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Objective: This study seeks to understand type 2 diabetes (T2D) heterogeneity
through detailed phenotypic characterization of various T2D genetic subtypes
using advanced magnetic resonance imaging (MRI) techniques.

Study design and method: MRI data from over 44,000 UK Biobank participants
was used to characterize distinct T2D genetic subtypes based on a compendium
of imaging-derived phenotypes (IDPs) quantifying body fat distribution, organ
volumes, and muscle quality. Partitioned polygenic risk scores (pPS) representing
genetic T2D subtypes were associated with adipose tissue distribution across ten
compartments, liver and pancreas volume, three muscle mass indices, and fatty
acid composition in subcutaneous and visceral fat.

Results: Subtype pPS marked by insulin deficiency were associated with lower
subcutaneous fat, while insulin resistance subtypes were associated with higher
adiposity with evidence of fat excess in multiple organs, including the pancreas,
paraspinal muscle, thighmuscle, iliopsoas muscle, and other organs not routinely
quantified at scale in human cohorts. Distinct patterns of muscle mass and fatty
acid composition further differentiated subtype pPS, underscoring variation in
metabolic profiles linked to specific genetic pathways.

Conclusion: The use of non-invasive MRI to phenotype T2D at a granular level
has provided unique insights into the disease’s heterogeneity, confirming and
expanding upon known genetic associations. These findings highlight the
potential of using MRI for pathophysiological insights into T2D.
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Introduction

Type 2 diabetes (T2D) is a clinically and biologically heterogeneous disease, with
wide variation in age of onset, progression, severity of complications, and treatment
response. While lifestyle and environmental factors play a substantial role, genetic
variation significantly contributes to individual susceptibility and disease
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presentation. Recent Genome-Wide Association Studies
(GWAS) for T2D identified over 600 genetic risk loci that
influence clinical symptoms often through cell-type specific
genes (Suzuki et al., 2024; Smith et al., 2024; Mahajan et al.,
2022; Vujkovic et al., 2020). These and other recent
advancements are enabling a more personalized approach for
T2D management by integrating clinical features and
biomarkers with genomic data to identify and differentiate
between diabetes subtypes.

Building on these advances, the T2D Global Genetics
Initiative Consortium conducted an extensive GWAS using
data from over 2.5 million individuals of diverse ancestries and
identified 1,289 variants associated with T2D (Suzuki et al.,
2024). Using 37 cardiometabolic phenotypes, these variants
were then clustered into eight distinct genetic subtypes. Three
of the clusters were linked to β-cell dysfunction – defined by
differing relationships with proinsulin (PI), a precursor of insulin
that reflects β-cell processing capacity. These included a subtype
with elevated proinsulin levels (beta cell +PI), one with low
proinsulin (beta cell −PI), and a residual glycaemic cluster
with neutral PI levels. These distinctions capture variation in
insulin production and secretion capacity, which is central to the
development of T2D in individuals whose beta cells fail to
maintain glycaemic control, even in the absence of
pronounced insulin resistance.

The remaining five clusters were characterised by features of
insulin resistance, highlighting the heterogeneity in the ways
tissues fail to respond to insulin. These subtypes were labelled
according to their predominant phenotype: higher overall body fat,
features of metabolic syndrome (e.g., dyslipidaemia,
hypertension), obesity, lipodystrophy (impaired peripheral fat
storage with ectopic lipid accumulation), and aberrant liver and
lipid metabolism. Although traditionally viewed as separate
mechanisms, many individuals with T2D present features of
both impaired insulin secretion and insulin resistance, and their
interplay can influence disease severity and treatment response.
These genetic subtypes provided a new framework through which
to study T2D, recognising that individuals with the same clinical
diagnosis may present markedly different underlying
pathophysiological drivers.

Despite these advances, it remains unclear how these genetic
subtypes translate into differences in physiological traits
measurable in vivo. Abdominal magnetic resonance imaging
(MRI) offers an opportunity to address this gap by providing
precise, non-invasive quantification of body fat distribution, organ
size, muscle quality, and fatty acid composition. This study used
abdominal MRI acquisitions from over 44,000 individuals in the
UK Biobank to measure twenty imaging-derived phenotypes
(IDPs) across major tissues and organs. Using deep learning-
derived metrics, we examined the relationship between T2D
genetic subtypes and organ-specific imaging traits—including
intramuscular fat and skeletal muscle mass, internal organ
volumes, and ectopic fat depots. Detailed phenotypic profiling
using neck-to-knee, non-invasive medical imaging enabled an
understanding of how certain genetic configurations may
influence the distribution of fat and muscle throughout
the human body.

Methods

Study overview

20 IDPs were quantified from abdominal MRI scans using deep
learning in the UK Biobank imaging cohort (44,646; Table 1)
(Littlejohns et al., 2020). These IDPs included measures of
subcutaneous adipose tissue (total, abdominal, and thigh),
visceral adipose tissue, intramuscular adipose tissue (total, and
thigh), liver Proton Density Fat Fraction (PDFF), pancreas PDFF,
pancreas volume, vertebral bone marrow PDFF, paraspinal muscle
PDFF, total adipose tissue volume, total muscle index, thigh muscle
index, and iliopsoas muscle index. Other IDPs included fatty acid
composition traits: fractions of monounsaturated fatty acids,
polyunsaturated fatty acids, and saturated fatty acids in both
abdominal subcutaneous adipose tissue and visceral adipose
tissue compartments. Participants who self-identified as a race/
ethnicity group with n < 200 total participants (intersected with
imaging data) were not included in partitioned polygenic score
(pPS) analyses due to a lack of statistical power. Participants with
incomplete demographic information or genetic data were excluded.
We explored associations between IDPs and cluster-specific pPS in
European (n = 37,860), South Asian (n = 452), admixed African (n =
224), and East Asian (n = 207) ancestries as described below.

