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As a crucial class of chemical modifications, 2′-O-methylation modification
(abbreviated as Nm) is widely distributed in various organisms and plays a very
important role in normal cellular physiological activities and the occurrence and
development of diseases. Accurate prediction of Nm modification sites can
provide important references for the diagnosis and treatment of diseases, as
well as identifying for potential drug targets. Aiming at the current problems of
unstable performance caused by the use of single features and the need to
improve the prediction accuracy of Nm modification sites, this paper proposes
MultiV_Nm, a prediction method for Nm sites based on multi-view features.
MultiV_Nm extracts the features of Nm sites frommultiple dimensions, including
sequence features, chemical characteristics, and secondary structure features. By
integrating the powerful local feature extraction ability of convolutional neural
networks, the ability of graph attention networks to capture global structural
information, and the efficient interaction advantage of cross-attention
mechanisms for different features, it deeply explores and integrates multi-
view features, and finally realizes the prediction of Nm modification sites. The
results of cross-validation and independent tests show that this method exhibits
significant advantages in key evaluation indicators such as precision, recall, and
accuracy, and can effectively improve Nm sites prediction performance. The
proposal of MultiV_Nm not only provides a powerful tool for the study of Nm
modification but also offers new ideas for predicting other RNA modification
sites.
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1 Introduction

In recent years, with the in-depth research in the field of epitranscriptomics, RNA
modifications, as a crucial epigenetic mechanism for gene expression regulation, have
attracted extensive attention in the field of biomedical research (Boccaletto et al., 2018).
Different from DNA and histone modifications, RNA modifications regulate various
aspects of RNA metabolism through dynamic and reversible chemical modification
methods, have a significant impact on biological processes such as individual
development and disease occurrence (Roundtree et al., 2017), and are closely related to
the occurrence and development of a variety of diseases (Li et al., 2018; Cui et al., 2022).
Currently, more than 200 different types of RNA chemical modifications have been
identified in eukaryotes (Boccaletto et al., 2022). Among them, 2′-O-methylation
(abbreviated as Nm) is an extremely important and widely existing type of RNA
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modification. Catalyzed by 2′-O-methyltransferases, it adds a
methyl group to the 2′-hydroxyl group of RNA (Nicolai et al.,
2016). Nm exists in the 2′-hydroxyl ribose moieties of all four
ribonucleosides (Xuan et al., 2018), namely, 2′-O-methylcytidine
(Cm), 2′-O-methyladenosine (Am), 2′-O-methylguanosine (Gm),
and 2′-O-methyluridine (Um). Widely present in various RNA
molecules (Li et al., 2024), this modification plays a key role in
maintaining normal physiological functions in organisms (Yu et al.,
2004). The distribution of Nm is extremely extensive, and it can be
found in rRNA, mRNA, tRNA, snRNA, piRNA as well as human
viruses (Wu et al., 2024). In rRNA, the enzyme fibrillarin (FBL) can
catalyze the Nm reaction. In the breast cancer cell model, the
mutation of the tumor suppressor gene TP53 will increase the
expression of FBL, which in turn leads to an elevated level of
Nm modification in rRNA and abnormal translation of the
internal ribosome entry site (IRES) oncogenes (Marcel et al.,
2013). In mRNA, Nm modifications occur both at the 5′ cap and
internal sites. The modification of the 5′ cap can protect the mRNA
and regulate immune recognition; the modifications at internal sites
can affect the translation efficiency and mRNA stability, and are also
associated with viral infections (Picard-Jean et al., 2018). The Nm
modification can stabilize the L-shaped tertiary structure of tRNA,
enhance its thermal stability, and contribute to its correct folding.
Moreover, it will also affect the recognition process of the codon by
the tRNA anticodon during translation (Agris et al., 2017). The
dysregulation of Nm modification in snRNA may disrupt the
splicing process, resulting in the generation of erroneous mRNA
and protein sequences, and may potentially trigger diseases such as
cancer and splicing-related genetic disorders (Blijlevens et al., 2021).
The study by Lim et al. has demonstrated that the protein
HENMT1 is a key regulator of Nm modification in mammalian
piRNA (Lim et al., 2015). Moreover, the Nm modification of the
genomes of RNA viruses such as human immunodeficiency virus
type 1 (HIV-1) and West Nile virus (WNV) may help them evade
the host’s innate immune response (Daffis et al., 2010; Ringeard
et al., 2019), providing potential targets for antiviral treatment. In
addition, a large number of studies have continuously shown that
RNA Nm modification is closely related to a variety of human
diseases, such as hepatocellular carcinoma and lung
adenocarcinoma (Song et al., 2023).

To deeply explore the functional mechanism of Nm
modification, researchers have developed a series of biological
experimental techniques (Yu et al., 1997; Maden et al., 1995;
Zhang et al., 2023). However, these traditional techniques
generally suffer from the problems of long time consumption
and high cost, and it is difficult to meet the needs of biological
research for efficient and rapid detection. With the rapid
development of sequencing technologies, nucleotide sequence
data have shown explosive growth, which has opened up a new
path for computational prediction methods. Predicting Nm
modification sites through computation can effectively make up
for the deficiencies of experimental techniques and provide strong
support for relevant research.

