in the literature with which
single-chromatid signals can be obtained for repetitive sequences, such as
telomeres (Goodwin andMeyne, 1993; Bailey et al., 2004;Williams et al.,
2011; Rubtsov and Zhdanova, 2017). In these approaches, only one
parentalDNA strand per chromatid is labeled by a specific unidirectional
DNA probe to obtain single-chromatid signals, and the daughter-strand
DNA on the second chromatid must be degraded, preventing
hybridization with the FISH probe unless an inverted structural
variant or sister chromatid exchange is present. A commercially
available method for directional single-chromatid hybridization of
unique sequences—directional genomic hybridization (dGH)
(KromaTiD, Longmont, Colorado, United States)—was applied for
the first time in this study to visualize the inverted and duplicated
structure of inverted duplicated sSMCs at the chromosomal level in an
established model system (Spittel et al., 2014; Liehr et al., 2023).

Carriers of an sSMC comprise a heterogeneous group, ranging from
clinically healthy individuals to those who are severely affected.
Worldwide, there are ~3.3 × 106 sSMC carriers. Of these, 70% are
completely normal, apart from fertility problems in a small subgroup;
thus, most sSMC carriers may never become aware of their condition.
However, the remaining 30% show clinical symptoms and represent a
mix of >100 rare diseases. Among the best known clinically significant
conditions are a) +inv dup(12)(pter→q10~12:q10~12→pter)/
tetrasomy 12p or Pallister–Killian syndrome (OMIM #601803); b)
+inv dup(18)(pter→q10:q10→pter)/tetrasomy 18p syndrome
(OMIM #614290); c) +inv dup(22)(pter→q11.2:q11.2→pter)/
proximal tetrasomy 22q or cat eye syndrome (OMIM #115470); and
d) +der(22)t(11;22)(q23;q11.2)/derivative chromosome 22 or Emanuel
syndrome (OMIM #609029) [summarized by Liehr et al. (2023)].

sSMCs are simultaneously a structural and numerical
aberration, and accordingly, they are an interesting object for
chromosomic research (Liehr et al., 2023). sSMCs can originate
from any of the 24 human chromosomes, be composed of material
from one or more chromosomes, be continuous or discontinuous,
have a regular centromere or a neo-centromere, and occur in various
shapes (Liehr, 2023; Liehr et al., 2023). They can have centric
minute, ring, or inverted duplication shapes. Most of them
originate from an acrocentric chromosome, and according to the
literature, up to 70% of sSMCs derive from chromosome 15 (Liehr,
2023). Most de novo sSMCs are believed to result from incomplete
trisomic rescue (Liehr, 2018), which may include chromothripsis
events. In addition, 30% of sSMCs are inherited within families,
sometimes over many generations (Liehr, 2023).

Due to their nature, sSMCs are best detected by GTG banding
and further characterized by FISH. As they tend to be mosaic and
many of them are exclusively heterochromatic, methods like CMA
tend to miss up to 80% of this type of cytogenetic aberration (Liehr
and Hamid Al-Rikabi, 2018). Although molecular cytogenetic
approaches are available for characterizing sSMC origin and
content (Liehr, 2023), there was no way to prove or disprove the
inverted duplication nature of sSMCs using FISH. In this study, a
custom dGH™ InSite Assay, comprised of targeted probes for the
regions of interest, was used to analyze nine sSMC cases from the
Else Kröner–Fresenius sSMC cell bank (https://cs-tl.de/DB/CA/
sSMC/33-EKF/a-Start.html). The suitability of this approach to

characterize the orientation of a small inverted duplication event
was investigated for the first time in this study.

2 Materials and methods

2.1 Cell lines and their work-up for dGH™

Nine cell lines from the Else Kröner–Fresenius sSMC cell bank
(https://cs-tl.de/DB/CA/sSMC/33-EKF/a-Start.html) were used, as
listed in Table 1. The sSMCs were previously characterized by FISH
(Spittel et al., 2014) and are described according to ISCN (2020).
Five cell lines had one or two identical sSMCs derived from
chromosome 15, three carried an sSMC (22), and one carried an
sSMC (21); four of them were purely heterochromatic.

The cell lines were grown in RPMI-1640 medium with
glutamine supplemented with 15% fetal bovine serum and
antibiotics (penicillin/streptomycin) (Weise and Liehr, 2017). To
enable single-chromatid-directed FISH, the following protocol was
used: each of the nine B-cell lymphocyte lines (Table 1) was thawed
and cultivated until confluent. The cell culture medium was replaced
with fresh culture medium containing nucleotide analogs BrdU/
BrdC (dGH cell prep kit, KromaTiD, Longmont, Colorado,
United States, Cat# dGH-0001) for 18 h. Cells were arrested in
the first mitosis with a 1.5-h colcemid block (KromaTiD, Longmont,
Colorado, United States, Cat# COL-001), harvested, and fixed in
freshly made fixative (3:1 methanol: acetic acid). Metaphase spread
preparation and subsequent UV and exonucleolytic treatments were
performed to selectively remove the analog-incorporated daughter
strands according to published dGH protocols (Ray et al., 2013).
Standard chromosome preparation was then carried out from the
cell cultures of the B-lymphocytes (Weise and Liehr, 2017).