Abdominal MRI-derived traits

This study focused on the neck-to-knee Dixon MRI acquisition,
the single-slice multi-echo sequences of the pancreas and liver, and
the T1-weighted pancreas volume (Littlejohns et al., 2020). Single-
slice acquisitions included the Iterative Decomposition ofWater and
Fat with Echo Assymetry and Least-Squares Estimation (IDEAL)
and the gradient echo (GRE). This analysis utilized 44,646 datasets
available as of June 2022, athough a total of 100,000 datasets are the
ultimate goal of the UK Biobank imaging study. Segmentation of
organs from the 3D Dixon volumes was accomplished using a
previously published 3D U-Net model (Liu et al., 2021). Briefly,
for the liver segmentation, used to quantify PDFF from the single-
slice data, a 2DU-Net model was trained on the GRE acquisition. 3D
pancreas segmentation was performed on the high-resolution T1w
3D acquisition, which had better contrast and resolution than was
available from the Dixon data. A 2Dmask was then derived from the
3D pancreas segmentation. Deep learning models were also used to
calculate measures of iliopsoas, thigh, and total muscle volume and
thigh IMAT (Thanaj et al., 2024a). Muscle volumes and IMAT were
indexed to body size by dividing by height squared. Quantification of
fatty acid composition of subcutaneous and visceral adipose tissue
was measured from the single-slice multi-echo pancreas acquisition
(Thanaj et al., 2024b).

Vertebral bone marrow PDFF was derived from the intersection
of the quantitative single-slice scan acquired for the liver with the 3D
vertebral volume. To segment vertebral bone marrow we developed
a deep-learning model trained on manual vertebrae annotations
from T1 to S1 on the Dixon MRI data from 120 participants. The
model achieved a Dice similarity coefficient of 0.83 on a 20% test
dataset. Vertebral bone marrow segmentations were then projected
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onto the single-slice liver acquisition to define a region of interest for
extracting median vertebral bone marrow PDFF. Quality control
steps excluded participants with missing or non-intersecting slices
(n = 17,462), and those with segmentations covering fewer than
64 voxels (1.9 cm2 area; n = 447) (Parkinson et al., 2025).

Partitioned polygenic scores

We derived partitioned polygenic scores (pPS) to represent each
of the eight genetic T2D subtypes identified by the T2D Global
Genetics Initiative Consortium (T2DGGI) (Suzuki et al., 2024). This
large-scale GWAS, conducted in 2,535,601 individuals of diverse
ancestries, identified 1,289 independent loci significantly associated
with T2D (p < 5e−8). These loci were grouped into eight
mechanistically distinct clusters using unsupervised clustering
based on 37 cardiometabolic phenotypes, which included
glycaemic and lipid traits, anthropometric and blood pressure
measures, biomarkers of liver function, body fat percentage, and
imaging-derived phenotypes of visceral adipose tissue, abdominal
subcutaneous adipose tissue, gluteofemoral adipose tissue, and liver
PDFF (Suzuki et al., 2024). Among these 37 phenotypes, 10.8% (n =
4) were derived from imaging data. Only one (2.7%) of these the
phenotypes overlapped with our previous publication, of liver PDFF
(Liu et al., 2021), while the remaining three IDPs were reported in

another study (Agrawal et al., 2022). A maximum possible sample
overlap between the original T2D study and this study is 1.5% of the
original study sample or n = 38,312 samples.

The T2D-GGI study found eight distinct T2D genetic subtypes:
three subtypes were characterised by β-cell dysfunction (beta cell +PI,
beta cell −PI, and residual glycaemic) and five subtypes were associated
with different aspects of insulin resistance (obesity, body fat, metabolic
syndrome, lipodystrophy, and liver/lipidmetabolism). The beta cell +PI
and −PI subtypes displayed opposing associations with proinsulin,
whereas the residual glycaemic cluster shared some glycaemic traits
but was not associated with proinsulin levels. The insulin resistance
clusters were defined based on distinct profiles of lipid and
anthropometric traits, with the metabolic syndrome cluster also
characterised by lower gluteofemoral adipose tissue (Suzuki et al., 2024).

We generated pPSs for each individual in our study cohort by
calculating a weighted sum of genotype dosages for variants
belonging to each subtype. Specifically, we downloaded the
summary statistics from the T2D-GGI study (Suzuki et al., 2024)
via the DIAGRAM consortium website (https://www.diagram-
consortium.org/) on 1 April 2024 and harmonised variant IDs to
dbSNP v140 (https://ftp.ncbi.nlm.nih.gov/snp/). Of the
1,289 significant variants, 1,282 (99.4%) were polymorphic in the
UK Biobank imaging cohort (n = 43,491) with imputed genotype
data available. Ancestry groups were defined using the UK Biobank’s
genetic principal components and reference groupings (https://

TABLE 1 20 MRI-derived phenotypes of body composition include adipose tissue depots, muscle quality and indices, and organ volume, in addition to fatty
acid composition of adipose tissues.

Phenotype Description Unit

Total SAT Total subcutaneous adipose tissue volume mL

Abdominal SAT Abdominal subcutaneous adipose tissue volume mL

Thigh SAT Thigh subcutaneous adipose tissue volumes mL

Visceral adipose tissue Visceral adipose tissue volume mL

Liver PDFF Liver proton density fat fraction %

Pancreas PDFF Pancreas proton density fat fraction %

Pancreas volume Pancreas volume mL

Thigh IMAT index Thigh intramuscular adipose tissue (IMAT) volume, divided by height2 index (L/m2)

Vertebral bone marrow PDFF Vertebral bone marrow proton density fat fraction %

Paraspinal muscle PDFF Paraspinal muscle proton density fat fraction %

Internal adipose tissue Internal adipose tissue volume mL

Total muscle mass index Total muscle volume, divided by height2 index (L/m2)

Thigh muscle mass index Thigh muscle volume, divided by height2 index (L/m2)

