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Introduction:Crohn’s disease (CD) is a chronic inflammatory bowel disease. CD-
related inflammation can lead to enhanced bone resorption and destruction,
thereby increasing the risk of osteoporosis (OP). This study aimed to screen the
hub co-diagnostic gene of CD and OP.
Methods: The gene expression profiles of CD and OP were obtained from the
GEO database to select differentially expressed genes (DEGs). Module genes
were identified by weighted gene co-expression network analysis. Two machine
learning algorithms were employed to screen potential shared genes, and
nomograms were constructed to assess their clinical predictive value.
Receiver operating characteristic curves, calibration curves, and decision curve
analysis were used to evaluate the diagnostic performance of the hub genes.
Gene set enrichment analysis (GSEA) and immune infiltration analysis were
performed to explore the underlying mechanisms of the hub genes in CD and
OP. In vitro experiments were conducted to validate the bioinformatics results.
Results: The result showed that a total of 8 DEGs and 15 key module genes were
found to be related to both CD and OP, from which machine learning screened
out 5 potential shared genes. Subsequently, ABO was identified as the hub co-
diagnostic gene with good diagnostic value. GSEA results showed that ABO was
involved in the mitochondrial matrix, chromosomal region, and ribosome in both
CD and OP. Immune infiltration analysis found that activated CD8 T cell, effector
memory CD4 T cell, and immature B cell were all significantly negatively
correlated with ABO in both diseases. In vitro experiments confirmed the
downregulation of ABO in CD and OP cell models.
Discussion: Overall, ABO was identified as a hub co-diagnostic gene for CD and
OP, providing new insights into their co-management.
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1 Introduction

Osteoporosis (OP) is a common metabolic bone disease
characterized by bone loss and increased fracture risk (Zhang
et al., 2023). Bone homeostasis disruption due to changes in
osteoblast and osteoclast activity plays a key role in the
development of OP (Adejuyigbe et al., 2023). Studies have shown
that the activities of osteoblasts and osteoclasts are regulated by
various factors secreted from immune cells, and the gut microbiota
is involved in interactions between the immune system and bone
cells (Ponzetti and Rucci, 2019; Locantore et al., 2020). It is reported
that the global prevalence of OP is 18.3%, with the elderly being
more susceptible (Salari et al., 2021; Hassan et al., 2024; Hadji et al.,
2024). The increasing incidence of fractures and deaths related to
OP brings a huge burden to society (Shen et al., 2022).

Gastrointestinal diseases have been proven to be an important
risk factor for osteoporotic fractures, with inflammatory bowel
disease (IBD) being strongly correlated with them (Xu et al.,
2023). Crohn’s disease (CD) is a relapsing chronic IBD that
involves the entire gastrointestinal tract from the mouth to the
anus and is accompanied by parenteral complications and immune
disorders, affecting millions of people worldwide (Veauthier and
Hornecker, 2018). Its clinical manifestations are the alternation of
inflammation (exacerbation) and asymptomatic periods (Pinto
et al., 2024). Symptoms including abdominal pain, fever,
intestinal obstruction, or diarrhea occur during the exacerbation
period (Baumgart and Sandborn, 2012). Immune system disorders,
gut microbiota dysbiosis, and genetic and environmental factors
influence CD development (Baumgart and Sandborn, 2012).
However, the pathogenesis of CD remains unclear, with a lack of
recognized diagnostic criteria and management methods (Liu et al.,
2024). Considering the potential impact of CD on bone metabolism
(Wu et al., 2012), it is essential to explore its relationship with OP to
improve patient management.

CD patients have been found to have significant cortical and
trabecular bone loss (Haschka et al., 2016). A case of combined CD
and OP has been reported with the recovery of vertebral density
and structure after treatment of CD (Thearle et al., 2000). A
prospective study revealed that 14.6% of CD patients were
diagnosed with OP, and the risk of OP was increased in people
with CD compared to the normal group (Lo et al., 2020). The above
evidence suggests that OP and CD may be involved in common
pathological mechanisms. In addition, corticosteroids, a drug for
the treatment of CD, can reduce bone density in patients and
increase the risk of OP (Dear et al., 2001). Adalimumab, an anti-
tumor necrosis factor-α antibody, demonstrates the ability to
promote osteonecrosis in CD patients (Preidl et al., 2014).
Therefore, screening for shared diagnostic markers of CD and
OP is necessary.

In this study, the differentially expressed genes (DEGs) of CD
and OP were screened based on the gene expression profile data
in the Gene Expression Omnibus (GEO) database, and the co-
expression module genes of CD and OP were obtained by
weighted gene co-expression network analysis (WGCNA).
Gene ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) enrichment analysis were used to explore
the common biological pathways of these genes. Machine
learning was employed to identify potential shared diagnostic

genes and their predictive abilities were assessed to identify key
genes for co-diagnosis. Single-gene Gene Set Enrichment
Analysis (GSEA) was used to explore its biological pathways,
and immune infiltration analysis was utilized to identify immune
cells closely associated with the hub co-diagnostic gene. In vitro
experiments were conducted to validate the
bioinformatics results.

The workflow is shown in Figure 1.