Currently, the computational tools for predicting RNA Nm
modification sites are relatively limited. Chen et al. (2016)
constructed the first computational tool for identifying Nm
modification sites by using support vector machine (SVM) for
classification based on the encoding methods of nucleotide

chemical properties and nucleotide composition features.
However, this model was only constructed based on human data,
and its prediction performance in other species has not been fully
demonstrated. Qiu et al. (2017) incorporated the sequence coupling
effect into the General Pseudo k-tuple Nucleotide Composition
(General PseKNC) and used a variety of machine learning
algorithms to construct an ensemble classifier. By combining and
optimizing different algorithms, the prediction accuracy and
stability were improved. In 2018, Yang et al. (2018) developed a
sequence-based predictor iRNA-2OM for humans. By fusing
chemical properties, nucleotide composition and PseKNC
features, and combining feature selection methods with
incremental feature selection (IFS), they obtained the optimal
feature set and then constructed the prediction model. Zhou
et al. (2019) developed the predictor NmSEER2.0 for Nm
modification sites in the genomes of human HeLa and
HEK293 T cells. This tool is based on random forest (RF) and
multiple encoding schemes, and its AUC value reaches 0.862,
showing good prediction performance. Ao et al. (2022)
constructed the predictor NmRF based on the optimal mixed
features and random forest classifier. By fusing nucleotide
chemical properties, binary features and dinucleotide position-
specific features, and then using a two-step strategy of combining
the light gradient boosting algorithm with IFS feature selection,
NmRF obtained the optimal feature set.

In addition, deep learning has gradually been applied to this
field. The Deep-2′-O-Me method proposed by Mostavi et al. (2018)
uses the dna2vec embedding method improved based on the
word2vec model to learn the complex feature representations of
pre-mRNA sequences, and fine-tunes them with the help of a
convolutional neural network (CNN). In the test scenarios of
both balanced and imbalanced datasets, the AUC and AUPRC
scores both reach 0.9, significantly outperforming existing
algorithms. iRNA-PseKNC (Tahir et al., 2019) uses PseKNC to
extract the features of RNA sequences, and utilizes the feature
learning ability of convolutional neural networks to automatically
extract deep-level features and explore the complex relationships
between RNA sequences and Nm sites. DeepOMe (Li et al., 2021)
combines CNN and bidirectional long short-termmemory networks
(BLSTM), which enables it to accurately predict the Nm sites in the
human transcriptome. Pichot et al. (Pichot et al., 2022) utilized the
RiboMethSeq dataset and employed the random forest algorithm to
construct a predictive model for analyzing Nm sites in RNA. This
model was trained on a large number of human rRNA datasets with
known modification profiles, and the modification profiles of other
eukaryotic rRNAs (Saccharomyces cerevisiae and Arabidopsis
thaliana) determined through experiments were used to evaluate
the performance of the predictive model. For each type of Nm
methylation, i2OM (Yang et al., 2023) combines one-way analysis of
variance with mutual information to rank the sequence features, to
obtain the optimal feature subset. Subsequently, four predictors
based on eXtreme Gradient Boosting (XGBoost) or SVM are used to
identify four types of Nm sites. BERT2OME (Soylu and Sefer, 2023)
combines the BERT-based model with CNN to infer the relationship
between the modification sites and the RNA sequence content. The
results show that BERT2OME reduces the time consumed in
biological experiments, and outperforms existing methods in
terms of multiple metrics across different datasets and species. A
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large number of cutting-edge studies have shown that Nm
modification is widely involved in key biological processes such as
RNA splicing, transportation, and stability regulation. Accurately
identifying Nm methylation modification sites helps deeply
understand the pathogenesis of diseases and provides an important
basis for developing new diagnostic and treatment strategies.
However, current prediction methods for Nm methylation sites
have obvious deficiencies. Most existing models rely only on single
features, making it hard to comprehensively capture information in
RNA sequences and structures, leaving significant room for
improving the models’ prediction accuracy and stability.

To overcome this technical hurdle, we propose MultiV_Nm, an
innovative prediction framework for Nm methylation sites using
multi-view features. It extracts nucleotide sequence features through
one-hot encoding, explores chemical properties and obtains RNA
secondary structural features. The model combines convolutional
neural networks for local feature extraction, graph attention
networks for global relationship modeling, and a cross-attention
mechanism for feature interaction. This integration enables in-depth
understanding of multi-view features, significantly enhancing the
prediction accuracy of Nm methylation sites.

2 Materials and methods

2.1 Datasets construction

To predict the Nmmethylation modification sites, we utilized the
Nm-seq technology to collect the information of Nm methylation
modification sites at single-base resolution from two types of cells,
namely, HeLa and HEK293T cells (see Table 1). During the research
process, the Nm methylation sites detected in these two types of cells
were defined as positive Nm methylation modification sites. To
construct the negative sample set, we randomly selected an equal
number of sites as the positive sites from the regions containing the
positive samples. At the same time, we excluded the sites located in the
ambiguous regions that could be mapped to multiple genes to ensure
the accuracy and reliability of the data.