Iliopsoas muscle mass index Iliopsoas muscle volume, divided by height2 index (L/m2)

fSFA (abdominal subcutaneous adipose tissue) Fraction of fatty acids that are saturated fatty acids in subcutaneous adipose tissue %

fMUFA (abdominal subcutaneous adipose tissue) Fraction of fatty acids that are monounsaturated fatty acids in subcutaneous adipose tissue %

fPUFA (abdominal subcutaneous adipose tissue) Fraction of fatty acids that are polyunsaturated fatty acids in subcutaneous adipose tissue %

fSFA (visceral adipose tissue) Fraction of fatty acids that are saturated fatty acids in visceral adipose tissue %

fMUFA (visceral adipose tissue) Fraction of fatty acids that are monounsaturated fatty acids in visceral adipose tissue %

fPUFA (visceral adipose tissue) Fraction of fatty acids that are polyunsaturated fatty acids in visceral adipose tissue %
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biobank.ndph.ox.ac.uk/ukb/dset.cgi?id=2442). Field 22006 was
provided by the UK Biobank (Bycroft et al., 2018). The pPS for
each individual i and cluster k was calculated using the formula:

pPSik � ∑
m

j�1
Gij cjk+βj( )

where pPSik is the polygenic score for individual i in each of k
clusters in 1≤ k≤ 8; c is a binary indicator variable, c ∈ 0, 1{ }, which
indicates cluster membership for each variant j in cluster k as
identified in the T2D-GGI study (Suzuki et al., 2024); βj is the effect
size of variant j in the T2D-GGI GWASmeta-analysis (Suzuki et al.,
2024); and Gij is the imputed genotype dosage for individual i at
variant j , aligned to the T2D-risk increasing allele. To incorporate
effect sizes according to cluster membership, the Hadamard product
(c+β) was calculated in python using the numpy package, such that
the effect sizes of non-cluster containing variants were reduced to
zero. pPS calculations using individual-level imputed genotype
dosages were then implemented in PLINK1.9 using the --score
command, using individual-level genotypes in European (n =
37,860), South Asian (n = 452), admixed African (n = 224), and
East Asian ancestries (n = 207) with complete covariates and
available imputed genotype data. Initial analysis was performed
in the European ancestry group, and replication was performed in
non-European ancestry groups.

Correlation analysis

Correlation analysis was performed in R v.4.2. Out of n =
44,646 participants, n = 22,830 had complete phenotypic
information across 20 IDPs, in addition to abdominal SAT and
VAT expressed as indices (i.e., divided by height (Smith et al.,
2024)). All participants with available phenotype data were included.
Pearson correlation coefficients were determined using the corrplot
package. Correlation between IDPs with BMI adjustment was
performed using linear regression (y ~ x + BMI), where x and y
are pairs of IDPs. MRI-derived traits were standardized except for
PDFF traits which were rank-normalized.

Regression modeling

Linear regression was performed in R v.4.2. MRI-derived traits
were standardized except for PDFF of liver, pancreas, paraspinal
muscle and vertebral bone marrow, which were rank-normalized.
MRI-derived traits were regressed on standardized pPS, adjusted for
imaging age, biological sex, height, imaging center, T2D status, and
the first five principal components (PCs) of genetic ancestry,
calculated separately for each ancestry group. For stratified
analysis, individuals with BMI ≥ 25 and BMI < 25 were
regressed separately. Sex-specific analysis was performed using
biological sex (field 31). Sensitivity analysis was performed by
additionally adjusting for BMI in both sex-stratified and overall
models. For fatty acid fraction traits, blood plasma quantification in
the UK Biobank (fields 23454, 23453, 23455) was used as a control,
and blood plasma fatty acid fraction regression models were
adjusted for age, sex, T2D status, and the first five PCs of genetic

ancestry. Z-scores were calculated by dividing standardized β by
standard error. Associations were visualized using the
ggplot2 package.

Estimating genetic differentiation

Fixation index was estimated using Hudson’s method,
calculating variance components separately using the ratio-of-
averages approach (Bhatia et al., 2013). Fixation index can be
used to understand the degree to which populations are
genetically distinct from one another, as well as to understand
departures from expected heterozygosity at the individual variant
level. FST is defined as

FST � HT −HS

HT

where HT is the expected heterozygosity for the entire population
and HS is the expected heterozygosity within each population. We
estimated fixation index using Hudson’s method within the UK
Biobank (n = 6,752 individuals of admixed African ancestry, n =
9,064 South Asians, and n = 2,783 individuals of East Asian
ancestry), using return 2442 (https://biobank.ndph.ox.ac.uk/ukb/
dset.cgi?id=2442) to define groups. For individual variants, we
estimated Hudson’s FST using the following estimator,

FHudson
ST � p1 − p2( )2 − p1 1−p1( )

n1−1 − p2 1−p2( )
n2−1

p1 1 − p2( ) + p2 1 − p1( )

where pi is the estimated allele frequency in group i for i ∈ 1, 2{ } (2).
Fixation indices were calculated for each variant and each pair of
populations using 1,254 type 2 diabetes risk variants ascertained in
the admixed African ancestry cohort. For clusters of variants, we
used a ratio of averages approach, calculating the variance
components separately. Leave-one-out resampling was used to
estimate the sampling distribution and calculate standard error
for each cluster of variants and each pair of populations.

Permutation testing

To permute the dataset while maintaining the structure between
continuous outcomes and covariables such as age and sex,
1,000 random genetic clusters were generated by sampling
without replacement from all 1,282 polymorphic variants, using a
cluster size of m = 160 variants, the mean size of the original clusters.
1,000 permutation polygenic scores were calculated as described
above and regression modeling was performed to simulate the null
of no relationship between polygenic score and outcome. Type I
error rate was measured as the proportion of times the permutation
p-values were as small or smaller than p = 5e−5, the study
significance threshold.