2 Materials and methods

2.1 Data acquisition

CD and OP gene expression profile data were downloaded
from the GEO database (https://www.ncbi.nlm.nih.gov/geo/).
GSE112366 contains 362 CD samples and 26 normal controls,
while GSE207022 includes 125 CD samples and 23 normal
controls. GSE7158 is comprised of 40 high bone mineral
density (BMD) samples and 40 low-BMD samples.
GSE13850 encompasses 10 high-BMD samples and 10 low-
BMD samples. GSE112366 and GSE7158 were used as training
sets to identify DEGs and module genes. GSE207022 and
GSE13850 were utilized for external validation. The summary
of datasets is shown in Table 1.

2.2 Identification of DEGs

Limma package (Liu et al., 2021) in R (version 3.58.1) was used
to screen CD-related and OP-related DEGs, the threshold was set as
P < 0.05 and |log2 Fold Change (FC)| > log2 (1.2). Ggplot2 package
(version 3.5.0) and pheatmap package (version 1.0.12) were utilized
to draw heatmaps and volcano plots.

FIGURE 1
The workflow of this study. CD, Crohn’s disease; OP,
osteoporosis; DEG, differentially expressed gene; WGCNA, weighted
gene co-expression network analysis; Lasso, Least Absolute Shrinkage
and Selection Operator; RF, Random Forest; GSEA, Gene Set
Enrichment Analysis; ROC, receiver operating characteristic.
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2.3 WGCNA

WGCNA package in R (version 1.72.5) was used to construct
gene co-expression networks for the top 5,000 genes with the most
variance. The function “hclust” was carried out to perform
hierarchical clustering analysis to remove outliers from the
samples. The “pickSoftThreshold” function was applied to
estimate the optimal soft threshold automatically. If there was no
optimal soft threshold, the first fit index greater than 0.85 was
selected. The weighted adjacency matrix was then converted to a
topological overlap matrix (TOM). The hierarchical clustering tree
was constructed based on the average link hierarchical clustering,
and the dynamic tree algorithm (minModuleSize = 30) was used to
find different gene modules.

2.4 Identification of shared genes and
enrichment analysis

The DEGs of CD and OP were intersected, as well as the
module genes, to obtain shared genes linked with both diseases.
GO and KEGG pathway analysis were performed in the
clusterProfiler package (version 4.10.1) to explore potential
biological functions and signaling pathways associated with
these shared genes. The p-values were corrected by the false
discovery rate (FDR).

2.5 Machine learning

Two machine learning algorithms, Least Absolute Shrinkage
and Selection Operator (LASSO) and Random Forest (RF), were
used to select key diagnostic biomarkers in shared genes. To ensure
repeatability, the seeds for both disease groups were set to 1,234. The
glmnet package in R (version 4.1.8) was applied to construct the
LASSO model and the key genes were selected by 10-fold cross-
validation. In each cross-validation fold, the model was trained on a
series of λ values, and the corresponding average errors were
calculated. The λ value that minimized the cross-validation error
was selected as the optimal λ. RF algorithm was utilized for
significant gene classification using the randomForest package in
R (version 4.7.1.1). According to the default settings of this package,
the number of decision trees was set to 500, which was derived from
extensive research and usually provides good model performance
and stability. Mean decrease accuracy was utilized to quantify the
importance of the genes. The machine learning results were
intersected to identify the overlapping genes between CD and OP.

2.6 Nomogram construction

The diagnostic nomograms of CD and OP were established
using multivariable logistic regression analysis based on the
overlapping genes. The dependent variable of the model was the
sample grouping (patients were coded as 1, and the control group
was coded as 0), and the independent variable was the expression
levels of the screened genes. The model was fitted and visualized
using the rms (version 6.3.0) and Hmisc (version 4.7.1) packages.
First, the “datadist” function was used to calculate the distribution
summaries of all variables. Subsequently, the “lrm” function was
utilized to fit the full-variable logistic regression model, based on
which the nomogram was generated using the “nomogram”

function. The performance of the model was evaluated through
receiver operating characteristic (ROC) curves, calibration curves,
and decision curve analysis (DCA).

2.7 Identification of the shared hub
diagnostic gene

Gene expression levels were examined in the training and
validation datasets to assess the predictive abilities of these
shared diagnostic genes. ROC curves, calibration curves, and
DCA were used to evaluate the diagnostic value of the shared
hub diagnostic gene.

2.8 Single-gene GSEA

To explore the functions of the shared hub diagnostic gene,
single-gene GSEA was performed in clusterProfiler package (version
4.10.1). Genes in the expression profile were sorted according to
their correlation coefficients with the hub gene, and then GSEA
analysis was conducted based on the GO and KEGG pathways.

2.9 Immune infiltration analysis

To quantify the relative enrichment of 28 immune cells in each
sample, single-sample GSEA (ssGSEA) was conducted using the
“gsva” function from the GSVA package, and an enrichment score
matrix of “sample × immune cell type” was generated. This matrix
was standardized by Z-score to eliminate the interference of
expression level differences among samples on visualization.
Boxplots were drawn using the ggplot2 package to show the
distribution of enrichment scores in different disease groups.

TABLE 1 Details of datasets in this study.