According to the statistics, a total of 7,193 positive Nm
methylation sites were finally collected. Among them, there were
1,591 Am type sites, accounting for 22.1% of all Nm sites; 1,471 Gm
type sites, accounting for 20.5%; 1878 Cm type sites, accounting for
26.1%; and 2,253 Um type sites, accounting for 31.3%. To ensure the
balance between positive and negative samples, the number of
negative samples is the same as the positive. Subsequently,
3,696 samples were extracted from the collected samples as the
test samples, including 1,848 positive samples and 1,848 negative
samples. According to the proportion of each type of Nm in the total
Nm, the numbers of Am, Gm, Cm, and Um in the test samples were
352, 300, 490, and 706, respectively, and the number of negative
samples was the same as the positive. The remaining samples were

used as the training samples, totaling 10,690, including
5,345 positive samples and 5,345 negative samples.

To obtain the sequence data for model training and testing, taking
the Nmmethylation sites as the center, we extended 25 base pairs (bp)
upstream and downstream respectively, and finally obtained the Nm
methylation modification site sequences with a length of 51 bp, laying
a solid data foundation for the subsequent prediction analysis.

2.2 Methods

2.2.1 Overall model architecture
The overall model architecture of MultiV_Nm is shown in

Figure 1. First, for the known RNA sequences, the model extracts
the features from sequence and chemical properties. For sequence
features, one-hot encoding is used for feature extraction, which
completely preserves the genetic and regulatory information
contained in the arrangement order of nucleotides. At the same
time, a quantitative analysis is carried out on the chemical property
features of RNA molecules to explore their potential associations
with modification sites. In addition, through the RNAfold software,
the secondary structure features of RNA are analyzed to obtain the
local folding information formed by base pairing of the molecules.

The prediction process of MultiV_Nm involves four modules: the
convolutional neural network (CNN), the graph attention network
(GAT), the cross-attentionmechanism, and the fully connected layers.
The CNN is mainly used to extract the deep features of sequences and
chemical properties. The GAT extracts the deep features of the
secondary structure through the spatial relationships and
connection information between nodes. The cross-attention
module fuses the sequence features and secondary structure
features to achieve feature complementarity. The fully connected
layers obtain the final prediction results by integrating the
chemical property features and the complementary features. First,
since the CNN has a powerful ability of automatic learning in local
feature extraction,MultiV_Nm combines CNNwith the pooling layer
to deeply mine the sequence features and chemical property features
extracted in the early stage. It captures the deep features hidden in the
data and enhances the expression ability of sequence features and
chemical property features. Second, the GAT provides strong support
for the analysis of secondary structure features. The RNA secondary
structure is composed of many nodes. By introducing the attention
mechanism, GAT can make full use of the information of nodes and
edges, accurately capture the interactions of nucleotides in the spatial
structure, and explore the deep features of the secondary structure.
Third, the sequence features mainly carry genetic information and
regulatory information of biological processes, while the secondary
structure features intuitively show the local folding morphology of
RNA molecules. To give full play to the advantages of both, MultiV_
Nm introduces a cross-attention module to fuse the deep sequence
features and structural features. This module can automatically learn
the relationships between the two types of features, adaptively adjust
the fusion weights, and achieve efficient integration of features.
Finally, the deep chemical property features are concatenated with
the features fused by the cross-attention module. Through two fully
connected layers, the integrated features are further analyzed and
processed, and finally, the prediction results of Nm methylation
modification sites are output.

TABLE 1 Single-base resolution datasets in Nm prediction.

Id Cell Note Technique Source

1 HeLa Control Nm-seq Dai et al. (2017)

2 HEK293 T Control Nm-seq Dai et al. (2017)
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2.2.2 Feature representation
2.2.2.1 Sequence feature representation

One-hot encoding is a technique for converting categorical
variables into vector representations. For a categorical variable
with n different categories, One-hot encoding represents each
category as a vector of length n, in which only one element is

1 and the rest are all 0. The RNA sequence is composed of adenine
(A), cytosine (C), guanine (G), and uracil (U), and its character
set is {A, C, G, U}. We assign a unique integer index to each
character in the character set and create a dictionary to map
characters to indices. The dictionary is created as follows: {A: 0,
C: 1, G: 2, U: 3}. In this dictionary, each base corresponds to a

FIGURE 1
Detailed flowchart of MulitV_Nm.

Frontiers in Genetics frontiersin.org04

Bai et al. 10.3389/fgene.2025.1608490

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2025.1608490


unique integer index, which facilitates subsequent encoding
operations.