Results

This study utilizes non-invasive abdominal and neck-to-knee
MRI techniques in a population-based cohort to quantify 20 IDPs

Frontiers in Genetics frontiersin.org04

Sorokin et al. 10.3389/fgene.2025.1605721

https://biobank.ndph.ox.ac.uk/ukb/dset.cgi?id=2442
https://biobank.ndph.ox.ac.uk/ukb/dset.cgi?id=2442
https://biobank.ndph.ox.ac.uk/ukb/dset.cgi?id=2442
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2025.1605721


relevant to type 2 diabetes (n = 44,646). These imaging traits include
precise measures of fat in seven anatomical locations (visceral,
subcutaneous, liver, pancreas, thigh, paraspinal muscle, and
vertebral bone marrow), pancreas volume, skeletal muscle volume
and skeletal muscle quality, and fatty acid composition in visceral
and abdominal subcutaneous adipose tissues (Figure 1; Table 1).
Baseline demographic and clinical characteristics of the study
population are summarised in Supplementary Table S1. Pairwise
covariance analyses revealed moderate but incomplete correlations
across IDPs (Supplementary Figure S1).

To explore the anatomical differences between genetic subtypes
of T2D, we assessed associations between each subtype’s pPS and the
MRI-derived traits, stratified by genetic ancestry: European (n =
37,860), South Asian (n = 452), admixed African (n = 224), and East
Asian (n = 207). We adopted a significance threshold of p < 5e−5,
corresponding to a 5.2% type I error rate based on permutation
testing (seeMethods). In the European cohort, the beta cell +PI pPS
was associated with lower muscle mass (e.g., total muscle index,
β = −0.016, p = 1.8e−7). In contrast, the residual glycaemic genetic
pPS was associated with higher muscle mass indices including of the
thigh region (β = 0.021, p = 1.1e−10) (Figure 2;
Supplementary Table S2).

Among the insulin resistance subtypes, the body fat pPS and
obesity pPS were associated with systemic fat accumulation,
including in both subcutaneous and visceral adipose tissues, as

well as ectopic fat deposition in the pancreas (p < 5e−5 for all).
The obesity pPS was also distinctly associated with higher muscle
mass indices (e.g., total muscle: standardized β = 0.050, p = 1.2e−55).
The metabolic syndrome pPS was associated with lower thigh
subcutaneous adipose tissue (β = −0.058, p = 1.7e−40), higher fat
deposition in ectopic sites such as the liver (β = 0.040, p = 7.8e−18)
and visceral adipose tissue (β = 0.023, p = 6.6e−8). The
lipodystrophy pPS was associated with lower subcutaneous
adipose tissue in both the thigh (β = −0.10, p = 1.8e−109) and
abdomen (β = −0.050, p = 9.1e−26), higher liver PDFF (β = 0.029,
p = 3.4e−1), and higher muscle mass indices (e.g., thigh muscle: β =
0.039, p = 4.9e−32) (Figure 2; Supplementary Table S2).

To understand the implications of long-chain fatty acid
metabolism for T2D subtype pPS, we explored associations with
saturated, monounsaturated and polyunsaturated fatty acids,
measured as fraction of total fatty acids, in both visceral adipose
tissue and abdominal subcutaneous adipose tissue. Plasma fatty acid
fraction is provided, although a limitation of this comparison is that
these traits were measured from blood collected at baseline (Julkunen
et al., 2023). In the European cohort, both the metabolic syndrome
pPS and obesity pPS were associated with higher monounsaturated
fatty acids and lower saturated fatty acids in visceral adipose tissue
(p < 5e−5; Figure 3; Supplementary Table S3).

Sex-stratified analysis revealed that several associations between
subtype pPS and imaging phenotypes were sex-specific. For

FIGURE 1
Segmentation of adipose tissue depots, internal organs, and muscles from deep learning of abdominal MRI scans. (A) Representative three-
dimensional MRI acquisition of the abdomen, extending from the neck to the knee. (B) Organs segmented from deep learning models: visceral adipose
tissue (magenta), subcutaneous adipose tissue (yellow), liver (purple), pancreas (orange), total muscle (light pink), iliopsoas muscle (red), vertebral bone
marrow (cyan blue), intervertebral discs (light orange), thigh intramuscular adipose tissue (IMAT) (dark blue). (C) Representative two-dimensional MRI
acquisition of the liver (purple) with vertebral bone marrow (cyan blue), and paraspinal muscle (green). (D) Representative two-dimensional MRI
acquisition of the pancreas (orange).
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instance, the association between the metabolic syndrome pPS and
visceral adipose tissue was stronger in women (β = 0.041, p = 4.5e−9)
(Supplementary Figures S2, S3; Supplementary Table S4). Overall,
the findings remained consistent following BMI stratification
(Supplementary Figures S4, S5; Supplementary Table S5). To
assess the robustness of associations, we conducted sensitivity
analyses adjusting for BMI in both overall and sex-stratified
models (Supplementary Figures S6–S9; Supplementary Tables S6,
S7). Furthermore, associations with abdominal subcutaneous and
visceral adipose tissues remained stable when these traits were re-
expressed as indices in modified regression models (Supplementary
Figure S10; Supplementary Table S8).