GEO series Platform Year Sample Attribute

GSE112366 GPL13158 2018 26 controls and 362 cases of CD Training set

GSE207022 GPL13158 2022 23 controls and 125 cases of CD Validation set

GSE7158 GPL570 2007 40 low-BMD and 40 high-BMD individuals Training set

GSE13850 GPL96 2008 10 low-BMD and 10 high-BMD individuals Validation set

CD, Crohn’s disease.
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2.10 Cell culture

HT-29 and RAW264.7 cells were purchased from Wuhan Saio
Biotechnology Co., Ltd. and grown in RPMI-1640 medium (Gibco,
C11875500BT) and DMEM medium (Gibco, C11885500BT),
respectively, at 37 °C in 5% CO2. All media were supplemented
with 10% FBS (Solarbio, S9030). To verify the role of ABO in CD,
HT-29 cells were divided into the Control and LPS groups. Cells
were treated with 10 μg/mL LPS (Beyotime, S1732) for 24 h. To
assess the role of ABO in OP, RAW264.7 cells were divided into the
Control and RANKL groups. Cells were cultured in a medium
containing 50 ng/mL RANKL (MCE, HY-P73388) for 5 days to
induce osteoclast differentiation.

2.11 ELISA

After LPS treatment, the supernatant of HT-29 cells was
collected. The levels of IL-1β and IL-18 in the supernatant were
detected using ELISA kits (Beyotime), following the manufacturer’s
instructions. Absorbance at 450 nm was measured using a
microplate reader (Wuxi Hiwell Diatek, DR-3518G).

2.12 RT-qPCR

ABO levels in HT-29 cells, as well as CTSK, MMP9, and ABO
levels in RAW264.7 cells, were detected by RT-qPCR. Total RNA was
extracted from cells using Trizol (Invitrogen, 15596018), and then
reverse-transcribed into cDNA using the cDNA first-strand synthesis
kit (TIANGEN, KR118-02). PCR reactions were conducted using the
SYBR Green-based detection system on a real-time quantitative
fluorescence PCR instrument (Bio-Rad, CFX96 Touch). The
mRNA levels were calculated using the 2−ΔΔCT method and
normalized to ACTB. Primer sequences are listed in Table 2.

2.13 Western blot

Total proteins were extracted from HT-29 and RAW264.7 cells
using RIPA buffer (Beyotime, P0013B). Protein samples were separated
through SDS-PAGE gels and then transferred onto PVDF membranes
(Beyotime, FFP24). The membranes were blocked with 5% skimmed
milk (Beyotime, P0216) for 1 h, followed by incubation with the ABO
primary antibody (1:500; Affinity, DF6481) at 4 °C overnight. Goat anti-

rabbit IgG H&L/HRP (1:2000; Abcam, ab6721) was applied to the
membranes for 1 h. Protein bands were visualized using enhanced
chemiluminescence (Servicebio, G2019).

2.14 TRAP staining

TRAP staining was used to assess the osteoclast formation of
RAW264.7 cells using a TRAP staining kit (Solarbio, G1492). Cells
were fixed with TRAP fixation solution for 30 s-3 min. Subsequently,
cells were incubated with TRAP incubation solution at 37 °C for
45–60 min, and then stained with methyl green staining solution for
2–3 min. Finally, cells were observed under a microscope.

2.15 Statistical analysis

All statistical analyses were performed using R language (v4.3.3)
or GraphPad Prism 7.0. The Wilcoxon rank sum test and unpaired
t-tests were used to compare the differences between groups.
Spearman correlation analysis was employed to calculate the
correlation between groups. P < 0.05 was considered statistically
significant.

3 Results

3.1 Identification of CD-related and OP-
related DEGs

The limma package was used to analyze the differential
expression of genes to identify DEGs. CD obtained 1,666 DEGs
with 1,014 upregulated genes and 652 downregulated genes
(Figure 2A). Figure 2B presents the top 10 upregulated and top
10 downregulated DEGs for CD. A total of 54 OP-related DEGs were
screened, consisting of 48 upregulated genes and 6 downregulated
genes (Figure 2C). Figure 2D shows the top 10 upregulated and top
6 downregulated DEGs for OP.

3.2 Identification of CD-related and OP-
related module genes by WGCNA

WGCNA was conducted to screen CD-related and OP-related
module genes. The soft threshold of the CD group was set to 12,

TABLE 2 Primer sequences used for RT-qPCR.

Gene Forward primer (5′-3′) Reverse primer (5′-3′)

ABO (Human) ACCAAAATGCCACGCACTTC TTGTTCAGGTGGCTCTCGTC

ACTB (Human) AGACCTGTACGCCAACACAG TTCTGCATCCTGTCGGCAAT

CTSK (mouse) TACCCATATGTGGGCCAGGA TTCAGGGCTTTCTCGTTCCC

MMP9 (mouse) CAGCCAGACACTAAAGGCCA ACAACTCGTCGTCGTCGAAA

ABO (mouse) AGCCGAGAGGCCTTTACCTA ATTGCCTGATGGTCCTTGGG

ACTB (mouse) AGGGAAATCGTGCGTGACAT GGAAAAGAGCCTCAGGGCAT
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and the hierarchical clustering was constructed (Figures 3A,B). Eight
gene modules with significant differences were identified, of which five
(green, yellow, brown, red, and grey) were positively associated with CD,
and one (blue) was negatively associated (Figure 3C). In particular, the
greenmodule, containing 81 genes, had the strongest positive correlation
with CD. For the OP group, the soft threshold was determined as 12
(Figure 3D). The hierarchical clustering results are shown in Figure 3E. A
single gene module (brown) containing 118 genes was identified, which
was significantly associated with OP. (Figure 3F).