For each character, its corresponding index is obtained
according to the encoding dictionary. Then, the value is set to
1 at the corresponding position in the feature vector. Suppose the
index corresponding to the current character is i, then the ith
element in the feature vector is set to 1. Therefore, A is encoded
as [1, 0, 0, 0], C is encoded as [0, 1, 0, 0], G is encoded as [0, 0, 1, 0],
and U is encoded as [0, 0, 0, 1]. For example, a sequence seq =
[AACUG] can be encoded as the matrix shown in Equation 1. For a
sequence with a length of 51 bp, it is encoded as a 51*4 matrix
through one-hot encoding.

seq �

1 0 0 0
1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (1)

2.2.2.2 Chemical property features representation
Each nucleotide in RNA can be represented by three features

according to its different chemical properties (Liu et al., 2020). C and
U have only one ring structure, while A and G have two rings; both A
and C contain an amino group, while both G and U contain a keto
group; when forming the secondary structure, the hydrogen bonds
between G and C are relatively strong, while the hydrogen bonds
between A and U are relatively weak. Based on these three features, a
nucleotide can be represented by a three-dimensional vector S = (xi,
yi, zi, such as Equation 2):

x � 1, s ∈ A,G}{
0, s ∈ C,U}{{ , y � 1, s ∈ A,C}{

0, s ∈ G,U}{{ , z � 1, s ∈ A,U}{
0, s ∈ C,G}{{ (2)

Therefore, A, C, G, and U can be encoded as [1, 1, 1], [0, 1, 0], [1,
0, 0], [0, 0, 1], and [0, 0, 1], respectively.

2.2.2.3 Secondary structure features representation
To extract the secondary structure features of RNA sequences,

RNAfold (Lorenz et al., 2011) in the ViennaRNA package (http://
rna.tbi.univie.ac.at/cgi-bin/RNAWebSuite/RNAfold.cgi) was used
to predict the RNA secondary structure. According to the given
RNA sequence, RNAfold can predict the possible secondary
structure of RNA by calculating thermodynamic parameters and
return the results in the form of dot-bracket. In order to show the
relationship between bases in the RNA sequence, we constructed a
base-base relationship matrix. In the dot-bracket, a “dot” represents
an unpaired base, and it is set to 0 in the base-base relationship
matrix. The left parenthesis “ (“ and the right parenthesis”)” are used
to represent paired bases. The left and right parentheses appear in
pairs. The left parenthesis is placed at the position of one of the
paired bases, and the right parenthesis is placed at the position of the
other paired base. For example, if the ith base is paired with the jth
base (i < j), then the ith position is represented by a left parenthesis
and the jth position is represented by a right parenthesis, and then
the element in the ith row and jth column as well as the element in
the jth row and ith column of the base-base relationship matrix is set
to 1. Therefore, for an RNA sequence with a length of 51, a
secondary structure feature matrix Xstr of 51*51 can be obtained.

2.2.3 Feature learning
In order to learn the low-dimensional representation of Nm

sites, we take the extracted sequence features and chemical property
features as the inputs of the convolutional neural network (CNN)
(Wang et al., 2024b) respectively. This model is composed of an
input layer, a convolutional layer, a pooling layer, and a fully
connected layer. X(1)

seq and X(1)
chem respectively represent the

convolutional features obtained from the convolutional layer
(such as Equation 3):

X 1( )
seq � ReLU Wseq ⊗ Xseq + bseq( )

X 1( )
chem � ReLU Wchem ⊗ Xchem + bchem( ) (3)

among them, Xseq and Xchem respectively represent the extracted
sequence and physical and chemical property features. Wseq and
Wchem represent the weight matrices of the convolutional kernels,
bseq and bchem are the bias terms. ⊗ represents the
convolution operation.

Then, the output of the convolutional layer goes through the
pooling layer and the fully connected layer, and the finally obtained
feature representation is as follows Equation 4:

X 2( )
seq � f fc f Pool fCNN Xseq( )( )( )( )

X 2( )
chem � f fc f Pool f CNN Xchem( )( )( )( ) (4)

where X(2)
seq represents the sequence feature representation extracted

by the convolutional neural network module, and X(2)
chem represents

the chemical property feature representation extracted by the
convolutional neural network module.

For the secondary structure features, we use the Graph
Attention Network (GAT) (Veličković et al., 2018) for feature
extraction. The GAT is composed of multiple stacked graph
attention layers. Each graph attention layer contains multiple
attention heads. Each attention head independently calculates
the feature representation of nodes, and then combines these
representations (such as concatenation or averaging) to
obtain richer node features. Compared with traditional graph
neural networks, the GAT has higher flexibility and
expressive power.

The input of the graph attention layer is
h � h1, h2, ..., hN{ }, hi ∈ RF, where N is the number of nodes and
F is the number of features for each node. This layer generates a new
set of node features h′ � h1′, h2′, ..., h′N{ }, hi ∈ RF′ as the output.

To obtain sufficient expressive power to transform the input
features into higher - level features, at least one learnable linear
transformation is required. For this purpose, as an initial step, a
shared linear transformation with parameters W ∈ RF′×F is applied
to each node. Then, self - attention of the nodes is performed, that is,
a shared attention mechanism.

eij � atten Whi,Whj( ) (5)

among them, eij represents the importance of the feature of node j to
node i. The attention mechanism atten (·) is a single-layer
feedforward neural network, with the parameter being �a∈ R2F′.

