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Introduction: The biological roles of histone lactylation (HLA) modification-
related genes (HLMRGs) in spinal cord injury (SCI) remain unclear. This study
aimed to investigate the expression patterns and molecular mechanisms of
HLMRGs in SCI through bioinformatics approaches.

Methods: Data from GSE151371, GSE47681, and 10 HLMRGs were analyzed.
Subsequently, biomarkers were identified based on receiver operating
characteristic (ROC) curves, followed by logistic regression modeling and
nomogram construction. Gene set enrichment analysis (GSEA) was performed
to assess the functional roles of these biomarkers. Clustering analysis of samples
based on biomarkers revealed distinct groups, and differentially expressed genes
between these groups were analyzed. Inter-cluster comparisons were
conducted to examine Hallmark pathways, HLA genes, and immune functions.
Weighted gene co-expression network analysis (WGCNA) was applied to identify
cluster-related module genes, which were further used for protein-protein
interaction (PPI) network construction to pinpoint key proteins. Networks
linking miRNAs, transcription factors (TFs), and biomarkers, as well as drug-
biomarker interactions, were established. The expression of biomarkers was
validated through reverse transcription-quantitative polymerase chain reaction
(RT-qPCR).

Results: In GSE151371, eight biomarkers (HDAC1, HDAC2, HDAC3, SIRT1, SIRT3,
LDHA, LDHB, and GCN5 [KAT2A]) exhibited area under the curve (AUC) > 0.7 and
were significantly differentially expressed between SCI and control samples.
These biomarkers also showed differential expression across the two
identified clusters. Differential expression analysis between clusters 1 and 2
revealed enrichment in pathways such as the ’phosphatidylinositol signaling
system.’ Finally, a miRNA-TF-biomarker network involving the eight
biomarkers was constructed, and their expression was validated by RT-qPCR.
It is noteworthy that the expression ofHDAC2,GCN5 (KAT2A), LDHA,HDAC3, and
SIRT3 showed significant differences between SCI and control samples. This
suggests that these genes may have potential clinical significance in SCI and
warrant further validation. Additionally, by exploring theirmechanisms of action in
depth, they may provide important biomarkers for the early diagnosis, treatment
strategy optimization, and personalized medicine of SCI, thereby advancing
clinical research and drug development related to SCI.
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Conclusion: In summary, 8 biomarkers playing an important role in SCI were
identified, providing a reference for the application of HLMRGs in SCI.
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1 Introduction

Spinal cord injury (SCI) can lead to motor and sensory
impairments below the injury site, potentially resulting in limb
paralysis and urinary or fecal incontinence, significantly diminishing
patients’ quality of life. Approximately 90% of SCI cases are caused by
trauma, such as traffic accidents or falls (Huang and Lu, 2021).
Currently, no reliable treatment options exist for patients with
severe neurological damage. Most clinical interventions focus on
stabilizing the patient, preventing further injury, and managing
complications arising from paralysis (Eli et al., 2021; Eckert and
Martin, 2017). Current treatment methods include surgical
intervention (Bühren et al., 1999), drug therapy (Liu et al., 2019;
Torelli et al., 2022), and hyperbaric oxygen therapy (Siglioccolo
et al., 2024). Additionally, stem cell transplantation (Zipser et al.,
2022) and gene therapy (Smith et al., 2022) have shown
effectiveness in research and are poised for broader clinical
application, offering new avenues for SCI rehabilitation. Following
SCI, spinal cord nerve cells undergo apoptosis and necrosis. Due to
the irreparability of nerve cells and the inhibitory effects of the injury’s
local microenvironment, recovery from SCI remains challenging.
Emerging treatments, particularly bone marrow mesenchymal stem
cell (BMSC) transplantation and gene therapy, are showing promising
results (Li et al., 2019; Cofano et al., 2019). While surgery and
pharmacological interventions may partially restore nerve function
in patients with SCI, numerous neurological dysfunctions often
persist or exacerbate during the secondary injury phase. Recent
advancements in understanding SCI pathophysiology, molecular
interactions, neuroprotection, immune regulation, and neural
regeneration pathways have garnered significant attention from
researchers worldwide (Anjum et al., 2020). Despite these advances,
effective treatment for neurological damage remains elusive. Therefore,
exploring potential biomarkers and their molecular mechanisms in SCI
is crucial for improving diagnostic and therapeutic approaches.

The nucleosome, the fundamental unit of chromatin, consists of an
octamer of histones around which DNA is wound. Histones, as essential
components of chromatin, undergo post-translational chemical
modifications that serve as critical mechanisms of epigenetic
regulation (Galle et al., 2022). These modifications include