3.3 Enrichment analysis of shared genes
between CD and OP

To study the common pathogenesis of CD and OP, the DEGs
and module genes were intersected, respectively. There were eight

overlapping DEGs (LCN2, TPM4, DMTF1, GZMB, GRINA, LTF,
FAM129A, and ABO) between CD and OP (Figure 4A). A total of
15 overlapping module genes (ALS2CL, AMN, GJB1, ATP8B2,
IGLV4-60, COL18A1, ZDHHC11, SCNN1A, TLX1, CCL24,
RAMP1, NPDC1, CGB, KRT15, and KANK3) were screened
(Figure 4B). These 23 shared genes might be involved in the
pathogenesis of CD and OP. Subsequently, enrichment analysis
was performed to reveal common biological changes between these
two diseases. GO enrichment analysis demonstrated that
endothelial cell morphogenesis, lipid glycosylation, and other
pathways were significantly enriched (Figure 4C). KEGG
enrichment results indicated that shared genes mainly
participated in glycosphingolipid biosynthesis-globo and
isoglobo series, vitamin digestion and absorption, and the
glycosphingolipid biosynthesis-lacto and neolacto
series (Figure 4D).

FIGURE 2
Identification of DEGs in CD and OP. (A) Volcano plot of DEGs in CD. (B)Heatmap of the top 10 upregulated and top 10 downregulated DEGs in CD.
(C) Volcano plot of DEGs in OP. (D) Heatmap of the top 10 upregulated and top 6 downregulated DEGs in OP. Blue represents low expression, and red
represents high expression.
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3.4 Identification of potential diagnostic
genes by machine learning

Two machine learning algorithms were further used to screen
potential diagnostic genes with significant characteristic values. In
CD group, λ was set to 0.00703 based on the LASSO coefficient
profiles and the optimal tuning parameter selection map, and
15 non-zero coefficient genes were obtained (Figure 5A). The
23 shared genes were input into the RF classifier, and genes was
ranked by their importance. Finally, 15 genes were identified
(Figure 5B). The potential diagnostic genes for CD identified by
LASSO and RF are listed in Table 3. To enhance biomarker
credibility and reduce the influence of noise, we intersected the
two machine learning results and screened 11 shared genes (LCN2,
GZMB, LTF, FAM129A, ABO, AMN, ATP8B2, SCNN1A, CCL24,
NPDC1, and KRT15) for CD diagnosis (Figure 5C). The λ was set to
0.0497, and 9 genes were obtained by the LASSO algorithm in OP
group (Figure 5D). Similarly, the RF algorithm selected 18 genes
(Figure 5E). The potential diagnostic genes for OP identified by
LASSO and RF are listed in Table 4. The intersection of these two
algorithms obtained 9 potential diagnostic genes for OP (TPM4,
DMTF1, GZMB, LTF, FAM129A, ABO, ALS2CL, COL18A1, and
KRT15) (Figure 5F). The machine learning results of CD and OP
were intersected, and five overlapping diagnostic genes (GZMB,
LTF, FAM129A, ABO, and KRT15) were obtained (Figure 5G).

3.5 Nomogram construction and validation

We developed a nomogram prediction model for CD patients
based on GZMB, LTF, FAM129A, ABO, and KRT15 (Figure 6A).
ROC curves of the nomogram in the training and validation datasets
showed area under the curve (AUC) values of 0.859 and
0.866 respectively (Figure 6B). Calibration curves of training and
validation datasets demonstrated a good consistency between
observed and predicted results (Figure 6C). Moreover, DCA
demonstrated better clinical efficacy compared to the baselines
(Figure 6D). A nomogram for OP patients based on these five
genes was also constructed (Figure 6E). ROC curves of the
nomogram in the training and validation datasets respectively
showed an AUC of 0.786 and 0.849 (Figure 6F). Calibration
curves confirmed the robust performance of nomogram in both
the training and validation datasets (Figure 6G). DCA indicated that
the nomogram can provide support for OP
identification (Figure 6H).

3.6 Identification and validation of the hub
diagnostic biomarker

Subsequently, the expression patterns of five shared diagnostic
genes were analyzed to evaluate their predictive abilities. Based on

FIGURE 3
WGCNA of CD and OP. (A) Determination of the optimal soft threshold for CD. (B) Cluster dendrogram for CD, different colors represent different
modules. (C) Relationships between modules and traits in CD. (D) Determination of the optimal soft threshold for OP. (E) Cluster dendrogram for OP.
(F) Relationships between modules and traits in OP.
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the training set, GZMB, LTF, FAM129A, and ABO showed
significant differences between CD patients and controls, while
only ABO and GZMB displayed differential expression in the
validation set, specifically, ABO was consistently low expression
in CD patients and GZMB showed the opposite trend (Figure 7A).
All five genes showed significant differences between high-BMD and
low-BMD individuals in the training set, but only ABO and KRT15
presented differential expression in the validation set, as shown in
Figure 7B. ABO and KRT15 were always lowly expressed in low-
BMD samples. Since ABO was significantly differentially expressed
in both the training and validation sets, with a consistent trend in
CD and OP, it was identified as the hub diagnostic biomarker for
both diseases. In addition, the expression of ABO was decreased in
the two diseases.