In order to make the attention weights easy to compare among
different nodes, we use the softmax function to standardize the
selections for all j:
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αij � softmaxj eij( ) � exp eij( )∑k∈Ni
exp eik( ) (6)

where Ni represents the neighborhood of node i.
Combining the above Equations 5, 6, the complete form of the

attention mechanism can be written as:

αij �
exp LeakyReLU �aT Whi

����Whj[ ]( )( )
∑k∈Ni

exp LeakyReLU �aT Whi‖Whk[ ]( )( ) (7)

among them, || represents the concatenation operation. Next
combining Equation 7, the neighborhood representations of the
nodes are linearly accumulated according to the attention weights to
obtain the final output representation:

h′i � σ ∑
j∈Ni

αijWhj⎛⎝ ⎞⎠ (8)

To stabilize the learning process and enrich the feature
representation, GAT usually adopts the multi-head
attention mechanism. By using K independent attention
heads for calculation and then averaging the outputs of these
heads, by modifying Equation 8, the final node features
are obtained:

h′i � σ
1
K
∑K
k�1

∑
j∈Ni

αkijW
khj⎛⎝ ⎞⎠ (9)

where K is the number of attention mechanisms and Wk is the
weight matrix for the kth attention mechanism.

Through the Graph Attention Network, we can obtain the deep
representation X(2)

str of the secondary structure features of RNA
through Equation 9.

2.2.4 Cross-attention module
The cross-attention module is a special attention

mechanism used to process two different types of features.
In this study, these two features are the sequence feature X(2)

seq

and the secondary structure feature X(2)
str respectively. The cross-

attention mechanism allows the model to adaptively focus
on the relevant information in the other feature when
processing one feature, thereby achieving effective
fusion of the two features. The specific process is shown
in Figure 2.

First, linear transformations are performed on the deep
representation of sequence features X(2)

seq and the deep
representation of secondary structure features X(2)

str

respectively to obtain the query vector, key vector, and value
vector respectively.

Q � X 2( )
seqWq

K � XstrWk

V � XstrWv

(10)

where Wq ∈ RDx×Dk , Wk ∈ RDy×Dk , and Wv ∈ RDy×Dv are learnable
parameter matrices. Q ∈ RN×Dk is the query vector matrix,

FIGURE 2
Flowchart of the cross-attention mechanism.
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K ∈ RM×Dk is the key vector matrix, and V ∈ RM×Dv is the value
vector matrix.

Then, by calculating the similarity between the query vector
and the key vector, the attention scores are obtained, and the
scores are normalized to the interval [0, 1] through the
softmax function:

A � softmax
QKT���
Dk

√( ) (11)

where A � ∈ RN×M is the attention score matrix.
Then, combining Equations 10, 11, the value vectors are

weighted and summed according to the attention scores to obtain
the fused features.

O � AV (12)
where O ∈ RN×Dv is the fused feature matrix.

We concatenate X(2)
chem with the feature matrix O fused by

the cross - attention module, and then input the result
into two fully - connected layers to obtain the final
prediction result.

2.2.5 Model training
We use binary cross entropy loss as the loss function, see

Equation 13:

L � − 1
N

∑N
i�1

yi log ŷi( ) + 1 − yi( )log 1 − ŷi( )[ ] (13)

where i represents the ith Nm, and yi represents the true label, ŷi

represents the probability that the model predicts the class as
positive. To minimize the loss function, we use the
Adam optimizer (Kingma and Ba, 2014) to minimize the
loss function.

2.3 Evaluation metrics

To evaluate the performance of the model, 5-fold cross-
validation is used to evaluate the performance of the model. We
plotted the Receiver Operating Characteristic (ROC) curve and
the Precision-Recall curve, and calculated the Area Under the
Curve of the ROC (AUC) and the Area Under the Precision-
Recall Curve (AUPR) to assess the model’s performance. The
ROC curve is obtained by means of the True Positive Rate (TPR)
and the False Positive Rate (FPR) at different scoring thresholds,
and the Precision-Recall curve is obtained based on precision
and recall at different scoring thresholds. The AUC is
insensitive to whether the sample classes are balanced. In the
case of highly imbalanced data, the performance is still overly
ideal and cannot well reflect the actual situation. Under
extremely imbalanced data (with fewer positive samples), the
Precision-Recall (PR) curve may be more practical than the
ROC curve. We used the AUC and AUPR as the main evaluation
metrics. In addition, we adopted Accuracy (ACC), Matthews
Correlation Coefficient (MCC), and F1_score to present
the results of the model, which are defined as follows
Equation 14:

TPR � TP

TP + FN

FPR � FP

FP + TN

Precision � TP

TP + FP

Recall � TP

TP + FN

ACC � TP + TN

TN + FP + TP + FN

MCC � TP × TN − FP × FN�������������������������������������
TP + FP( ) TN + FN( ) TP + FN( ) TN + FP( )√

F1 score � 2 × Precision × Recall

Precision + Recall

(14)

where TP represents the number of positive samples that are
predicted as positive samples; FP represents the number of
negative samples that are predicted as positive samples; TN
represents the number of positive samples that are predicted as
negative samples; FN represents the number of negative samples that
are predicted as negative samples.