2.2 Probe selection for dGH™

A custom dGH InSite assay, including three unique sub-
centromeric probes, was performed on the samples. Sub-
centromeric probe targets included the following genomic regions:

- subCEP CHR 15q in 15q11.2, chr15:
25,742,858–27,215,190 (GRCh38);

- subCEP CHR 21q in 21q11.1~21.1, chr21:
13,299,000–16,295,000 (GRCh38);

- subCEP CHR 22q: in 22q11.1~11.21, chr22:
15,844,000–19,177,000 (GRCh38).

A standard FISH experiment was conducted on the
chromosome preparations described in Section 3.1.

3 Results

All nine cases with an inverted duplication-shaped sSMC (see
Table 1) were hybridized with the suited chromosome-specific
probes. The obtained results are shown in Figure 1. In all cases,
the normal chromosome pairs for 15, 21, or 22 each showed only a
single-chromatid signal. In cases 1, 2, 7, and 8 with heterochromatic
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sSMCs, the probes used did not span regions present on these
derivative extra chromosomes; therefore, there were no detectable
signals on them. In each of the other five cases, there were specific
double-chromatid signals on the inverted duplicated sSMCs,
confirming their inverted duplication shape.

4 Discussion

sSMCs and their analysis in diagnostics represent an
established approach (Liehr, 2023). In this study, inverted

duplicated sSMCs were analyzed for the first time using single-
chromatid FISH. The results show that this approach can provide
visual, easy-to-interpret information on the orientation of small,
closely co-localized DNA segments. In all five cases of euchromatic
sSMCs, the reverse orientation of the duplicated segments clearly
showed up as double-chromatid signals rather than single-
chromatid signals on the sSMCs. This is the expected result
when two closely adjacent DNA segments are aligned in
opposite orientations. In the case of direct—or
tandem—duplication, a double signal would be visible on only
one of the two chromatids. The signal would appear similar to that

TABLE 1 List of nine B-cell lymphocyte lines used in this study, their karyotype, and the structure of the sSMCs.

Number Cell line name Karyotype sSMC

1 13L0187/EKF-#15-q11.1/14-i mos 47,XY,+mar[63]/46,XY[1] inv dup(15)(q11.1)

2 12L0112/EKF-#15-q11.1/3-i 47,XX,+mar[99]/46,XX[1] inv dup(15)(q11.1)

3 12L0141/EKF-#15-q12/1-i 47,XY,+mar[100] inv dup(15)(q12)

4 12L0131/EKF-#15-q14/1-i 47,XX,+mar[49]/46,XX[1] inv dup(15)(q14)

5 11L369/EKF-#15-q14q13.2q13.3/1-i 48,XY,+marx2[50] der(15)(pter→q13.1~13.2::q13.3→
q14::q14→q13.3::q13.1~13.2→pter)

6 12L0092/EKF-#21-q11.2/1-i 47,XY,+mar[149]/46,XY[1] inv dup(21)(q11.2)

7 2008B246/EKF-#22-q11.1/4-i 47,XX,+mar[51] inv dup(22)(q11.1)

8 12L0109/EKF-#22-q11.1/8-i 47,XY,+mar mat[50] inv dup(22)(q11.1)

9 05PO209/EKF-#22-q11.21/1-i 47,XX,+mar[48]/46,XX[2] inv dup(22)(q11.21)

FIGURE 1
Results of single-chromatid FISH (dGH)™ obtained in nine sSMC cases listed in Table 1. All normal chromosomes show only one signal in one
chromatid, while all euchromatic sSMCs (cases 3–6 and 9), due to their inverted duplicated structure, show signals on both chromatids.
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of the normal chromosomes shown in Figure 1: a signal on only
one chromatid, with the duplicated region appearing more intense.

In research, sSMCs and other chromosomal rearrangements
with duplications often pose a challenge (Liehr, 2021; Liehr, 2023).
Although in an sSMC, its inverted duplicated nature can be implied
by banding cytogenetics, this is not valid in many other cases with
intrachromosomal duplications. Considering that inversions
combined with duplications may contribute to significant
changes in gene expression (as noted in the Introduction), this
research demonstrates that the directional information provided
using the KromaTiD dGH™ method offers a versatile approach for
investigating such rearrangement.

The KromaTiD method of single-chromatid FISH (dGH™)
provides an advanced cytogenetic solution for characterizing
sSMCs, in addition to intrachromosomal duplication events, and
can be considered a new and easy-to-use approach to solve questions
on the orientation of small chromosomal rearrangements. Yet, the
bottleneck in single-chromatid FISH approaches has been the (non-)
availability and high cost of suited DNA probes (Goodwin and
Meyne, 1993; Bailey et al., 2004; Williams et al., 2011; Rubtsov and
Zhdanova, 2017).With a commercial option offering a wide range of
DNA probes for single-chromatid FISH, individual cases with small
CNVs as gains from copy numbers are also accessible in this way.

In conclusion, the present study has shown that small inverted
duplications can be clearly ascertained by directional genomic
hybridization (dGH)™. In addition to this application, the model
system of “inverted duplicated sSMCs” will also be suitable for
determining the orientation of small tandem duplications. The latter
are of particular interest as the clinical impact of the orientation of
tandem duplications has not been accessible so far but could
influence the effects on TADs (Rajderkar et al., 2023).
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