ROC curves, calibration curves, and DCA demonstrated the
good diagnostic performance of ABO in both CD training and
validation sets (Figures 7C–E). The AUC of ABO in OP training and
validation sets was 0.76 and 0.81, respectively, both exceeding 0.75

(Figure 7F). Calibration curve of the ABO model showed excellent
consistency between observed and predicted results (Figure 7G).
DCA showed that the ABO model demonstrates substantial net
benefit at most of the threshold probabilities (Figure 7H). The results
validated the diagnostic ability of ABO as the hub diagnostic
biomarker for CD and OP.

3.7 Single-gene GSEA for the hub
diagnostic biomarker

Single-gene GSEA was performed based on the training sets of
CD and OP. Enrichment analysis based on GO terms revealed that
ABO was mostly enriched in mononuclear cell proliferation,
collagen-containing extracellular matrix, apical plasma
membrane, mitochondrial matrix, chromosomal region, and GTP
binding in CD (Figure 8A). In OP, ABO was mainly enriched in
sensory perception, mitochondrial matrix, chromosomal region,

FIGURE 4
Identification of the overlapping genes between CD and OP and enrichment analysis. (A) Overlapping DEGs between CD and OP. (B) Overlapping
module genes betweenCD andOP. (C)GOenrichment analysis for the 23 overlapping genes. (D) KEGG enrichment analysis for the 23 overlapping genes.
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neuronal cell body, signaling receptor activator activity, and catalytic
activity acting on a nucleic acid (Figure 8B). ABO was involved in
mitochondrial matrix and chromosomal region in the two diseases.
In the KEGG pathways, pathways involved in digestion were
upregulated by ABO in CD, such as fatty acid degradation,
pyruvate metabolism, fat digestion and absorption, and mineral
absorption, while osteoclast differentiation, phagosome, ribosome,
cytokine-cytokine receptor interaction, and inflammatory bowel
disease were downregulated (Figure 8C). In OP, neuroactive
ligand-receptor interaction, calcium signaling pathway, and

cytoskeleton in muscle cells were upregulated, while proteasome,
ribosome biogenesis in eukaryotes, and fatty acid metabolism were
downregulated (Figure 8D). The ribosome was downregulated by
ABO in both diseases. Besides, fatty acid degradation was activated
in CD, while its metabolism was inhibited in OP, suggesting that the
regulation of ABO in CD and OP might not be directly related to
fatty acid metabolism/degradation. We further analyzed the
correlation of ABO with the mitochondrial and ribosomal
pathways in CD and OP. The results showed that ABO was
significantly positively correlated with the mitochondrial

FIGURE 5
Identification of shared diagnostic genes by machine learning. (A) LASSO regression analysis for CD. (B) Gene importance ranking for CD by RF
algorithm. (C) Venn diagrams. The intersection of the two machine learning results of CD obtained 11 shared diagnostic genes. (D) LASSO regression
analysis for OP. (E) Gene importance ranking for OP by RF algorithm. (F) Venn diagrams. The intersection of the two machine learning results of OP
obtained nine shared diagnostic genes. (G) The Venn diagrams showing five shared diagnostic genes identified after the intersection of machine
learning results for CD and OP.
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pathway, whereas it was markedly negatively correlated with the
ribosomal pathway in CD (Figure 8E). Furthermore, ABO was
significantly negatively correlated with the mitochondrial
pathway, and was not notably correlated with the ribosomal
pathway in OP (Figure 8F). This evidence suggests that
mitochondria may play an important role in the common
pathological mechanism of CD and OP.

3.8 Immune infiltration analysis for the hub
diagnostic biomarker

Since the immune system has been proven to influence the
progression of CD and OP, the abundances of immune cell
infiltration were analyzed. A total of 15 immune cells, including
activated B cell, activated dendritic cell, CD56bright natural killer
cell, CD56dim natural killer cell, central memory CD8 T cell,
eosinophil, gamma delta T cell, immature dendritic cell, memory
B cell, monocyte, natural killer cell, neutrophil, plasmacytoid
dendritic cell, regulatory T cell, and type 17 T helper cell,
showed significant differences in CD group (Figure 9A).
Correlation analysis indicated that the expression of ABO was
negatively correlated with most immune cells in CD patients
(Figure 9B). To analyze the role of ABO in CD progression, we
conducted a subgroup analysis based on whether CD patients
received hormone therapy. A total of 12 immune cells, including
activated dendritic cell, CD56bright natural killer cell, CD56dim
natural killer cell, central memory CD8 T cell, gamma delta T cell,
immature dendritic cell, memory B cell, monocyte, natural killer
cell, neutrophil, plasmacytoid dendritic cell, and type 17 T helper
cell, demonstrated notable differences between treated and
untreated CD groups (Figure 9C). ABO expression was

negatively correlated with most immune cells in CD patients
treated with hormones (Figure 9D).

There were significant differences in seven immune cells
(CD56dim natural killer cell, central memory CD4 T cell, central
memory CD8 T cell, mast cell, monocyte, plasmacytoid dendritic
cell, and type 1 T helper cell) between high-BMD and low-BMD
individuals (Figure 9E). A total of 5 immune cells were significantly
correlated with the expression of ABO (Figure 9F). Specifically, mast
cell and central memory CD8 T cell were significantly positively
correlated, while effector memory CD4 T cell, activated CD8 T cell,
and immature B cell were significantly negatively
correlated with ABO.