3 Results and discussion

3.1 Adjustment of parameters

In the MultiV_Nm model, we made fixed settings for some key
parameters. Specifically, when using the convolutional neural
network to process different features, the number of channels is
determined according to the dimension of the features. That is, when
processing sequence features, the number of channels is set to 4;
when processing chemical property features, the number of channels
is set to 3. Meanwhile, the size of the convolutional kernel is
uniformly set to 3. For the graph attention network, we set the
number of attention heads to 8 and the size of the max - pooling to 2.
Next, we investigated one by one the impacts of the number of
convolutional kernels in the convolutional neural network, the
embedding dimension of the graph attention network (for the
sake of consistency, we set the embedding dimension of the
convolutional neural network to be the same as that of the graph
attention network), the dropout rate, and the learning rate on the
model’s performance.

Inspired by TransRM (Liu et al., 2025), we set the number of
convolutional kernels to 4, 8, 16, 32, and 64. As can be clearly
observed from Figure 3A, as the number of convolutional kernels
increases, the performance of the model shows a steady upward
trend. It shows that the increase in the number of convolutional
kernels enables the network to capture richer and more complex
features. Based on this result, in this study, we defaulted the number
of convolutional kernels to 64 to fully unleash the performance
potential of the model.

Different embedding dimensions in the graph attention network
have different impacts on the model’s performance. In order to
capture the key features of the graph data while avoiding overfitting,
refer to GIAE-DTI (Wang et al., 2024a), we set the dimensions to
gradually increase from 32 to 512, and attempt to find the
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appropriate dimension that can fully describe the data features. We
set the embedding dimensions as 32, 64, 128, 256 and 512. As shown
in Figure 3B, as the embedding dimension increases, the AUC and
AUPR values of the model first rise and then fall. When the
embedding dimension is set to 64, the model achieves optimal
performance. Since the secondary structure of the Nm-modified
sequence is relatively simple, when the embedding dimension is too
low, the model struggles to capture sufficient key information from
the data. Conversely, when the embedding dimension is too high, it
leads to excessive information redundancy, increasing the
computational burden and potentially introducing noise
interference. Therefore, we set the default value of the embedding
dimension to 64 to balance model performance and information
utilization efficiency.

It is evident from Figure 3C that the learning rate has a
significant impact on the experimental results. Refer to DualC
(Guo et al., 2025), we experimented with several different
learning rate values, including 0.0001, 0.0005, 0.001, 0.005, and
0.01. The experimental results show that when the learning rate is set
to 0.0005, the model exhibits optimal performance. This fully
demonstrates that the learning rate, as a hyperparameter, plays a
crucial regulatory role in the model training process. When the
learning rate is too small, the step size of parameter updates during

model training is too short, resulting in an extremely slow
convergence rate. The model may require a large number of
training epochs to achieve good performance, failing to fully
learn the effective features in the data. On the other hand, when
the learning rate is too large, the step size of parameter updates is too
big, causing the model difficultly to converge, leading to poor
performance. When the learning rate is set to 0.0005, the model
has a moderate parameter update step size, thus achieving the best
performance.

During the model training process, overfitting is a common
problem, which causes the model to perform excellently on the
training set but have poor generalization ability on the test set or new
data. Dropout, as a simple and effective regularization technique,
can significantly alleviate this problem. In this experiment, to
investigate the impact of the dropout rate on model performance,
refer to GIAE-DTI (Wang et al., 2024a), we set dropout rates as 0.1,
0.2, 0.3, 0.4, 0.5, 0.6, 0.7, and 0.8. Through in-depth analysis of the
experimental data in Figure 3D, we found that the change in the
dropout rate has a very significant impact on model performance.
When the dropout rate is set too low, the model cannot effectively
suppress the co-adaptation between neurons, and the overfitting
problem remains severe. When the dropout rate is too high, the
model randomly discards too many neurons, resulting in a large loss

FIGURE 3
Parameter Sensitivity Analysis. (A) The number of convolutional kernels; (B) Embedding dimension; (C) Learning rate; (D) Dropout rate.
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of useful information learned by the model and causing underfitting.
When the dropout rate is set to 0.2, the model can effectively prevent
overfitting while retaining enough useful information, fully learn the
feature patterns of the data, and significantly improve the model’s
generalization ability. Based on this, in the subsequent model
training and optimization process of this study, we fixed the
dropout rate at 0.2.

3.2 Ablation study

When predicting Nm methylation modification sites, the
MultiV_Nm model integrates sequence features, chemical
property features, and secondary structure features. These
features reflect the characteristics of biomolecules from
different dimensions. The sequence features contain the
genetic information of base arrangement, the chemical
property features reflect the chemical properties of molecules,
and the secondary structure features describe the spatial folding

morphology of molecules. Together, they provide support for
accurate prediction.

To deeply analyze the specific roles of these three features in the
model, a feature ablation experiment was constructed. By removing
one or two features respectively, we compared the performance of
the simplified model with that of the original model that fuses the
three features. Table 2 clearly lists the feature combinations used in
each experimental method.