acetylation, butyrylation, methylation, and phosphorylation. Histone
lactylation is a newly identified modification in this category. Lactic
acid is converted into lactyl-CoA, which donates a lactyl group to the
lysine residues on histone tails via acyltransferase, resulting in histone
lactylation. The lactyl group in this modification is derived from lactic
acid (Zhang et al., 2019; Lv et al., 2023; Dai et al., 2022). In central
nervous system (CNS) diseases, histone lactylation plays a pivotal role in
immune regulation and maintaining cellular homeostasis (Yang et al.,
2025). Additionally, Alzheimer’s disease (AD), a neurodegenerative
disorder of the CNS, has been linked to elevated histone lactylation
levels. Increased histone lactylation in AD mouse brain samples
exacerbates microglial dysfunction, while inhibition of histone
lactylation improves microglial function and enhances spatial learning
and memory in AD mice. SCI, another CNS disorder, shares
pathological features with AD, including neuroinflammation,
metabolic dysfunction, and overlapping clinical manifestations. Both
SCI andAD exhibit neuroinflammatory responses, driven by phenotypic
changes in microglia and macrophages, which hinder neurological
recovery (Devanney et al., 2020). In AD, neurofibrillary tangles of
intracellular tau protein are a hallmark, while in SCI models, tau
inhibition has been shown to improve recovery by reducing
neuroinflammation and oxidative stress (Che et al., 2023). Tau
protein levels in cerebrospinal fluid (CSF) are also indicative of SCI
severity (Roerig et al., 2013). Furthermore, emerging studies suggest that
SCImay activate the C/EBPβ-AEP axis, mediating cognitive dysfunction
via APP C586/Tau N368 segment diffusion, thus presenting clinical
symptoms resembling AD (Wu et al., 2023). Although some studies
suggest a potential link between SCI and AD, the exact nature of this
relationship remains poorly understood. While histone lactylation has
been shown to play a significant role in neurological diseases, its specific
involvement in SCI remains unclear. The phenotypic changes in
inflammatory cells induced by histone lactylation and their
contribution to neuroinflammation in SCI require further
investigation. Therefore, identifying biomarkers related to histone
lactylation modification in SCI is essential for advancing our
understanding of this pathology (Pan et al., 2022).

This study integrated transcriptomic data related to SCI,
identified biomarkers associated with histone lactylation,
constructed bioinformatics-based diagnostic models, and analyzed
the biological functions of these biomarkers, providing novel
insights for clinical diagnosis.

2 Methods

2.1 Data source

The study utilized datasets obtained from the Gene Expression
Omnibus (GEO) website (https://www.ncbi.nlm.nih.gov/geo/). The
training set, GSE151371 (GPL20301), included sequencing data

Abbreviations: SCI, Spinal Cord Injury; HLMRGs, Histone Lactylation
Modification-Related Genes; GEO, Gene Expression Omnibus; DEGs,
Differentially Expressed Genes; GSEA, Gene Set Enrichment Analysis; ROC,
Receiver Operating Characteristic; AUC, Area Under the Curve; PCA, Principal
Component Analysis; WGCNA, Weighted Gene Co-expression Network
Analysis; PPI, Protein-Protein Interaction; TF, Transcription Factor; miRNA,
microRNA; RT-qPCR, Reverse Transcription Quantitative Polymerase Chain
Reaction; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and
Genomes; BP, Biological Process; CC, Cellular Component; MF, Molecular
Function; GSVA, Gene Set Variation Analysis; DCA, Decision Curve Analysis;
HLA, Human Leukocyte Antigen.
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from 38 SCI samples and 10 healthy controls. The validation set,
GSE47681 (GPL1261), consisted of sequencing data from mouse
spinal cord tissue, comprising nine control mice, nine mice on day
3 post-SCI, and nine mice on day 7 post-SCI. A total of 10 histone
lactylation modification-related genes (HLMRGs) were analyzed:
HDAC1, HDAC2, HDAC3, SIRT1, SIRT2, SIRT3 (Moreno-Yruela
et al., 2022), LDHA, LDHB (Yu et al., 2021); P300 (EP300) (Zhang
et al., 2019), and GCN5 (KAT2A) (Wang et al., 2022).

2.2 Expression of HLMRGs in SCI

To assess the expression of HLMRGs in SCI, aWilcoxon test was
first applied to compare the expression between SCI and control
samples in the GSE151371 dataset. Additionally, a heatmap of the
expression profiles of the 10 HLMRGs across all samples was
generated using the Pheatmap package (v1.0.12, https://CRAN.R-
project.org/package=pheatmap). Correlations between the
10 HLMRGs were analyzed using Spearman’s correlation. The
RCircos package (v1.2.2) (Zhang et al., 2013) was used to map
the 10 HLMRGs to their respective chromosomes.

2.3 Construction and evaluation of logistic
regression model

The gene expression data was log-transformed (log2 (x+1)) to
stabilize variance and meet the normality assumption. Samples and
genes with missing values were filtered using the na. omit () method.
Logistic regression and SVM classification were applied, with
regularization to prevent overfitting. The model’s performance on
imbalanced data was evaluated using the area under curve (AUC)-
receiver operating characteristic (ROC) curve based on assessment
metrics. The ROC curves for differentially expressed HLMRGs (DE-
HLMRGs) in SCI and control samples from GSE151371 were plotted
using the pROC package (v1.1.1) (Robin et al., 2011). Genes with AUC
greater than 0.7 were considered as potential biomarkers for constructing
a logistic regression model, and the model’s performance was evaluated
using the ROC curve. The createDataPartition () method was used for
stratified sampling by default, ensuring that the ratio of the training and
testing sets matched the original data distribution. Finally, 10-fold cross-
validationwas performedusing trainControl to reduce the randomness of
a single data split and enhance the reliability of model stability evaluation.

2.4 Construction and evaluation of
nomogram model

Based on the identified biomarkers in the GSE151371 dataset,
missing values were removed, and a logistic regression model was
fitted using the lrm () function. The data distribution was then set using
the datadist () function for subsequent analysis. Next, the nomogram ()
function from the R package rms (v1.6) (https://CRAN.R-project.org/
package=rms) was used to generate a nomogram, specifying the
transformation function for the predicted probabilities. The plot ()
function was subsequently used to visualize the nomogram to assess the
clinical applicability of the model. Finally, the calibrate () function was
used to perform calibration analysis, evaluating the consistency between

the predicted probabilities and the actual observed probabilities. The
C-statistic was used to evaluate the calibration curve, referring to the
proportion of all possible positive-negative sample pairs in which the
model predicted the positive samples with higher probabilities. This
statistic effectivelymeasured themodel’s predictive ability and accuracy.
When the C-statistic value was greater than 0.7, it indicated a stronger
correlation and better performance of the model. Decision curve
analysis (DCA) was performed using the rms package (v1.6) to
assess whether the nomogram prediction was beneficial to
patients with SCI.