Few genetic associations replicated in non-European groups, which
were all of small sample size of less than 500 participants, such as the
association between the liver/lipid metabolism pPS and higher liver
PDFF in South Asians (β = 0.22, FDR < 0.05) (Supplementary Table
S9). However, ancestry-specific differences in T2D risk profiles have
been recently reported (Smith et al., 2024). To develop a theoretical
expectation of how well each subtype score might replicate in well-
powered non-European cohorts, genetic distance measured as Fixation
index (FST) was calculated between large, ancestrally diverse
populations including African, South Asian, East Asian, and
European ancestries (n > 2,000 for each). In all pairwise
comparisons between ancestrally diverse populations, we found the
lowest FST for the lipodystrophy cluster of variants: for example, 0.018

(s.e. 1e−4) for Europeans vs South Asians, 0.051 (s.e 2e−4) between
Europeans and East Asians, and 0.063 (3e−4) between Europeans and
admixed African ancestry individuals (Figure 4; Supplementary Table
S10). For context, these estimates are lower than prior genome-wide FST
estimates, also obtained using Hudson’s estimator, between ancestrally
diverse populations (Bhatia et al., 2013). This result suggests that the
lipodystrophy pPS may be expected to have higher cross-population
prediction accuracy than the other pPS for T2D.While it is well-known
that genetic distance from the original study population affects genomic
prediction accuracy (Scutari et al., 2016; Martin et al., 2017; Ding et al.,
2023), this result raises the question of whether the polygenic score
portability problemmay concievably extend to risk prediction subtypes,
even when all partitioned risk scores are derived from the same GWAS
summary statistics.

Discussion

In this study, we examined the relationships between partitioned
polygenic scores (pPS) representing eight genetic subtypes of T2D
(Suzuki et al., 2024), and a comprehensive panel of imaging-derived
body composition traits. These traits extend beyond traditional
anthropometric measures to include regional adiposity (visceral,
subcutaneous, hepatic, pancreatic, thigh, paraspinal muscle, and
vertebral bone marrow fat), pancreas volume, skeletal muscle size

FIGURE 2
Associations betweenMRI-derivedmeasures of body composition and eight genetic subtypes of type 2 diabetes. Body fat composition traits derived
from neck-to-knee three-dimensional MRI acquisition or quantitative slices of the liver and pancreas. Internal fat is DIXON-derived whole body
intramuscular fat. Beta-cell failure clusters include dysfunction with a positive association with proinsulin (beta cell +PI), negative association with
proinsulin (beta cell −PI), or neutral (residual glycemic). Insulin resistance clusters include mediation by body fat, obesity, lipodystrophy, metabolic
syndrome, and liver/lipid metabolism. The ‘temperature’ of each cell represents the Z-scores (aligned to the type 2 diabetes risk allele) from the
standardized effect sizes of the regressionmodel for European participants (n = 37,860). The significance threshold was p < 5e−5, which corresponded to
a study-wide estimated type 1 error rate of 5.2% (seeMethods). Significant associations are labelled with their corresponding p-value. SAT, subcutaneous
adipose tissue. VAT, visceral adipose tissue. PDFF, proton density fat fraction. VBM, vertebral bone marrow.
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and quality, and fatty acid composition in visceral and abdominal
subcutaneous adipose tissues. This comprehensive, quantitative
body composition provides insights into the differences between
insulin deficiency and insulin resistance pathways and identifies
distinctive features of each subtype.

Insulin deficiency subtype pPS, defined by impairments in
proinsulin synthesis, processing, or secretion, were consistently
associated with reduced subcutaneous fat without compensatory
ectopic fat accumulation. The associations of the beta cell +PI pPS
with lower muscle mass may reflect poorer overall metabolic health

FIGURE 3
Associations between MRI-derived measures of fatty acid composition and eight genetic subtypes of type 2 diabetes. fPUFA, fraction of
polyunsaturated fatty acids. fMUFA, fraction of monounsaturated fatty acids. fSFA, fraction of saturated fatty acids. ASAT, abdominal subcutaneous
adipose tissue. VAT, visceral adipose tissue. Blood plasma quantification is shown for comparison. The ‘temperature’ of each cell represents the Z-scores
(aligned to the type 2 diabetes risk allele) from the standardized effect sizes of the regression model for European participants (n = 37,860).
Significant associations (p < 5e−5) are labelled.

FIGURE 4
Allelic differentiation across ancestry groups for each cluster of type 2 diabetes variants. Fixation index measured using Hudson’s estimator for pairs
of the following populations: European (n = 37,860), South Asian (n = 9,064), and East Asian (n = 2,783) ancestry, in each case using an African ancestry
group (n = 6,752) as a common ancestral population. 95% confidence intervals estimated using jackknife resampling are shown.
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or reduced insulin-mediated muscle accretion during puberty,
potentially arising from underlying defects in insulin synthesis or
signalling (Sylow et al., 2021). These findings reinforce the notion
that insulin deficiency can independently drive T2D development,
without necessitating ectopic fat accumulation.

Insulin resistance subtypes—including body fat, obesity,
metabolic syndrome, lipodystrophy, and liver/lipid
metabolism—were characterised by systemic fat accumulation
across multiple depots, with varying patterns of muscle mass.
The obesity pPS, for example, was uniquely associated with
increased muscle mass, possibly reflecting compensatory
hypertrophy or behavioural/lifestyle factors such as physical
activity or metabolic processes. This distinction from the body fat
pPS supports previous evidence that the biological pathways linking
obesity and T2D are heterogeneous (Abraham et al., 2024; Ji et al.,
2019; Martin et al., 2021; Martin et al., 2022; Odoemelam et al., 2025;
Yaghootkar et al., 2016). The lipodystrophy pPS was marked by low
subcutaneous fat and elevated liver PDFF, consistent with the
metabolic features of monogenic lipodystrophy (Gonzaga-
Jauregui et al., 2020). The liver/lipid metabolism pPS was
predominantly associated with increased liver PDFF, signaling a
disruption in liver lipid metabolism that is a key feature of metabolic
dysfunction-associated steatotic liver disease (Byrne and Targher,
2015). The metabolic syndrome pPS showed a distinct pattern of
ectopic fat accumulation (visceral and hepatic) combined with
reduced subcutaneous fat, reflecting a redistribution of fat that
may contribute to systemic metabolic dysregulation
(Shulman, 2014).