The results of the ablation experiment are shown in Figure 4. As
can be seen from Figure 4, when the three features are used
separately, the prediction effects of only the sequence features
and the chemical property features are not very different, while
the prediction effect of using the secondary structure features is the
worst. This indicates that in the scenario of predicting Nm
methylation sites, sequence information and chemical properties
can more effectively characterize the features of Nm methylation
sites. In contrast, the secondary structure has obvious limitations.
On the one hand, the secondary structure analysis focuses on the
spatial conformation of RNA and cannot reflect the specific

TABLE 2 Feature combinations in the ablation study.

Method name Sequence Chemical property Second structure

Seq ✓

Che ✓

Str ✓

Seq + Che ✓ ✓

Seq + Str ✓ ✓

Che + Str ✓ ✓

MultiV_Nm ✓ ✓ ✓

FIGURE 4
Comparison of the results of the ablation experiment.
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composition of the sequence, making it difficult to capture the local
features in the sequence. On the other hand, when the sequence to be
analyzed is too short, there will be large errors in the predicted
secondary structure, resulting in the inability to provide reliable
support for the prediction of Nm methylation sites. In addition,
different combinations of features have different effects on the
prediction of Nm methylation sites. Through research, it has
been found that in the case of pairwise feature combinations, the
combination of sequence features and chemical property features
has the most prominent prediction effect; the combination of
chemical property features and secondary structure features has a
slightly inferior prediction effect. It is worth noting that the Multi_
Nm model, by fusing the three features of sequence features,
chemical property features, and secondary structure, has
demonstrated the most excellent performance in predicting
methylation sites, further improving the accuracy and reliability
of the prediction.

To further illustrate the importance of each feature for the
model’s prediction, we evaluated the importance of the three
types of features using a permutation-based feature importance
calculation method. Taking the sequence features as an example,
each time the order of one sequence feature was shuffled. Through
five-fold cross-validation, we calculated the difference between the
AUC of the model based on the permuted feature and theAUC of the
standard model to obtain the importance of the sequence feature.
The processing method for chemical property features and
secondary structure features was the same as that for sequence
features, and an importance vector with 51 dimensions was obtained
for each type of feature. We plotted the importance of the three types
of features using boxplots. As can be seen from Figure 5, when the

chemical property features were permuted, the model was affected to
the greatest extent, while the impacts of the sequence features and
secondary structure features were relatively small. However, the
degree of influence of the sequence features on the model was still
higher than that of the secondary structure features.

3.3 MultiV_Nm performance under 5-CV
and 10-CV

Cross-validation is an important means to evaluate the
generalization ability of a model. Here, we demonstrate the
performance of the MultiV_Nm model in the scenarios of five-
fold cross-validation (5CV) and ten-fold cross-validation
(10CV). In five-fold cross-validation, the dataset is evenly
divided into five parts. One part is taken as the test set in
turn, and the remaining four parts are used as the training set.
The training and testing processes are repeated five times.
Similarly, in ten-fold cross-validation, the dataset is divided
into ten parts for operation.

Figure 6 plots the ROC curve and the PR curve generated during
the 5CV process. Figure 7 presents the performance of the model
under 10CV. Through analysis, it is found that, whether in the case
of 5CV or 10CV, the fluctuation range of the curves obtained from
each fold of validation is extremely small. At the same time, the AUC
and AUPR of the model both remain at a relatively high level. This
fully demonstrates that the MultiV_Nm model has strong
robustness and stability, and is capable of maintaining good
generalization ability and prediction accuracy under different
data distributions.

FIGURE 5
Boxplots of the importance of three types of features.
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To further evaluate the robustness of the model, statistical
methods were used for analysis. Ten rounds of 5CV and 10CV
were respectively carried out, and their means and standard
deviations were calculated for analysis. The specific results are
shown in Table 3. As can be seen from Table 3, the results of the
ten experiments are quite close to a single experiment. In the ten

experiments, regardless of whether it is 5CV or 10CV, the
standard deviation of each indicator is less than 0.05, while
the standard deviations of AUC and AUPR are both less than
0.01. This indicates that MultiV_Nm has excellent robustness
and is minimally affected by the randomness of the
divided dataset.

FIGURE 6
The ROC and PR curves under 5CV. (A) ROCcurve; (B) PR curve.

FIGURE 7
The ROC and PR curves under 10CV. (A) ROCcurve; (B) PR curve.

TABLE 3 Comparison of the results of multiple experiments.