3.9 Validation of the role of ABO in CD and
OP in vitro

In vitro experiments were conducted to validate the role of
ABO in CD and OP. HT-29 cells were treated with LPS to mimic
the inflammatory environment of CD. LPS treatment
significantly increased IL-1β and IL-18 levels in the cell
supernatant (Figure 10A). Moreover, ABO levels in cells were
markedly decreased after LPS treatment (Figures 10B,C).
RAW264.7 cells were treated with RANKL to induce
osteoclast differentiation. TRAP staining showed that the
purple-red positive areas were significantly increased in
RAW264.7 cells after RANKL stimulation compared to the

TABLE 3 Potential diagnostic genes for CD identified by machine learning.

LASSO RF

LCN2 LCN2

GZMB TPM4

GRINA GZMB

LTF LTF

FAM129A FAM129A

ABO ABO

AMN AMN

ATP8B2 ATP8B2

IGLV4-60 IGLV4.60

SCNN1A ZDHHC11

CCL24 SCNN1A

RAMP1 TLX1

NPDC1 CCL24

CGB NPDC1

KRT15 KRT15

LASSO, least absolute shrinkage and selection operator; RF, random forest.

TABLE 4 Potential diagnostic genes for OP identified by machine learning.

LASSO RF

TPM4 LNC2

DMTF1 TPM4

GZMB DMTF1

LTF GZMB

FAM129A GRINA

ABO LTF

ALS2CL FAM129A

COL18A1 ABO

KRT15 ALS2CL

AMN

GJB1

COL18A1

ZDHHC11

SCNN1A

TLX1

RAMP1

KRT15

KANK3

OP, osteoporosis.
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control group, indicating their differentiation into mature
osteoclasts (Figure 10D). The levels of bone resorption
markers (CTSK and MMP9) were increased, while ABO levels
were decreased after RANKL treatment (Figure 10E).
Furthermore, RANKL induction also significantly reduced the
protein level of ABO (Figure 10F). The expression pattern of
ABO in the in vitro CD and OP models was consistent with the
results of bioinformatics.

4 Discussion

OP is a common issue in CD patients (Zhao et al., 2023).
Therefore, it is crucial to explore the common pathogenesis of
both diseases. This study screened five potential shared
diagnostic genes by WGCNA and two machine learning
algorithms. ABO was identified as the hub co-diagnosis gene
after verification. GSEA found that the biological pathways of

FIGURE 6
Construction of nomogram for CD andOP patients. (A)Nomogram for CD patients based onGZMB, LTF, FAM129A, ABO, and KRT15. (B) ROC curves
of CD nomogram in training and validation datasets. (C) Calibration curves of CD nomogram in training and validation datasets. (D) DCA of the CD
nomogram to training and validation datasets. (E) Nomogram for OP patients based on GZMB, LTF, FAM129A, ABO, and KRT15. (F) ROC curves of OP
nomogram in training and validation datasets. (G) Calibration curves of OP nomogram in training and validation datasets. (H) DCA of the OP
nomogram to training and validation datasets. DCA, decision curve analysis.
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ABO involved in the two diseases were mainly enriched in the
mitochondrial matrix, chromosomal region, and ribosome. Immune
infiltration analysis recognized immune cells significantly associated
with diseases and ABO. In vitro experiments validated the results of
bioinformatics. Overall, this study revealed a novel co-diagnostic
gene and its underlying mechanisms, which provides new insights
into the diagnosis and treatment of CD and OP.

CD is a non-specific autoimmune disease in which
inflammation plays a vital role, it involves innate immunity to
the intestinal mucosal barrier and extracellular matrix remodeling
(Petagna et al., 2020). In addition, the immune system is linked to
various types of osteoporosis development through different
mechanisms. For example, estrogen deficiency mediates immune
cell stimulation of osteoclast activation in postmenopausal

osteoporosis, and aging promotes an immune imbalance that
leads to bone loss in senile osteoporosis (Zhang et al., 2022).
Hence, immune cells play an important role in both diseases.
Immune infiltration analysis found that central memory
CD8 T cell, monocyte, and plasmacytoid dendritic cell were
markedly increased in CD and low-BMD individuals. Consistent
with this finding, pro-inflammatory T cells promote bone resorption
in osteoclasts, and long-term exposure to these cytokines can induce
OP (Buchwald et al., 2012). CD8 T cells were significantly increased
in peripheral blood mononuclear cells in CD patients (Chen et al.,
2024). Postmenopausal OP and CD patients had higher monocyte
levels than normal individuals (Li et al., 2024; Hu et al., 2024).
Furthermore, functional osteoclasts derived from dendritic cells are
directly involved in osteolytic osteopathy, and CD patients have

FIGURE 7
Selection and validation of the shared hub diagnostic gene. (A) Expression of shared diagnostic genes in CD training and validation datasets. (B)
Expression of shared diagnostic genes in OP training and validation datasets. (C) ROC curves, (D) Calibration curves, and (E) DCA of ABO model in CD
training and validation datasets. (F) ROC curves, (G) Calibration curves, and (H) DCA of ABO model in OP training and validation datasets.
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increased dendritic cell levels in the intestinal lamina propria
(Rivollier et al., 2004; Magnusson and Wick, 2011).