Differences in adipose tissue fatty acid composition further
distinguished T2D subtype pPS. The link between insulin
deficiency subtype pPS and elevated saturated fatty acid fraction
in adipose tissues could be due to the role of insulin in regulating
fatty acid desaturases, with preclinical studies suggesting insulin
deficiency reduces the activity of Δ9, Δ6, and Δ5 desaturases thus
leading to a higher level of fatty acid saturation (Vessby et al., 2002).
The association of most resistance subtype pPS with higher
monounsaturated fatty acids and lower saturated fatty acids in
adipose tissues may be explained by the higher stearoyl-CoA
desaturase 18:1/18:0 desaturase index reported in subjects with
insulin resistance, which would result in a higher fraction of
monounsaturated fatty acids (Sjögren et al., 2008; Warensjö
et al., 2009). Differences in the ratio of saturated and unsaturated
fatty acids could also have implications for relative inflammatory
responses across these subtype risk profiles.

This study has some limitations. The lack of robust replication in
non-European ancestry groups is likely attributable to limited
sample sizes and reduced statistical power. Broader multi-
ancestry imaging cohorts are needed to validate these findings.
The largest possible sample overlap between the original T2D
GWAS meta-analysis and this study corresponds to 1.5% of the
original study sample; additionally, the imaging phenotypes
examined here contributed minimally (2.7%) to the
cardiometabolic traits used to define T2D subtypes in the original
study (Suzuki et al., 2024). Although we applied stringent
significance thresholds supported by permutation testing to
mitigate type I error, potential circularity remains a
consideration. Moreover, while MRI provides high-resolution
anatomical and compositional data, it does not capture dynamic

physiological, cellular, or molecular processes that may further
differentiate subtypes. Of relevance, bone marrow fat is estimated
to account for roughly 10% of total fat mass in lean adults and this
study examines only one marrow fat depot, as opposed to
quantifying multiple fat depots as has been done previously
(Cawthorn et al., 2014; Xu et al., 2025). Finally, this study
employs a population-level analytical framework, which may
limit direct clinical translation to individual with T2D without
further contextualisation. The mechanisms underlying the
associations in this study remain speculative without further
experimental validation.

Our findings demonstrate that cohort-based medical imaging
can detect subtle and large-scale anatomical and metabolic
differences between subtypes of a complex disease such as T2D.
This supports the broader application of quantitative imaging for
non-invasive disease stratification and highlights its potential to
refine our understanding of T2D pathophysiology. This work has
implications for the utility of quantitative MRI in the non-invasive,
whole-body characterization of complex diseases more broadly and
may also inform future strategies to phenotypically profile disease
subtypes in response to therapeutic intervention.

Novelty statement

What is already known? Type 2 diabetes (T2D) is
heterogeneous, with multiple genetic subtypes and variable
phenotypic presentations.

What this study has found? Using abdominal MRI acquisitions
and 20 quantitative traits from nine organs/tissues in a large
population-based cohort, we uncovered distinct differences in fat
distribution, muscle quality, pancreas volume, and fatty acid
composition across T2D subtype partitioned polygenic scores (pPS).

What are the implications of the study? Quantitative imaging
can non-invasively delineate subtype-specific profiles in T2D,
advancing our understanding of disease heterogeneity and
informing personalized management or therapeutic intervention
strategies.

Data availability statement

The datasets presented in this study can be found in online
repositories. The names of the repository/repositories and accession
number(s) can be found below: https://ams.ukbiobank.ac.uk/ams/,
UK Biobank (via application).

Ethics statement

The studies involving human subjects were approved by the UK
Biobank, which has approval from the North West Multi-centre
Research Ethics Committee (MREC) to obtain and disseminate data
and samples from the participants (http://www.ukbiobank.ac.uk/
ethics/), and these ethical regulations cover the work in this study.
The studies were conducted in accordance with the local legislation
and institutional requirements. The participants provided their
written informed consent to participate in this study.

Frontiers in Genetics frontiersin.org08

Sorokin et al. 10.3389/fgene.2025.1605721

https://ams.ukbiobank.ac.uk/ams/
http://www.ukbiobank.ac.uk/ethics/
http://www.ukbiobank.ac.uk/ethics/
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2025.1605721


Author contributions

ES: Methodology, Conceptualization, Writing – review and
editing, Formal Analysis, Writing – original draft. MC:
Writing – review and editing. MT: Writing – review and editing.
NB:Writing – review and editing. BW:Writing – review and editing.
NS: Writing – review and editing. ET: Writing – review and editing.
JB: Writing – review and editing. HY: Conceptualization, Writing –
original draft, Writing – review and editing.

Funding

The author(s) declare that financial support was received for the
research and/or publication of this article. HY is funded by Diabetes
UK (grant 23/0006598).

Acknowledgments

This research was conducted using the UK Biobank Resource
under Application Number 44584. We thank Y. Liu, A. Raj and R.
Cohen for comments on the manuscript and UK Biobank volunteers
for their participation in the study.

Conflict of interest

EPS and MC are employees of Calico Life Sciences, LLC. NS has
received grant and personal fees from AstraZeneca, Boehringer

Ingelheim, and Novartis; a grant from Roche Diagnostics; and
personal fees from Abbott Laboratories, Afimmune, Amgen, Eli
Lilly, Hanmi Pharmaceuticals, Merck Sharp & Dohme, Novo
Nordisk, Pfizer, Roche, and Sanofi outside the submitted work.

The remaining authors declare that the research was conducted
in the absence of any commercial or financial relationships that
could be construed as a potential conflict of interest.