Cross-validation ACC F1_score Precision Recall MCC AUC AUPR

5CV (single round) 0.8587 0.8582 0.8629 0.8563 0.7198 0.9383 0.9437

5CV (10 rounds) 0.8639 0.8630 0.8701 0.8583 0.7297 0.9389 0.9445

±0.0072 ±0.0079 ±0.0218 ±0.0284 ±0.0135 ±0.0045 ±0.0044

10CV (single round) 0.8647 0.8641 0.8700 0.8604 0.7312 0.9399 0.9456

10CV (10 rounds) 0.8678 0.8668 0.8747 0.8608 0.7372 0.9405 0.9463

±0.0116 ±0.0116 ±0.0260 ±0.0289 ±0.0224 ±0.0071 ±0.0066
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3.4 Cross-independent testing

Nm methylation modifications mainly include four types,
namely, Am, Cm, Gm, and Um. Next, we conducted cross-
independent tests using the MultiV_Nm model. Specifically, the
model was trained using four single types of Nm (i.e., Am, Cm, Gm,
and Um) and the total Nm containing all types. Then, independent
test sets were used respectively to evaluate the performance of the
trained model. The evaluation metrics selected were the AUC and
AUPR. The experimental results are shown in Figure 8.

In Figure 8, the horizontal axis represents the data types used for
model training, and the vertical axis represents the data types used
for testing. As can be clearly seen from the data presented in the
chart, when the total Nm is used for model training, regardless of
which single type of Nm is used for testing, the model can achieve
relatively ideal prediction results. When a single type of Nm is used
for training, the model can only achieve the optimal prediction
performance when the corresponding type of Nm is used for testing.

Through in-depth analysis of these experimental results, we can
infer that the total Nm contains the information of all types of Nm.
This enables the model to fully learn the characteristic patterns
shared by different types of Nm during the training process, thus
possessing a broader adaptability and generalization ability.
Therefore, when testing a single type of Nm, it can demonstrate
good prediction performance. When a single type of Nm is used for
training, the characteristic patterns learned by the model are highly
matched to that specific type of Nm. So, when predicting the same
type of Nm, due to the consistency of the characteristic patterns, the
model can more accurately capture the patterns in the data, thereby
obtaining better prediction results.

3.5 Comparison with existing methods

To comprehensively verify the effectiveness of the algorithm
adopted by theMultiV_Nmmodel, we carried out comparative tests.
The MultiV_Nm model was compared with NmRF based on

machine learning and Deep-2′-O-Me based on deep learning in
independent test. NmRF relies on the website http://lab.malab.cn/
~acy/NmRF to provide prediction services. When predicting Nm
methylation sites, this website only outputs the prediction results
and cannot provide more derivative data. To ensure the consistency
and fairness of the comparative tests, we selected Precision, Recall,
ACC, MCC, and F1_score to quantitatively evaluate the prediction
performance of each model. In addition, when using Deep-2′-O-Me
to test, the predicted probabilities of all sites are less than 0.5. After
repeated experiments and analysis, in order to enable this method to
effectively output results, we set the threshold to 0.3.

As can be seen from Table 4, the MultiV_Nm model
significantly outperforms the NmRF and Deep-2′-O-Me methods
in various evaluation indicators. The ACC of the MultiV_Nm
reaches 0.8679, which has a very prominent advantage compared
with 0.5419 of the NmRF and 0.6580 of the Deep-2′-O-Me. In terms
of the MCC indicator, 0.7365 of the MultiV_Nm is much higher
than 0.0953 of the NmRF and 0.3331 of the Deep-2′-O-Me. The
experimental results show that the MultiV_Nm has excellent
performance in the prediction of Nm methylation sites.

4 Conclusion

In the realm of RNA modification research, Nm methylation
modification is pivotal. It participates in key biological processes.
Precise identification of Nm methylation sites aids in uncovering
disease mechanisms and developing novel diagnostic and treatment

FIGURE 8
Results of AUC and AUPR in the cross-independent test. (A) AUC; (B) AUPR.

TABLE 4 Performance comparison for Nm methylation sites prediction.

Method Accuracy F1 MCC Precision Recall

NmRF 0.5419 0.6299 0.0953 0.5284 0.7797

Deep-2′-O-Me 0.6580 0.7046 0.3331 0.6201 0.8160

MultiV-Nm 0.8679 0.8681 0.7365 0.8683 0.8686
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strategies. In this paper, we proposed MultiV_Nm, a multi-view
feature - based prediction framework for 2′-O methylation sites. On
the basis of separately extracting the sequence features, chemical
features, and secondary structure features of Nm methylation sites,
we used a convolutional neural network and a graph attention
network, and combined them with a cross-attention mechanism
to predict the Nm methylation sites. Compared with existing
methods, MultiV_Nm performs excellently in multiple evaluation
indicators.

However, MultiV_Nm still has some limitations. First, the
model relies on high-quality RNA modification data. When
extracting secondary structure features, if the data accuracy is
low, it will lead to inaccurate secondary structure prediction,
thereby reducing the prediction accuracy. Second, this study only
used information on human Nm modification sites and did not
extend it to the prediction of Nm modification sites in other species.
Third, although MultiV_Nm can be extended to the prediction of
other types of RNA modification sites, for different types of RNA
modifications, it may be necessary to redesign the feature extraction
methods and model structure to adapt to their unique modification
patterns and characteristics. Even so, MultiV_Nm can still provide
new ideas and insights for the prediction of RNA modification sites
in different species and different types, helping to promote basic
research and potentially bringing breakthroughs in the field of
biomedicine.
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