2.5 Gene Set Enrichment Analysis (GSEA) for
biomarkers

To explore the biological functions and signaling pathways
associated with the biomarkers, the correlation coefficients between
the expression of all genes and biomarkers were calculated. Genes were
then ranked based on their correlation coefficients for GSEA on each
biomarker, applying the criteria | Normalized Enrichment Score
(NES)| > 1, p < 0.05, and False Discovery Rate (FDR) < 0.25.
Single-gene GSEA for each biomarker was conducted using the
ClusterProfiler package (v3.18.1) (Yu et al., 2012) in GSE151371.
The top five most significant pathways in the Kyoto Encyclopedia of
Genes and Genomes (KEGG), Gene Ontology (GO) Biological Process
(BP), GOCellular Component (CC), andGOMolecular Function (MF)
for each biomarker were presented.

2.6 Immune infiltration analysis

For immune cell composition analysis, the GSE151371 samples
were examined for immune infiltration using CIBERSORT, which
provided the distributional proportions of various immune cell
types. The proportions of immune cells between the control and
SCI groups were compared using the Wilcoxon test (P < 0.05). The
p-values were not corrected. The correlation of biomarkers with
differential immune cell types was analyzed by Spearman correlation
at P < 0.05 and |correlation (r)| > 0.3. The “HALLMARK_
INFLAMMATORY_RESPONSE” was searched in the MSigDB
database (https://www.gsea-msigdb.org/), and inflammation-related
genes were obtained (Lu and Jia, 2022). The correlation between
inflammation-related genes and differential immune cells was
calculated through Spearman analysis (P < 0.05 and |correlation
(r)| > 0.3). Genes were grouped, and the maximum absolute
correlation was computed. The top 10 genes with the highest
correlation were selected for display.

2.7 Clusters associated with histone
lactonization modification

Based on the identified biomarkers, unsupervised consistent
cluster analysis was performed on the 38 SCI samples from
GSE151371 to determine distinct clusters. Principal component
analysis (PCA) was then conducted to evaluate the differentiation
ability of the clusters. Wilcoxon’s method was applied to assess
differences in biomarker expression between the clusters.
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2.8 Acquisition of DEGs

Differentially expressed genes (DEGs) between the clusters were
identified using the limma package (version 3.56.2) (Ritchie et al., 2015),
with criteria of adj. P < 0.05 and |log2foldchange (FC)| > 0.5. GO and
KEGGanalyses of theseDEGswere performed using the ClusterProfiler
package (P < 0.05) to explore the functional roles of the DEGs. The
P-values were adjusted using the Benjamini–Hochberg (BH) correction
method. In addition, the protein-protein interaction network diagram
between the DEGs and HLMRGs was constructed using the Search
Tool for the Retrieval of Interacting Genes (STRING) database (https://
string-db.org/), showcasing the interactions between the DEGs and
HLMRGs. The Confidence score was set to 0.9, the species was selected
as “Homo sapiens,” and Cytoscape (v3.10.1) (Doncheva et al., 2019) was
used for data visualization.

2.9 Functional exploration between clusters

Gene set variation analysis (GSVA) was employed to calculate
the scores of Hallmark pathway gene sets using the GSVA package
(v1.38.2) (Hanzelmann et al., 2013). Wilcoxon’s test was applied to
compare the differences in pathway activity across clusters at P <
0.05. The p-values were not corrected. Additionally, differences in
immune cell infiltration between the clusters were analyzed using
Wilcoxon’s test (P < 0.05), and the correlation of differential
immune cells with biomarkers was examined. The P-values were
adjusted using the Benjamini–Hochberg (BH) correction method.
Differences in immune function pathways and HLA genes (He et al.,
2018) were also analyzed using Wilcoxon’s test, and the correlation
between the 10 HLMRGs and immune function pathways or HLA
genes was assessed by Spearman correlation analysis.

2.10 Identification of module genes and
key proteins

To identify genemodulesmost strongly associated with the clusters,
weighted gene co-expression network analysis (WGCNA) was
performed using the WGCNA package (v1.72–1) (Langfelder and
Horvath, 2008). Initially, all samples from different clusters were
included in a sample clustering tree to remove outliers. A soft
threshold (β) was determined based on the nearly scale-free
topology criterion. The resulting topology matrix was clustered using
gene differences (minModuleSize = 100, TOMType = “unsigned”,
mergeCutHeight = 0.45, power = 16). The dynamic tree-cutting
algorithm was used to partition the tree into modules, with different
colors representing distinct gene modules and gray representing genes
not assigned to any module. A heatmap of the relationships between
module traits and clusters was plotted to evaluate the association of each
module with different clusters. The most relevant module genes, with
P < 0.05, were selected as key modules. Genes with |module
membership (MM)| > 0.8 and |gene significance (GS)| > 0.2 were
considered key module genes for constructing a protein-protein
interaction (PPI) network. Protein interaction information was
obtained from the Search Tool for the Retrieval of Interacting Genes
(STRING) database (https://string-db.org/) to construct a PPI network.
The Cytohubba plug-in (MCC, top = 10) was applied to identify the top

10 key proteins, which were recorded as key proteins for the clusters.
The correlations between these 10 key proteins and biomarkers were
analyzed using Spearman correlation analysis (P < 0.05 and |r| > 0.3).