Generative AI statement

The author(s) declare that no Generative AI was used in the
creation of this manuscript.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found online
at: https://www.frontiersin.org/articles/10.3389/fgene.2025.1605721/
full#supplementary-material

References

Abraham, A., Cule, M., Thanaj, M., Basty, N., Hashemloo, M. A., Sorokin, E. P.,
et al. (2024). Genetic evidence for distinct biological mechanisms that link adiposity
to type 2 diabetes: toward precision medicine. Diabetes 73, 1012–1025. doi:10.2337/
db23-1005

Agrawal, S., Wang, M., Klarqvist, M. D. R., Smith, K., Shin, J., Dashti, H., et al. (2022).
Inherited basis of visceral, abdominal subcutaneous and gluteofemoral fat depots. Nat.
Commun. 13, 3771. doi:10.1038/s41467-022-30931-2

Bhatia, G., Patterson, N., Sankararaman, S., and Price, A. L. (2013). Estimating and
interpreting FST: the impact of rare variants. Genome Res. 23, 1514–1521. doi:10.1101/
gr.154831.113

Bycroft, C., Freeman, C., Petkova, D., Band, G., Elliott, L. T., Sharp, K., et al. (2018).
The UK Biobank resource with deep phenotyping and genomic data. Nature 562,
203–209. doi:10.1038/s41586-018-0579-z

Byrne, C. D., and Targher, G. (2015). NAFLD: a multisystem disease. J. Hepatol. 62,
S47–S64. doi:10.1016/j.jhep.2014.12.012

Cawthorn, W. P., Scheller, E. L., Learman, B. S., Parlee, S. D., Simon, B. R., Mori, H.,
et al. (2014). Bone marrow adipose tissue is an endocrine organ that contributes to
increased circulating adiponectin during caloric restriction. Cell Metab. 20, 368–375.
doi:10.1016/j.cmet.2014.06.003

Ding, Y., Hou, K., Xu, Z., Pimplaskar, A., Petter, E., Boulier, K., et al. (2023). Polygenic
scoring accuracy varies across the genetic ancestry continuum. Nature 618, 774–781.
doi:10.1038/s41586-023-06079-4

Gonzaga-Jauregui, C., Ge, W., Staples, J., Van Hout, C., Yadav, A., Colonie, R., et al.
(2020). Clinical and molecular prevalence of lipodystrophy in an unascertained large
clinical care cohort. Diabetes 69, 249–258. doi:10.2337/db19-0447

Ji, Y., Yiorkas, A. M., Frau, F., Mook-Kanamori, D., Staiger, H., Thomas, E. L., et al.
(2019). Genome-wide and abdominal MRI data provide evidence that a genetically
determined favorable adiposity phenotype is characterized by lower ectopic liver fat and
lower risk of type 2 diabetes, heart disease, and hypertension. Diabetes 68, 207–219.
doi:10.2337/db18-0708

Julkunen, H., Cichońska, A., Tiainen, M., Koskela, H., Nybo, K., Mäkelä, V., et al.
(2023). Atlas of plasma NMR biomarkers for health and disease in 118,461 individuals
from the UK Biobank. Nat. Commun. 14, 604. doi:10.1038/s41467-023-36231-7

Littlejohns, T. J., Holliday, J., Gibson, L. M., Garratt, S., Oesingmann, N., Alfaro-
Almagro, F., et al. (2020). The UK Biobank imaging enhancement of
100,000 participants: rationale, data collection, management and future directions.
Nat. Commun. 11, 2624. doi:10.1038/s41467-020-15948-9

Liu, Y., Basty, N., Whitcher, B., Bell, J. D., Sorokin, E. P., van Bruggen, N., et al. (2021).
Genetic architecture of 11 organ traits derived from abdominal MRI using deep
learning. Elife 10, e65554. doi:10.7554/eLife.65554

Mahajan, A., Spracklen, C. N., Zhang, W., Ng, M. C. Y., Petty, L. E., Kitajima, H., et al.
(2022). Multi-ancestry genetic study of type 2 diabetes highlights the power of diverse
populations for discovery and translation.Nat. Genet. 54, 560–572. doi:10.1038/s41588-
022-01058-3

Martin, A. R., Gignoux, C. R., Walters, R. K., Wojcik, G. L., Neale, B. M., Gravel, S.,
et al. (2017). Human demographic history impacts genetic risk prediction across diverse
populations. Am. J. Hum. Genet. 100, 635–649. doi:10.1016/j.ajhg.2017.03.004

Martin, S., Cule, M., Basty, N., Tyrrell, J., Beaumont, R. N., Wood, A. R., et al. (2021).
Genetic evidence for different adiposity phenotypes and their opposing influences on
ectopic fat and risk of cardiometabolic disease. Diabetes 70, 1843–1856. doi:10.2337/
db21-0129

Martin, S., Tyrrell, J., Thomas, E. L., Bown, M. J., Wood, A. R., Beaumont, R. N., et al.
(2022). Disease consequences of higher adiposity uncoupled from its adverse metabolic
effects using Mendelian randomisation. Elife 11, e72452. doi:10.7554/eLife.72452

Odoemelam, C. S., Naz, A., Thanaj, M., Sorokin, E. P., Whitcher, B., Sattar, N., et al.
(2025). Identifying four obesity axes through integrative multi-omics and imaging
analysis. Diabetes 74, 1168–1183. doi:10.2337/db24-1103

Parkinson, J. R., Thanaj, M., Basty, N., Whitcher, B., Thomas, E. L., and Bell, J. D.
(2025). Fat fraction and iron concentration in lumbar vertebral bone marrow in the UK
Biobank. medRxiv. doi:10.1101/2025.03.19.25324245

Frontiers in Genetics frontiersin.org09

Sorokin et al. 10.3389/fgene.2025.1605721

https://www.frontiersin.org/articles/10.3389/fgene.2025.1605721/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fgene.2025.1605721/full#supplementary-material
https://doi.org/10.2337/db23-1005
https://doi.org/10.2337/db23-1005
https://doi.org/10.1038/s41467-022-30931-2
https://doi.org/10.1101/gr.154831.113
https://doi.org/10.1101/gr.154831.113
https://doi.org/10.1038/s41586-018-0579-z
https://doi.org/10.1016/j.jhep.2014.12.012
https://doi.org/10.1016/j.cmet.2014.06.003
https://doi.org/10.1038/s41586-023-06079-4
https://doi.org/10.2337/db19-0447
https://doi.org/10.2337/db18-0708
https://doi.org/10.1038/s41467-023-36231-7
https://doi.org/10.1038/s41467-020-15948-9
https://doi.org/10.7554/eLife.65554
https://doi.org/10.1038/s41588-022-01058-3
https://doi.org/10.1038/s41588-022-01058-3
https://doi.org/10.1016/j.ajhg.2017.03.004
https://doi.org/10.2337/db21-0129
https://doi.org/10.2337/db21-0129
https://doi.org/10.7554/eLife.72452
https://doi.org/10.2337/db24-1103
https://doi.org/10.1101/2025.03.19.25324245
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2025.1605721