To further explore the co-pathogenesis of CD and OP, we
performed enrichment analysis on the shared genes of the two
diseases. The results showed that these genes were mainly enriched
in endothelial cell morphogenesis, lipid glycosylation,
glycosphingolipid biosynthesis-globo and isoglobo series, vitamin
digestion and absorption, and glycosphingolipid biosynthesis-lacto
and neolacto series. Enrichment of endothelial cell morphogenesis
suggests possible changes in bone and intestinal microvascular
development, thereby affecting intestinal barrier function and
bone formation. Enrichment in lipid glycosylation and
glycosphingolipid biosynthesis indicates shared lipid metabolism
disturbances in intestinal inflammation and bone turnover.
Enrichment of vitamin digestion and absorption indicates that
abnormal utilization of nutrients may simultaneously regulate
intestinal homeostasis and bone mineralization. Consistent with
these results, specific deletion of ZEB1 in endothelial cells leads to
reduced osteogenesis (Fu et al., 2020). Dysfunction of the intestinal
vascular barrier, which includes intestinal vascular endothelial cells,

glial cells, and pericytes, is closely related to CD (Jingjie and June
2023). Congenital disorders of glycosylation, characterized by
impaired glycosylation of proteins and lipids, contribute to
decreased bone mineral density (Lipiński et al., 2021). In
addition, glycosylation changes often occur in the colon epithelial
cells of CD (Rhodes et al., 2008). Excess glycosphingolipids will
affect the number and activity of osteoblasts and osteoclasts (Hughes
et al., 2019). Bioactive sphingolipids can regulate biological
functions and affect CD development (Gomez-Larrauri et al.,
2020). Vitamin supplementation can improve CD and
osteoporosis (Valvano et al., 2024; Rusu et al., 2024).

Machine learning further identified GZMB, LTF, FAM129A,
ABO, and KRT15 as the shared hub diagnostic genes for CD and
OP. These genes all have certain biological significance and may
have potential effects in CD and/or OP. GZMB is a cysteine
protease-like serine proteolytic enzyme that is widely expressed
in various hematopoietic and non-hematopoietic origin cells
(Majchrzak et al., 2025). It is contained within the cytotoxic
granules of cytotoxic T cells and natural killer cells. After target
recognition, these granules are secreted into the immune synapse

FIGURE 8
Single-gene GSEA for ABO. (A) Single-gene GSEA for ABO in CD based on GO terms. (B) Single-gene GSEA for ABO in OP based on GO terms.
(C) Single-gene GSEA for ABO in CD based on KEGG pathway. (D) Single-gene GSEA for ABO in OP based on KEGG pathway. (E) Correlation analysis of
ABO and mitochondrial and ribosomal pathways in CD. (F) Correlation analysis of ABO and mitochondrial and ribosomal pathways in OP.
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FIGURE 9
Immune infiltration analysis (A) Infiltrating abundance of immune cells between CD patients and healthy controls. (B) Immune infiltration analysis of
ABO in CD. (C) Infiltrating abundance of immune cells between hormone-treated and untreated CD patients. (D) Immune infiltration analysis of ABO in
hormone-treated CD patients. (E) Infiltrating abundance of immune cells between high-BMD and low-BMD individuals. (F) Immune infiltration analysis of
ABO in low-BMD individuals.
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to promote apoptosis in infected or cancer cells (Cao et al., 2007).
Studies have shown that GZMB can detect active IBD and predict
the response to treatment (Heidari et al., 2024). LTF is a
multifunctional protein composed of a polypeptide chain and
is a component of most mammalian whey proteins (Kowalczyk
et al., 2022). It possesses various properties, such as anti-
inflammatory and immune regulation (Artym and Zimecki,
2021). LTF is a fecal inflammatory biomarker for CD in
clinical practice, and it is used to predict disease recurrence
after resection (Yamamoto and Shimoyama, 2017). Moreover,
Samsonraj et al. identified LTF as a protein secreted by bone
marrow-derived senescent mesenchymal stem cells, and the
senescence-associated secretory phenotype is closely related to
age-related changes in bone tissue (Samsonraj et al., 2023).
FAM129A (also known as Niban) is an endoplasmic reticulum
stress-related protein that regulates cell death by modulating
eIF2a and S6K1/4E-BP1 phosphorylation (Sun et al., 2007). Wen
et al. discovered that GBF1 regulates osteoclast activation by
targeting EIF2a-mediated endoplasmic reticulum stress and
FAM129A (Wen et al., 2021). KRT15 is a type I cytoskeletal
protein mainly expressed in keratinocytes of stratified epithelial
cells, and it regulates the renewal and repair of basal cells

(Alsaegh et al., 2019). Studies have shown that NOD2
mutations are associated with an increased risk of CD, and
KRT15 is a protein that interacts with NOD2, suggesting its
potential role in CD (Thiébaut et al., 2016). The ABO gene is
located on chromosome 9 and contains seven exons, about
19.5 kb long (Yamamoto et al., 1995). A or B
glycosyltransferase (GT) encoded by the A and B genes can
synthesize ABO antigens in red blood cells (Morgan and
Watkins, 2000). Therefore, genetic changes in ABO can cause
weak ABO phenotypes by affecting GTs (Lei et al., 2024). ABO
blood group antigens were initially applied in blood transfusion
and transplantation (Heal et al., 2005). Additionally, ABO blood
type is associated with the susceptibility of the body to various
diseases, such as cancer, cardiovascular diseases, infectious
diseases, and cognitive disorders (Franchini et al., 2012;
Bullerdiek et al., 2022; Alexander et al., 2014). Nevertheless,
the research on ABO in CD and OP is relatively limited. A
study revealed that ABO blood group distribution among CD
patients is significantly different from that of normal individuals,
with the AB blood group presenting the highest risk (Jiang et al.,
2024). In addition, previous studies have shown that women with
blood group AB have the lowest bone density and are more likely