2.11 Molecular networking

Transcription factors (TFs) for the biomarkers were predicted using
the ChEA3 database. The miRNA interactions for the biomarkers were
predicted using miRWalk (http://mirwalk.umm.uni-heidelberg.de/),
Encyclopedia of RNA Interactome (ENOCRI, http://starbase.sysu.
edu.cn/index.php), and miRTarBase (https://mirtarbase.cuhk.edu.cn/)
databases. The common miRNAs identified through these databases
were used to construct a miRNA-TF-biomarker interaction network.
Additionally, potential drugs targeting the biomarkers were predicted
using the Drug-Gene Interaction (DGI) database.

2.12 Expression validation of biomarkers

To validate the expression of biomarkers, SCI samples from
GSE47681 were grouped separately into SCI and control categories
for comparison. This study adhered to the principles outlined in the
Declaration of Helsinki and was approved by the Ethics Committee of
The Second Hospital of Anhui Medical University (Approval No. YW
2023-118, Date: 2023.07.06). All patients provided informed consent. To
further verify the biomarker expression, reverse transcription-quantitative
polymerase chain reaction (RT-qPCR) was performed on tissues from

TABLE 1 List of primers for PCR.

genes Primers

HDAC1 F TGGCCTCTTACCCATGTATCAC

HDAC1 R ATTCTGAGGAGGCAACACCG

HDAC2 F GAGCTTTCGGCACCTCTGC

HDAC2 R GAAACGTGGGGGCGATAGTC

HDAC3 F GAGCAGGGACTTCAGCCTAC

HDAC3 R GGGATTGTGTGAACGCCAAC

SIRT1 F GGTCGGTGACAGCCTCAAG

SIRT1 R ATGTCTGCTTCTCCACCAGC

SIRT3 F GTAGTTGAACGGGTCGAGGC

SIRT3 R TAATAATCGTCCCTGCCGCC

LDHA F TGCCTTGGGCTTGAGCTTTG

LDHA R CACAGCCAGGCTTCTCAAGT

LDHB F GCCTTCTCTCTCCTGTGCAA

LDHB R GACGGACTCCTGCAGTTACC

GCN5 F GATTGGTCCCTCCTCTCCCT

GCN5 R CCTCTTCTCGCCTGGCATAG

GAPDH F CGAAGGTGGAGTCAACGGATTT

GAPDH R ATGGGTGGAATCATATTGGAAC
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FIGURE 1
Expression analysis of DE-HLMRGs in SCI. (A) Expression of the 8 DE-HLMRGs in GSE151371. Horizontal coordinates represent HLMRGs, and vertical
coordinates represent expression values. Asterisks indicate P-values, with more asterisks corresponding to more significant results; “ns” denotes not
significant. (B) Heatmap showing the expression of 10 HLMRGs across two groups. Red represents high expression, while blue indicates low expression.
(C) Correlation analysis of the 8 DE-HLMRGs. (D) Chromosome localization map for the 8 DE-HLMRGs.

Frontiers in Genetics frontiersin.org05

Sun et al. 10.3389/fgene.2025.1609439

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2025.1609439


5 SCI samples and five control samples. Clinical information of the
patients is presented in Supplementary Table S1. RT-qPCR amplification
was conducted for 40 cycles, consisting of 95°C for 1 min, 95°C for 20 s,
55°C for 20 s, and 72°C for 30 s. The primers used in RT-qPCR are shown
in Table 1, with GAPDH as the reference gene. The relative expression
levels of the biomarkers were calculated using the 2−ΔΔCT method.

2.13 Statistical analysis

All statistical analyses were performed using R software (v4.2.2).
Differences between groups were assessed using Wilcoxon’s test,
with P < 0.05 considered statistically significant.

3 Results

3.1 Eight DE-HLMRGs were significantly
expressed between SCI and control samples

In GSE151371, eight DE-HLMRGs exhibited significant
expression differences between SCI and control samples

(Figure 1A). These genes included HDAC1, HDAC2, HDAC3,
SIRT1, SIRT3, LDHA, LDHB, and GCN5 (KAT2A). LDHA was
upregulated in SCI samples compared to controls, while the
remaining genes were downregulated. The heatmap of the
expression profiles of the 10 HLMRGs in both groups is
shown in Figure 1B. Correlation analysis revealed significant
positive correlations among most of the HLMRGs. The
strongest positive correlation was observed between HDAC2
and SIRT1 (r = 0.811, P < 0.01), while the strongest negative
correlation was found between LDHA and KAT2A (r = −0.489,
P < 0.01) (Figure 1C). According to the chromosome
localization map, HDAC1 was located on chromosome 1,
HDAC3 on chromosome 5, and HDAC2 on chromosome 6,
among others (Figure 1D).

3.2 The logistic regressionmodel had a great
ability to discriminate control and SCI

The ROC curves for the eight DE-HLMRGs (biomarkers)
showed AUC values greater than 0.7, indicating their potential to
differentiate between SCI and control samples (Figure 2A).

FIGURE 2
ROC curves for 8 DE-HLMRGs. (A) AUC values of ROC curves for the 8 DE-HLMRGs (biomarkers). (B) ROC curve for the logistic regression model.
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Furthermore, the ROC curve for the logistic regression model
yielded an AUC of 0.979, suggesting excellent performance of the
model (Figure 2B). The results from 10-fold cross-validation showed
that the model exhibited excellent classification performance
(AUC = 0.989) (Supplementary Figure S1).