Scutari, M., Mackay, I., and Balding, D. (2016). Using genetic distance to infer the
accuracy of genomic prediction. PLoS Genet. 12, e1006288. doi:10.1371/journal.pgen.
1006288

Shulman, G. I. (2014). Ectopic fat in insulin resistance, dyslipidemia, and
cardiometabolic disease. N. Engl. J. Med. 371, 1131–1141. doi:10.1056/NEJMra1011035

Sjögren, P., Sierra-Johnson, J., Gertow, K., Rosell, M., Vessby, B., de Faire, U., et al.
(2008). Fatty acid desaturases in human adipose tissue: relationships between gene
expression, desaturation indexes and insulin resistance. Diabetologia 51, 328–335.
doi:10.1007/s00125-007-0876-9

Smith, K., Deutsch, A. J., McGrail, C., Kim, H., Hsu, S., Huerta-Chagoya, A., et al.
(2024). Multi-ancestry polygenic mechanisms of type 2 diabetes. Nat. Med. 30,
1065–1074. doi:10.1038/s41591-024-02865-3

Suzuki, K., Hatzikotoulas, K., Southam, L., Taylor, H. J., Yin, X., Lorenz, K. M., et al.
(2024). Genetic drivers of heterogeneity in type 2 diabetes pathophysiology.Nature 627,
347–357. doi:10.1038/s41586-024-07019-6

Sylow, L., Tokarz, V. L., Richter, E. A., and Klip, A. (2021). The many actions of
insulin in skeletal muscle, the paramount tissue determining glycemia. Cell Metab. 33,
758–780. doi:10.1016/j.cmet.2021.03.020

Thanaj, M., Basty, N., Whitcher, B., Bell, J. D., and Thomas, E. L. (2024b). MRI
assessment of adipose tissue fatty acid composition in the UK Biobank and its association
with diet and disease. Obes. (Silver Spring) 32, 1699–1708. doi:10.1002/oby.24108

Thanaj, M., Basty, N., Whitcher, B., Sorokin, E. P., Liu, Y., Srinivasan, R., et al.
(2024a). PrecisionMRI phenotyping of muscle volume and quality at a population scale.
Front. Physiol. 15, 1288657. doi:10.3389/fphys.2024.1288657

Vessby, B., Gustafsson, I. B., Tengblad, S., Boberg, M., and Andersson, A. (2002).
Desaturation and elongation of Fatty acids and insulin action. Ann. N. Y. Acad. Sci. 967,
183–195. doi:10.1111/j.1749-6632.2002.tb04275.x

Vujkovic, M., Keaton, J. M., Lynch, J. A., Miller, D. R., Zhou, J., Tcheandjieu, C., et al.
(2020). Discovery of 318 new risk loci for type 2 diabetes and related vascular outcomes
among 1.4 million participants in a multi-ancestry meta-analysis. Nat. Genet. 52,
680–691. doi:10.1038/s41588-020-0637-y

Warensjö, E., Rosell, M., Hellenius, M. L., Vessby, B., De Faire, U., and Risérus, U.
(2009). Associations between estimated fatty acid desaturase activities in serum lipids
and adipose tissue in humans: links to obesity and insulin resistance. Lipids Health Dis.
8, 37. doi:10.1186/1476-511x-8-37

Xu, W., Mesa-Eguiagaray, I., Morris, D. M., Wang, C., Gray, C. D., Sjöström, S., et al.
(2025). Deep learning and genome-wide association meta-analyses of bone marrow
adiposity in the UK Biobank. Nat. Commun. 16, 99. doi:10.1038/s41467-024-55422-4

Yaghootkar, H., Lotta, L. A., Tyrrell, J., Smit, R. A. J., Jones, S. E., Donnelly, L., et al.
(2016). Genetic evidence for a link between favorable adiposity and lower risk of type
2 diabetes, hypertension, and heart disease. Diabetes 65, 2448–2460. doi:10.2337/
db15-1671

Frontiers in Genetics frontiersin.org10

Sorokin et al. 10.3389/fgene.2025.1605721

https://doi.org/10.1371/journal.pgen.1006288
https://doi.org/10.1371/journal.pgen.1006288
https://doi.org/10.1056/NEJMra1011035
https://doi.org/10.1007/s00125-007-0876-9
https://doi.org/10.1038/s41591-024-02865-3
https://doi.org/10.1038/s41586-024-07019-6
https://doi.org/10.1016/j.cmet.2021.03.020
https://doi.org/10.1002/oby.24108
https://doi.org/10.3389/fphys.2024.1288657
https://doi.org/10.1111/j.1749-6632.2002.tb04275.x
https://doi.org/10.1038/s41588-020-0637-y
https://doi.org/10.1186/1476-511x-8-37
https://doi.org/10.1038/s41467-024-55422-4
https://doi.org/10.2337/db15-1671
https://doi.org/10.2337/db15-1671
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2025.1605721

	Genetic subtypes of type 2 diabetes are distinguished through the lens of abdominal MRI
	Introduction
	Methods
	Study overview
	Abdominal MRI-derived traits
	Partitioned polygenic scores
	Correlation analysis
	Regression modeling
	Estimating genetic differentiation
	Permutation testing

	Results
	Discussion
	Novelty statement
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Generative AI statement
	Publisher’s note
	Supplementary material
	References


