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Editorial on the Research Topic
Multi-omics and molecular biology studies on abiotic stress in crops

Introduction

Plants face a multitude of biotic and abiotic stresses that threaten their growth,
development, and productivity. Biotic stresses, such as fungal infections, and abiotic
stresses, including drought, salinity, and temperature extremes, activate complex
molecular networks involving transcriptional reprogramming, metabolic adjustments,
and signaling cascades. Recent advancements in omics technologies have enabled
comprehensive exploration of these mechanisms across diverse plant species. This
review synthesizes findings from six studies on lily (Lilium spp.), licorice (Glycyrrhiza
uralensis), potato (Solanum tuberosum), rice (Oryza sativa), soybean (Glycine max), and
pigeonpea (Cajanus cajan), focusing on their molecular strategies to combat stress. By
integrating transcriptomic, metabolomic, and gene family analyses, we highlight conserved
pathways, species-specific adaptations, and future directions for crop improvement.

Transcriptional and metabolic reprogramming in lily
bulb rot resistance

In this Research Topic Chang et al. showed that Fusarium oxysporum-induced lily bulb
rot triggers dynamic transcriptomic shifts, with 3,922, 7,595, and 6,590 DEGs at early
(LYBH2), mid- (LYBH3), and late-stage (LYBH4) infection, respectively. In this study, key
upregulated TFs—WRKY (regulating lignin via SA/JA signaling; Rushton et al., 1996; Deng
et al., 2023) and AP2/ERF (modulating SA/ET/JA pathways; Ma et al., 2017b) were found to
drive phenylpropanoid-derived antimicrobials.

The metabolomic analysis identified stage-specific flavonoids: Kaempferol-3-O-
rutinoside-7-O-rhamnoside (LYBH2, antibacterial; Ma et al., 2017b), quercetin-3-O-
glucoside (LYBH3, antiviral; Wei et al., 2021), and lignification enhancers (LYBH4;
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Ninfali et al., 2020). Despite upregulated lignin genes (PAL,
CCoAOMT; Sun et al., 2024), minimal metabolite shifts suggest
post-transcriptional regulation.

Soybean drought response: physiology,
transcriptome and metabolome

In the study of Wang et al., drought stress was found to reduce
photosynthesis and water use efficiency (WUE), with non-stomatal
limitations dominating under severe drought (SD). Rehydration
restored WUE in moderate drought (MD) but not severe drought
(SD), indicating irreversible damage (Qi et al., 2021). Moreover, the
chlorophyll fluorescence parameters (Fv/Fm, ΦPSII) mirrored
photosynthetic recovery under drought stress.

The transcriptome analysis in this study, revealed that drought
stress induced the expression of the PAO1, 4, 5 and P5CS genes to
promote the accumulation of spermidine and proline, enhancing
soybean drought tolerance. Moreover, the metabolome analysis also
identified proline, DL-tryptophan, and phenylalanine as key
osmolytes under drought stress. Proline accumulation in MD
plants aligned with barley and wheat studies (Chmielewska et al.,
2016), while tryptophan derivatives may correlate with antioxidant
responses (Rabara et al., 2017). Integrated transcript-metabolite
networks highlighted phenylpropanoid and amino acid pathways
as critical hubs.

MAPK signaling in licorice salt stress
adaptation

Gao et al., revealed that the MAPK cascade, conserved across
eukaryotes, transduces stress signals via phosphorylation (Jagodzik
et al., 2018). In G. uralensis, 21 GuMAPKs were classified into four
subgroups (A–D) based on TEY/TDY activation motifs (López-
Bucio et al., 2014). Subgroups A (GuMAPK3/6) and D
(GuMAPK16) exhibited colinearity with Arabidopsis and tomato
homologs, underscoring evolutionary conservation. Within
GuMAPKs, gene duplication, particularly segmental duplication,
drove functional diversification, as seen in three homologous pairs
(Wang et al., 2021).

Under 200 mMNaCl, GuMAPK5, 7, 9, and 16 were upregulated,
while Bacillus subtilis inoculation further enhanced their expression,
indicating microbial priming of salt tolerance. Protein interaction
networks linked GuMAPKs to PR1 (pathogenesis-related protein)
and RBOHD (ROS-generating NADPH oxidase), bridging biotic
and abiotic stress responses (Yamada et al., 2016). At 300 mMNaCl,
GuMAPK16-2 downregulation post-inoculation suggested stress
threshold modulation.