3.3 The nomogram model had a great ability
to predict SCI

A nomogram model was constructed based on the biomarkers
from GSE151371 to predict SCI (Figure 3A). The calibration curve
had a C-statistic of 0.987, indicating strong concordance between the
apparent and predicted values, and suggesting the model’s high

accuracy (Figure 3B). DCA demonstrated that the nomogrammodel
offered a higher overall benefit to patients with SCI compared to
individual biomarkers (Figure 3C).

3.4 Biomarkers were enriched in some
metabolic pathways

For functional analysis, HDAC1 was enriched in 37 KEGG
pathways (Figure 4A), 917 GO-BP (Figure 4B), 209 GO-CC
(Figure 4C), and 218 GO-MF (Figure 4D) by GSEA, including
pathways such as ‘ubiquitin-mediated proteolysis’, ‘oxidative
phosphorylation’, and ‘valine, leucine, and isoleucine
degradation’. The enrichment results for the remaining seven

FIGURE 3
The biomarker-based nomogrammodel, calibration curve, and DCA curve. (A) Nomogram model constructed to predict SCI. (B) The C-statistic of
the calibration curve is 0.987. (C) DCA curve.
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biomarkers (HDAC2, HDAC3, SIRT1, SIRT3, LDHA, LDHB, and
GCN5 [KAT2A]) are shown in Supplementary Figures S2-8.

3.5 Fifteen immune cells differed in SCI and
control groups

The immune cell composition in each sample is illustrated in
Figure 5A. Between the SCI and control groups, 15 immune cell
types showed significant differences, including memory B cells,
eosinophils, and M0 macrophages (Figure 5B). Spearman correlation
analysis revealed the differential immune cells most significantly
associated with the biomarkers, including HDAC1-memory B cells
(r = 0.440, P < 0.01), HDAC2-memory B cells (r = 0.510, P < 0.01),
HDAC3-neutrophils (r = −0.310, P < 0.05), KAT2A-naive CD4 T cells/
macrophages (both r = 0.490, P < 0.01), LDHA-plasma cells (r = 0.470,
P < 0.01), LDHB-resting memory CD4 T cells (r = 0.750, P < 0.01),
SIRT1-resting memory CD4 T cells (r = 0.640, P < 0.01), and SIRT3-

neutrophils (r = −0.390, P < 0.01) (Figure 5C). Monocytes were
significantly positively correlated with LPAR1 and MYC, while
CD4 memory activated T cells were significantly negatively correlated
with LPAR1 and MYC. The inflammatory factor IL7R was negatively
correlated with T cells gamma delta and significantly positively
correlated with activated dendritic cells (Supplementary Figure S9).

3.6 The two clusters exhibited
distinguishing potential

The 38 SCI samples from GSE151371 were categorized into two
clusters based on biomarkers (Figure 6A). PCA indicated distinct
differentiation between the two clusters (Figure 6B). Cluster two
exhibited higher expression levels of all biomarkers, with significant
differences observed only for HDAC1, HDAC3, GCN5 (KAT2A), and
SIRT3 (P < 0.05) between the two groups (Figure 6C). The inter-cluster
expression of the eight biomarkers is depicted in the heatmap (Figure 6D).

FIGURE 4
Biomarkers enriched in metabolic pathways. (A) HDAC1 enriched in 37 KEGG pathways. (B) 917 GO-BP pathways. (C) 209 GO-CC pathways. (D)
218 GO-MF pathways by GSEA.
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3.7 A total of 700 DEGs were enriched to
140 GO entries and 4 KEGG pathways

A total of 700 DEGs were identified between clusters 1 and 2,
including 287 upregulated and 413 downregulated genes (Figure 7A).

These DEGs were enriched in 140 GO terms and four KEGG pathways,
including ‘Base excision repair’, ‘phosphatidylinositol signaling system’,
and ‘inositol phosphate metabolism’ (Figure 7B). In addition, the PPI
network diagram between the 700 DEGs and the eight HLMRGs is
shown in Figure 7C.

FIGURE 5
Analysis of immune cells with DE-HLMRGs. (A) The proportional distribution of immune cell types in each sample. (B) 15 immune cells differed
between SCI and control groups. (C) Spearman correlation analysis showing the differential immune cells most significantly correlated with the
biomarkers.
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3.8 Hallmark pathways between clusters

Seven pathways showed significant differences between the
clusters, including ‘apical junction’, ‘apical surface’, and ‘estrogen
response early’ in the Hallmark set (Figure 8A). Four immune cell
types, including activated dendritic cells, monocytes, activated
CD4 memory T cells, and gamma delta T cells, displayed
differential expression between the clusters (Figure 8B).
Monocytes were positively correlated with HDAC3 and KAT2A,
while activated dendritic cells showed a significant negative
correlation with HDAC3 and SIRT3 (Figure 8C). Differences in
cytolytic activity and parainflammation were also observed between
the clusters (Figure 8D). Expression differences of HLA genes,
including HLA-A, HLA-B, HLA-DMA, HLA-DMB, HLA-DPB1,
HLA-DQB2, HLA-DRA, and HLA-E, were noted across the clusters
(Figure 8E). Regarding immune function, strong positive
correlations were observed between HDAC2 and APC co-
stimulation (r = 0.690, P < 0.01), as well as between LDHB and
HLA (r = 0.690, P < 0.01) (Figure 8F). Conversely, a strong negative
correlation was found between LDHA and Type I IFN Response
(r = −0.730, P < 0.01). The most significant positive correlation for
HLA was observed between LDHB and HLA-DQA1 (r = 0.730, P <
0.01) (Figure 8G), while the strongest negative correlation was
between LDHA and HLA-DMB (r = −0.430, P < 0.01).