FIGURE 10
Validation of the role of ABO in CD and OP in vitro. (A) HT-29 cells were treated with 10 μg/mL LPS for 24 h, and the levels of IL-1β and IL-18 in the
supernatant were detected using ELISA. The mRNA and protein levels of ABO in HT-29 cells were detected by (B) RT-qPCR and (C) Western blot.
(D) RAW264.7 cells were cultured in a medium containing 50 ng/mL RANKL for 5 days, and the formation of osteoclasts was evaluated using TRAP
staining. Scale bar = 100 μm. (E) The levels of CTSK, MMP9, and ABO were detected by RT-qPCR. (F) The protein levels of ABO were detected by
Western blot. LPS, lipopolysaccharide; RANKL, receptor activator of nuclear factor κB ligand. *P < 0.05, **P < 0.01 vs Control group.
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to develop OP (Kaur, 2014). Interestingly, patients with the AB
blood group show a high risk for both diseases.

We analyzed the expression patterns of these shared hub
diagnostic genes in the CD and OP datasets and in vitro models,
and found that ABO was consistently and significantly
downregulated in the disease groups. Therefore, it was identified
as a novel hub co-diagnostic gene for CD and OP. Moreover, ROC
curves, calibration curves, and DCA of the ABO model indicate that
it exhibits excellent discrimination, calibration performance and
clinical utility in both diseases. GSEA results found that the
biological pathways of ABO involvement in both diseases are
enriched in the mitochondrial matrix, chromosomal region, and
ribosome. Aldehyde dehydrogenase 2 is present in the
mitochondrial matrix, and its inactivation mutations increase the
tendency for OP (Chen et al., 2014). In addition, mutations in
carnitine transporter genes OCTN1 and OCTN2 are closely related
to CD, and carnitine-dependent entry of long-chain fatty acids into
the mitochondrial matrix regulates fatty acid oxidative to improve
intestinal function (Shekhawat et al., 2007). The STAT6 gene is
located in the 12p13.2-q24.1 region of the chromosome, which has
polymorphism and participates in CD development by regulating
TH1/TH2 immune response (Klein et al., 2005). Besides,
dysfunction at the sites of ribosome transcription and synthesis
leads to childhood progerias, which is characterized by OP, and
disruption of ribosome biogenesis also affects mitochondria (Phan
et al., 2019). Correlation analysis confirmed a significant correlation
between ABO and the mitochondrial pathway in both CD and OP,
suggesting the potential involvement of this pathway in ABO-based
co-diagnosis of CD and OP. T cells are involved in regulating the
production of anti-A natural antibodies (Adam et al., 2023). B cell
response to T cell-independent antigens leads to the rejection of
ABO-incompatible allografts (Sakai et al., 2021). Similarly, immune
infiltration results found that ABO was significantly negatively
correlated with activated CD8 T cell, effector memory
CD4 T cell, and immature B cell in both CD and OP. Notably,
the correlation between ABO and these immune cells still exists in
CD patients who have received hormone therapy, suggesting that
the association between them may be partially independent of the
drug intervention. Activated CD8 T cells directly kill intestinal
epithelial cells through the perforin/granzyme pathway, damaging
the barrier, and produce pro-inflammatory cytokines such as IFN-γ
and TNF-α, further driving intestinal inflammation (Kappeler and
Mueller, 2000). The pathology of CD involves the dysregulation of
the CD4 T cell homeostasis controlled by the TNF-α/IL-6 and IL-10/
TGF-β networks (Ma et al., 2025). These cell-mediated intestinal
mucosal inflammation may indirectly contribute to the occurrence
of OP. Furthermore, activated T lymphocytes are the main source of
RANKL and TNF-α, and are closely related to bone destruction.
CD4 T and CD8 T cells also possess anti-osteoclast formation
properties, as their depletion leads to a reduction in the
formation of osteoprotegerin (Srivastava et al., 2018). However, it
remains to be further investigated whether ABO affects this process
by regulating these immune cells.

Many studies have reported an association between OP and CD,
but few have investigated the correlation and mechanisms between
them. This study explored the co-pathogenesis of CD and OP and
screened for co-diagnostic markers. However, this study has some
limitations. First, only two datasets were used for CD and OP

analysis, and the sample size was small. Moreover, the results
were only preliminarily validated in cell experiments, and in vivo
studies and further functional assays are still needed. Additionally,
this study did not incorporate the common risk factors for CD and
OP (such as age, gender, BMI, and gut microbiota) into the analysis,
thus we were unable to eliminate the interference of these factors on
the conclusions. Furthermore, we did not conduct a combined
diagnostic analysis of ABO with the existing clinical indicators,
which prevented us from determining whether ABO could enhance
the accuracy of the existing diagnostic protocols.

5 Conclusion

ABOwas screened as the hub co-diagnostic gene for CD and OP,
showing good diagnostic value and providing a theoretical basis for
their diagnosis and treatment.
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