COLs gene family in potato tuberization
and cold stress

Yin et al., discovered that potato tuberization is regulated by
photoperiod-sensitive StCOL genes (Abelenda et al., 2016).
Phylogenetic analysis classified StCOLs into three subfamilies
with conserved motifs/structures (2–4 exons) and 10 motifs/

6 PTMs affecting protein function. Synteny revealed 13 StCOLs
share a common ancestor, highlighting evolutionary conservation.
Cold-responsive StCOL2, 3, 9, and 15 contained low-temperature
cis-elements. StCOL9 downregulation post-chilling suggests its role
as a negative regulator, akin to AtCOL1 in Arabidopsis (Mikkelsen
and Thomashow, 2009). These genes likely integrate photoperiod
and temperature cues to optimize tuberization under stress.

ALOGs gene family in rice development
and abiotic stress

Liu et al., explained that the ALOG domain, derived from
retroposon recombinases, governs rice reproductive development
(Turchetto et al., 2023). Phylogenetic analysis divided 14 OsG1L
genes into six clades, with OsG1L1/2/5/6 regulating panicle
architecture (Beretta et al., 2023). Collinearity between OsG1L3/4/
5 and OsG1L7/8 suggested subfunctionalization. Rice ALOG
promoters are enriched with ABA-responsive ABRE motifs (half
with ≥5 ABREs; up to 12 in one member) and drought-linked MBS
elements. Most ALOG genes are downregulated under ABA/
drought, consistent with ABA-insensitive root/seed phenotypes in
LSH8 mutants (promoter ABREs, nuclear localization; Zou et al.,
2021). Similarly, OsG1L7 (9 ABREs, nuclear) is suppressed by ABA/
drought, suggesting shared roles in ABA signaling. These findings
highlight ALOG family involvement in ABA-mediated stress
responses via promoter cis-elements and transcriptional regulation.

BAGs gene family in pigeonpea and
their response in thermotolerance

The study by Alekhya et al. conducted a comprehensive genomic
and functional characterization of the BAG gene family in pigeonpea
(C. cajan), revealing critical insights into their role in heat stress
response. Alekhya et al., demonstrated that Pigeonpea’s nine BAGs
genes (five chromosomes) show lineage-specific evolution viaWhole
Genome Duplication (WGD). UBL domains in BAG1/2/4 suggest
ubiquitin roles, while BAG6’s IQ motif links to calcium signaling.
Phylogenetically, five clades (shared with tomato/soybean) reflect
exon/intron divergence, with non-conserved structures (as in
Arabidopsis, rice, wheat (Doukhanina et al., 2006; Rana et al.,
2012; Ge et al., 2016) driving functional diversification.

In heat-tolerant genotype TS3R, CcBAG4 (interacting with
HSP70) was upregulated, suppressing cell death (Doukhanina
et al., 2006). Conversely, CcBAG5/6 showed upregulation in
susceptible lines, mirroring tomato SlBAG9 (homolog of
AtBAG5) overexpression-induced heat sensitivity (Ding et al.,
2022). MiRNA targeting of CcBAG6 in TS3R suggested post-
transcriptional silencing, enhancing thermotolerance.

Convergent mechanisms and future
perspectives

Conserved stress-response mechanisms across species involve
transcriptional hubs (WRKY, AP2/ERF, NAC TFs) coordinating
stress-specific gene regulation, metabolic pathways

Frontiers in Genetics frontiersin.org02

Luo et al. 10.3389/fgene.2025.1607710

https://www.frontiersin.org/journals/genetics/articles/10.3389/fgene.2024.1458656/full
https://www.frontiersin.org/journals/genetics/articles/10.3389/fgene.2024.1458656/full
https://doi.org/10.3389/fgene.2024.1458656
https://www.frontiersin.org/journals/genetics/articles/10.3389/fgene.2024.1442277/full
https://www.frontiersin.org/journals/genetics/articles/10.3389/fgene.2024.1442277/full
https://doi.org/10.3389/fgene.2024.1442277
https://doi.org/10.3389/fgene.2024.1390411
https://doi.org/10.3389/fgene.2024.1381690
https://doi.org/10.3389/fgene.2024.1418380
https://doi.org/10.3389/fgene.2024.1418380
https://www.frontiersin.org/research-topics/61903/multi-omics-and-molecular-biology-studies-on-abiotic-stress-in-crops
https://www.frontiersin.org/research-topics/61903/multi-omics-and-molecular-biology-studies-on-abiotic-stress-in-crops
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2025.1607710


(phenylpropanoid/amino acid biosynthesis) producing chemical
defenses, and signaling networks (MAPK cascades, BAG-HSP
chaperones) linking stress perception to protection. Translational
innovations include CRISPR editing (e.g., StCOL9, OsG1L7) for
climate resilience, microbiome engineering (B. subtilis) priming
MAPK pathways, and metabolic engineering (proline/lignin)
enhancing drought/fungal resistance. These strategies integrate
molecular insights with biotechnology, offering scalable solutions
for sustainable crop improvement amid climate challenges.
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