3.9 Ten key proteins were selected

For WGCNA, no outlier samples were identified within the
clusters (Figure 9A). The soft threshold (β) was set to 16, which
closely approximated a scale-free network (Figure 9B).
Subsequently, six gene modules were identified through dynamic
tree cutting (Figure 9C). Correlation analysis revealed that the blue
module (r = −0.600, P < 0.05) was the most strongly associated with
the clusters and was considered a key module (Figure 9D). A total of
1,615 module genes were selected for further analysis (Figure 9E).
Based on the PPI network, 10 key proteins were identified: RPS9,
RPS28, RPS2, RPS15, RPL13, FAU, RPL18, RPL36, RPL28, and
RPL8 (Figure 9F). Correlation analysis showed that KAT2A (GCN5)
was most strongly positively correlated with RPL28 (r = 0.797,
P < 0.01), while LDHA showed the strongest negative correlation
with RPL28 (r = −0.478, P < 0.01) (Figure 9G).

3.10 The miRNA-TF-biomarker and drug-
biomarker networks

A total of 41 TFs associated with the biomarkers were predicted
using the ChEA3 database, from which the top 10 TFs were selected
for network construction: ZNF883, ZNF614, ZNF644, ZNF280C,

FIGURE 6
Consensus ClusterPlus analysis and PCA in different molecular patterns. (A) The 38 SCI samples from GSE151371 were classified into two clusters
based on biomarkers. (B) PCA revealed differentiation between the two clusters. (C) Expression levels of all biomarkers across clusters. (D) Inter-cluster
expression of the eight biomarkers displayed in a heatmap.
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FIGURE 7
Analysis of differentially expressed genes. (A) Volcano plot and heatmap of differentially expressed genes between molecular patterns. (B)
Enrichment analysis of differentially expressed genes between molecular patterns. (C) The PPI network diagram between the 700 DEGs and the
eight HLMRGs.
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FIGURE 8
Hallmark pathway analysis, immune cell distribution, HLA genes, and immune function pathway score distribution. (A) Heatmap of differential
Hallmark pathways between different molecular patterns. (B) Distribution of immune cells between different molecular patterns, showing only four
immune cell types differing between clusters. (C) Analysis of the correlation between differential immune cells and biomarkers in different molecular
patterns. (D) Distribution of immune function pathway scores across different molecular patterns. (E) Distribution of HLA genes across different
molecular patterns. (F) Correlation analysis of functional pathway scores of the 10 HLMRGs. (G) Correlation analysis of HLA genes with the 10 HLMRGs.
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FIGURE 9
Screening of 10 key proteins. (A) Sample clustering dendrogram. (B) Squared correlation coefficients and network connectivity analysis. (C)
Hierarchical clustering dendrogram for each module, with the top part showing the clustering dendrogram and the bottom part corresponding to the
gene modules. Different colors represent distinct gene modules, and gray indicates genes that do not fit into any known module. (D) Correlation graph
between modules and phenotypes. Modules with redder colors indicate a highly positive correlation with the phenotypic trait, while bluer colors
indicate a strong negative correlation. (E) GS-MM plot. (F) Protein-protein interaction (PPI) network analysis for the 10 key proteins. (G) Correlation
analysis between differential biomarkers and the 10 key genes.
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TP53, ZNF140, RBPJ, ZNF692, E2F4, and USF2. Additionally,
57 common miRNAs were predicted using miRWalk, ENOCRI,
and miRTarBase databases. A miRNA-TF-biomarker interaction

network was constructed based on the eight biomarkers, the top
10 TFs, and the 57 common miRNAs, revealing complex regulatory
relationships (Figure 10A). Using the DGIdb database, 47 potential

FIGURE 10
Analysis of miRNA/TF-biomarker interaction network and drug-biomarker interaction network. (A) miRNA/TF-biomarker interaction network. (B)
Drug-biomarker interaction network.
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drugs were predicted for HDAC1, 39 for HDAC2, 38 for HDAC3,
24 for SIRT1, three for SIRT3, one for LDHA, and none for LDHB.
GCN5 (KAT2A) was predicted to interact with 126 potential drugs.
A drug-biomarker interaction network comprising 279 edges and
208 nodes was created, including interactions such as niacinamide-
SIRT3, suramin-SIRT3, and lapachone-SIRT1 (Figure 10B).

3.11 LDHA was high expressed in SCI group,
while HDAC2, HDAC3, GCN5 (KAT2A),
LDHB, and SIRT3 were reversed

In the GSE151371 dataset (Figure 1A), only LDHA was highly
expressed in the SCI group. In the GSE47681 dataset, HDAC1,
GCN5 (KAT2A), LDHA, and SIRT1 were highly expressed in SCI
samples, whereas HDAC2, HDAC3, LDHB, and SIRT3 were
downregulated in SCI samples (Figure 11A). RT-qPCR validation

revealed that HDAC1 (not significant), HDAC2, GCN5 (KAT2A),
LDHA, and SIRT1 (not significant) were highly expressed, while
HDAC3, LDHB (not significant), and SIRT3 were downregulated in
SCI samples (Figure 11B). Although HDAC1, SIRT1, and LDHB did
not reach statistical significance, their expression trends were
consistent with the results of the computational analysis in the
dataset and require further validation. Among the eight biomarkers,
LDHA exhibited high expression in SCI, while HDAC3, LDHB, and
SIRT3 were downregulated.

4 Discussion

SCI is a life-threatening and debilitating condition, recognized as
a polygenic disorder influenced by alterations in numerous genes.
The pathogenesis of SCI involves complex changes in multiple
molecular pathways. In both SCI and brain injury, histone lactate

FIGURE 11
Validation of the HLMRGs. (A) Expression of the eight biomarkers in GSE47681. (B) qRT-PCR validation of the expression of the eight HLMRGs.

Frontiers in Genetics frontiersin.org15

Sun et al. 10.3389/fgene.2025.1609439

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2025.1609439


plays a pivotal role in regulating various cellular processes,
particularly in immune regulation and maintaining cellular
homeostasis. This study utilized the GSE151371 and
GSE47681 datasets to investigate 10 histone lactate-related genes
(HLMRGs) and identified eight biomarkers (HDAC1, HDAC2,
HDAC3, SIRT1, SIRT3, LDHA, LDHB, and GCN5 [KAT2A])
based on ROC curve analysis. A comprehensive set of
bioinformatics analyses was performed to explore potential new
biomarkers and to elucidate the molecular mechanisms
underlying SCI.

Our findings revealed expression differences in the 8 HLMRGs
across various datasets and clinical blood samples, likely attributed
to sample inconsistencies. Further validation through experiments
will be necessary to confirm these results. The analysis of the
validation set and tissue samples indicated that LDHA and GCN5
(KAT2A) were highly expressed in SCI samples, while HDAC3 and
SIRT3 exhibited reduced expression levels. In support of these
findings, Guan C et al. (Guan and Wang, 2021) established SCI
models through both in vivo and in vitro experiments, reporting
elevated levels of LDHA and lactate in SCI rats and LPS-induced
PC12 cells. GCN5 (KAT2A) promotes axonal growth by regulating
acetylated microtubule proteins (L et al., 2022), and loss of GCN5
(KAT2A) activity induces neuronal apoptosis through the
upregulation of Egr-1-dependent BH3-only protein Bim (Wu
et al., 2017). These findings suggest that GCN5 (KAT2A)
positively influences nerve injury recovery. In the present study,
the upregulation of GCN5 (KAT2A) in SCI samples further supports
the hypothesis that this gene is activated during SCI, contributing to
injury repair. However, the precise mechanisms remain to be
explored in future research. Additionally, our study observed low
expression levels of HDAC3 and SIRT3 in SCI. Wahane (Wahane
et al., 2021) reported that HDAC3 activity regulates multiple
transcriptional responses in SCI, particularly within myeloid and
glial cells. Silencing or inhibiting HDAC3 has been shown to
improve neurological function and reduce spinal cord edema
following SCI, suggesting its neuroprotective role (Dai et al.,
2022; Zhou et al., 2020). In a rat model of SCI, downregulating
HDAC3 inhibited the activation of the JAK2/STAT3 pathway
through the upregulation of miR-19b-1-5p, thereby promoting
SCI recovery (Niu et al., 2022). The reduced expression of
HDAC3 and SIRT3 in SCI may be part of a protective
mechanism that promotes functional recovery by preventing
Parthanatos and supporting antioxidant stress and mitochondrial
function through SIRT3-mediated pathways (Jiang et al., 2023).
Furthermore, activating the NMDAR/AMPK/PGC-1α/SIRT3
signaling pathway through distal limb ischemic preconditioning
has been shown to protect mice from spinal cord ischemia-
reperfusion injury (Gu et al., 2023). Thus, SIRT3 plays a
significant role in SCI recovery and prognosis through multiple
mechanisms. Clinically, SIRT3 inhibitors such as Suramin are
already being explored for tumor treatment. In summary, LDHA
and SIRT3 may serve as effective biomarkers for diagnosing and
treating SCI, offering novel insights into the molecular mechanisms
and potential therapeutic pathways for SCI.

This study found that HLA genes, such as HLA-A, HLA-B,
HLA-DMA, HLA-DMB and HLA-DPB1, show significant
differences between Clusters one and 2. These genes are closely
associated with antigen presentation (Álvaro-Benito and Freund,

2020; Di et al., 2021) and may influence the immune system’s ability
to recognize and attack exogenous pathogens or tumor cells.
Notably, the differences in HLA-DMA, HLA-DMB and HLA-
DPB1 suggest different mechanisms of regulating immune
responses. Specifically, LDHA shows a strong negative correlation
with HLA-DMB, suggesting that LDHA may play a role in immune
evasion or immune suppression by modulating specific pathways.
Additionally, the negative correlation between LDHA and the type I
interferon response indicates that LDHA may affect immune
responses by inhibiting this response. This suggests that LDHA
contributes to immune evasion. The negative correlation of LDHA
with multiple immune functions further implies that it may be a key
factor in immune evasion. Therefore, studying how LDHA regulates
immune responses through metabolic pathways can help develop
new inhibitors of immune evasion, thereby enhancing the efficacy of
immunotherapy.

Our study conducted an enrichment analysis of
700 differentially expressed genes (DEGs) between molecular
clusters one and 2, revealing that these genes are significantly
associated with the phospholipid binding process. Previous
studies demonstrated that spinal cord injury (SCI) could damage
the integrity of the nerve fiber membrane at the nanoscale. The
phospholipid binding domain, through its specific interaction with
the phospholipid head group, can regulate the localization of
membrane proteins and thereby influence the repair process of
the spinal cord (Rad et al., 2015). Therefore, DEGs may play a
potential regulatory role in the repair and functional recovery of the
nerve membrane after SCI by participating in the phospholipid
binding process; this involvement affects specific mechanisms of
membrane repair following spinal cord injury. Furthermore, this
study found through GSEA enrichment analysis that HDAC1 is
significantly involved in the ubiquitin-mediated protein degradation
and oxidative phosphorylation signaling pathways. Previous studies
have shown that after SCI, the shift in oxidative phosphorylation in
oligodendrocytes (OLs) leads to oxidative stress, which is further
amplified by the upregulation of ferric protoporphyrin III
(STEAP3). This finding suggests that oxidative phosphorylation
plays a crucial role in the SCI process by regulating cell survival,
death, and oxidative stress responses (Forston et al., 2023).
Additionally, HDAC1, as a histone deacetylase, maintains the
stability of mitochondrial oxidative phosphorylation and plays a
key role in cellular energy metabolism and early development
(Milstone et al., 2020). Therefore, after SCI, HDAC1 may
regulate oligodendrocyte survival and mitochondrial function by
modulating these key pathways, thereby exerting an important
influence on the recovery process of SCI.

During SCI, multiple immune cell types play pivotal roles in
both disease progression and recovery (Xu et al., 2021; Giron et al.,
2023; Milich et al., 2019; Han et al., 2024). This study identified
significant differences in four immune cell types: activated dendritic
cells, monocytes, activated CD4 memory T cells, and gamma delta
T cells. Previous research has shown that dendritic cells are
influenced by HDAC3 in various diseases, including AD and
tumors (Han et al., 2022; Deng et al., 2019). Dendritic cells
(DCs) are classified into plasmacytoid DCs (PDCs) and
conventional DCs (CDCs). Both in vivo and in vitro experiments
have demonstrated that histone deacetylase 3 (HDAC3), a key
epigenetic regulator, is highly expressed in PDCs. The absence of
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HDAC3 severely disrupts dendritic cell development (Zhang et al.,
2023). In this study, a negative correlation between dendritic cells
and HDAC3 was observed, suggesting that multiple factors likely
contribute to the regulation of dendritic cells in the SCI immune
microenvironment, highlighting the need for further mechanistic
investigations. HDAC3 plays a key role in mediating the
inflammatory response of human monocytes and macrophages,
influencing their polarization, activation, and endotoxin tolerance
in response to HDAC inhibitors (HDACIs) (Ghiboub et al., 2020). A
positive correlation between monocytes and HDAC3 in SCI was
identified, suggesting new research avenues for understanding
monocyte-driven inflammatory mechanisms in SCI. In studies of
HDAC3-deficient mice, Eshleman (Eshleman et al., 2023) observed
an increased accumulation of symbiotic-specific activated
CD4 memory T cells in the gut, revealing a negative correlation
between HDAC3 and activated CD4 memory T cells in
inflammatory diseases. A similar trend was seen in SCI in this
study. Additionally, a negative correlation between activated
CD4 memory T cells and SIRT3 was observed, while a significant
positive correlation with LDHA was noted, which aligns with
previous findings in tumors and inflammatory diseases (Hou
et al., 2024; Zou et al., 2024).

MicroRNAs (miRNAs) are small RNA molecules,
approximately 22 nucleotides in length, that regulate protein
expression by binding to specific sites on mRNA and inhibiting
its translation. They are involved in various developmental
pathways, gene regulatory mechanisms, and genetic disease
processes, ultimately influencing phenotypic traits. Numerous
miRNAs are present in the CNS, where they play critical roles in
SCI progression (Silvestro and Mazzon, 2022). Modulating the
NEAT1/miR-128-3p/AQP4 axis can alleviate neuropathic pain
induced by SCI (Xian et al., 2021). Long non-coding RNA
CASC9 (lncRNA CASC9) affects the levels of MDA, lactate,
TNF-α, and IL-1β via miR-383-5p, thereby providing protection
against oxidative stress, inflammation, and cell apoptosis in SCI
(Guan and Wang, 2021). Moreover, silencing miR-324-5p alleviates
SIRT1-induced SCI in rats (Wang et al., 2021). Based on the findings
of this study, miRNAs are proposed as potential key factors in the
progression of SCI.

This study identified and preliminarily validated biomarkers
associated with histone lactylation in spinal cord injury (SCI), while
also uncovering potential links between immune infiltrating cells and
potential drug targets. These findings provide valuable insights for the
further exploration of new biomarkers in SCI, potentially informing
preventive and therapeutic strategies for SCI and offering a foundation
for future research and clinical applications in this field. However, this
study has limitations such as a small sample size, uneven distribution,
and a lack of clinical information, which affect the generalizability and
statistical reliability of the results. Although bioinformatics analysis
suggests that HLMRGs have potential in the mechanisms and
treatments of spinal cord injury (SCI), further validation is required
through in vitro and in vivo experiments. Future research plans include
expanding the sample size, adopting more robust statistical methods to
enhance the reliability of the conclusions, and introducing Western
blotting and immunofluorescence techniques to confirm changes in
protein expression. Additionally, the efficacy and safety of the drugs will
be evaluated using MTT and CCK-8 assays to assess cell viability and
toxicity. Immunohistochemical staining will be used to observe the

distribution of immune cells in the SCI injury area, revealing the
relationship between immune cells and the pathological process.
Moreover, apart from LDHA and LDHB, six other HLMRGs have
been reported to exhibit strong functional conservation (Yang et al.,
2022; Peng et al., 2024; Torres-Zelada and Weake, 2021; Soloviev et al.,
2022). Due to physiological differences between humans and mice,
cross-species validation may be affected. The current RT-qPCR results
are preliminary, and future studies will require gene knockout,
overexpression experiments, and more functional tests using animal
models to further explore the biological functions of HLMRGs.
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